SlideShare a Scribd company logo
1 of 15
1
Steady State Error Analysis
2
Test Waveform for evaluating steady-state
error
3
G(s)
H(s)
R(s)
+
-
C(s)
G(s)
R(s)
+
-
C(s)
Unity feedback
H(s)=1
Non-unity feedback
H(s)≠1
E(s)
E(s)
Steady-state error analysis
4
Steady-state error analysis
For unity feedback system:
)
(
)
(
)
( s
C
s
R
s
E 
 System error
For a non-unity feedback system:
)
(
)
(
)
(
)
( s
C
s
H
s
R
s
E 
 Actuating error
5
Steady-state error analysis
Consider a unity feedback system, if the inputs are step response, ramp &
parabolic (no sinusoidal input). We want to find the steady-state error
)
(
lim t
e
e
t
ss



Where, )
(
)
(
)
( t
c
t
r
t
e 

By Final Value Theorem:
)
(
lim
)
(
lim
0
s
sE
t
e
e
s
t
ss





6
Steady-state error analysis
Consider Unity Feedback System
)
(
)
(
)
( s
C
s
R
s
E 
 (1)
)
(
1
)
(
)
(
)
(
s
G
s
G
s
R
s
C

 (2)
Substitute (2) into (1)
)
(
)
(
1
1
)
(
)
(
1
)
(
)
(
)
( s
R
s
G
s
R
s
G
s
G
s
R
s
E





 (3)
7
Steady-state error analysis
Based on equation (3), it can be seen that E(s) depends on:
(a) Input signal, R(s)
(b) G(s), open loop transfer function
Now, assume:
 
 
j
j
N
i
M
i
p
s
S
z
s
K
s
G








1
1
)
(
type N
Cases to be considered:
3
2
1
)
(
)
(
1
)
(
)
(
1
)
(
)
(
s
s
R
C
s
s
R
B
s
s
R
A



8
Case (A): Input is a unit step R(s)=1/s
)
(
1
1
)
(
)
(
1
1
)
(
s
G
s
s
R
s
G
s
E




)
(
lim
_
0
s
sE
Error
State
Steady
e
s
ss























 )
(
1
1
lim
)
(
1
1
lim
0
0 s
G
s
G
s
s
e
s
s
ss





















p
s
K
s
G 1
1
)
(
lim
1
1
0
where )
(
lim
0
s
G
K
s
p

 
“Static Position
Error Constant”
9
If N = 0, Kp = constant finite
K
e
p
ss 


1
1
If N ≥ 1, Kp = infinite 0
1
1
1
1






p
ss
K
e
For unit step response, as the type of system increases (N ≥ 1), the steady
state error goes to zero
10
Case (B): Input is a unit ramp R(s)=1/s2
)
(
1
1
)
(
)
(
1
1
)
(
2
s
G
s
s
R
s
G
s
E




)
(
lim
_
0
s
sE
Error
State
Steady
e
s
ss























 )
(
1
lim
)
(
1
1
lim
0
2
0 s
sG
s
s
G
s
s
e
s
s
ss
V
s
s
K
s
sG
s
sG
1
)
(
lim
1
)
(
lim
0
1
0
0






















where )
(
lim
0
s
sG
K
s
v

 
“Static Velocity
Error Constant”
11
If N = 0, 


v
ss
K
e
1
If N =1, Kv = finite finite
K
e
v
ss 

1
,
0
)
(
)
(




j
i
v
p
s
z
s
s
K


If N ≥2, Kv = infinite 0
1
1




v
ss
K
e
For unit ramp response, the steady state error in infinite for system of type
zero, finite steady state error for system of type 1, and zero steady state error
for systems with type greater or equal to 2.
12
Case (C): Input is a parabolic, R(s)=1/s3
)
(
1
1
)
(
)
(
1
1
)
(
3
s
G
s
s
R
s
G
s
E




)
(
lim
_
0
s
sE
Error
State
Steady
e
s
ss























 )
(
1
lim
)
(
1
1
lim 2
2
0
3
0 s
G
s
s
s
G
s
s
e
s
s
ss
a
s
s
K
s
G
s
s
G
s
1
)
(
lim
1
)
(
lim
0
1
2
0
2
0






















where
)
(
lim 2
0
s
G
s
K
s
a

 
“Static Acceleration
Error Constant”
13
14
If N = 0, 


a
ss
K
e
1
If N =1, Ka = 0 


a
ss
K
e
1
,
0
)
(
)
(
2




j
i
a
p
s
z
s
s
K


If N = 2, Ka = constant finite
K
e
a
ss 

1
 Increasing system type (N) will accommodate more different inputs.
If N ≥3 , Ka = infinite 0
1
1




a
ss
K
e
15
Example 3
R(s)
+
-
C(s)
)
2
(
)
1
(
3


s
s
s
If r(t) = (2+3t)u(t), find the steady state error (ess) for the
given system.
Solution:




)
(
lim
0
s
G
K
s
p
2
3
)
(
lim
0



s
sG
K
s
v
2
2
3
3
1
2
3
1
2








v
p
ss
K
K
e

More Related Content

Similar to Errors ppt.ppt

lecture1 (5).pptx
lecture1 (5).pptxlecture1 (5).pptx
lecture1 (5).pptx
HebaEng
 

Similar to Errors ppt.ppt (20)

Time-Response Lecture
Time-Response LectureTime-Response Lecture
Time-Response Lecture
 
Time response analysis
Time response analysisTime response analysis
Time response analysis
 
Lecture 23 loop transfer function
Lecture 23 loop transfer functionLecture 23 loop transfer function
Lecture 23 loop transfer function
 
Steady State Error
Steady State ErrorSteady State Error
Steady State Error
 
BEC-26 control-systems_unit-III_pdf
BEC-26 control-systems_unit-III_pdfBEC-26 control-systems_unit-III_pdf
BEC-26 control-systems_unit-III_pdf
 
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
 
Error analysis
Error analysisError analysis
Error analysis
 
Multiple Choice Questions on Frequency Response Analysis
Multiple Choice Questions on Frequency Response AnalysisMultiple Choice Questions on Frequency Response Analysis
Multiple Choice Questions on Frequency Response Analysis
 
alt klausur
alt klausuralt klausur
alt klausur
 
lecture1 (5).pptx
lecture1 (5).pptxlecture1 (5).pptx
lecture1 (5).pptx
 
Adaline and Madaline.ppt
Adaline and Madaline.pptAdaline and Madaline.ppt
Adaline and Madaline.ppt
 
Control systems
Control systemsControl systems
Control systems
 
Classification of Systems: Part 1
Classification of Systems:  Part 1Classification of Systems:  Part 1
Classification of Systems: Part 1
 
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
 
Order of instruments.ppt
Order of instruments.pptOrder of instruments.ppt
Order of instruments.ppt
 
Transfer Function, Concepts of stability(critical, Absolute & Relative) Poles...
Transfer Function, Concepts of stability(critical, Absolute & Relative) Poles...Transfer Function, Concepts of stability(critical, Absolute & Relative) Poles...
Transfer Function, Concepts of stability(critical, Absolute & Relative) Poles...
 
signal and system Hw2 solution
signal and system Hw2 solutionsignal and system Hw2 solution
signal and system Hw2 solution
 
TIME RESPONSE ANALYSIS
TIME RESPONSE ANALYSISTIME RESPONSE ANALYSIS
TIME RESPONSE ANALYSIS
 
03 dynamic.system.
03 dynamic.system.03 dynamic.system.
03 dynamic.system.
 
TIME DOMAIN ANALYSIS
TIME DOMAIN ANALYSISTIME DOMAIN ANALYSIS
TIME DOMAIN ANALYSIS
 

Recently uploaded

Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 

Recently uploaded (20)

Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 

Errors ppt.ppt

  • 2. 2 Test Waveform for evaluating steady-state error
  • 4. 4 Steady-state error analysis For unity feedback system: ) ( ) ( ) ( s C s R s E   System error For a non-unity feedback system: ) ( ) ( ) ( ) ( s C s H s R s E   Actuating error
  • 5. 5 Steady-state error analysis Consider a unity feedback system, if the inputs are step response, ramp & parabolic (no sinusoidal input). We want to find the steady-state error ) ( lim t e e t ss    Where, ) ( ) ( ) ( t c t r t e   By Final Value Theorem: ) ( lim ) ( lim 0 s sE t e e s t ss     
  • 6. 6 Steady-state error analysis Consider Unity Feedback System ) ( ) ( ) ( s C s R s E   (1) ) ( 1 ) ( ) ( ) ( s G s G s R s C   (2) Substitute (2) into (1) ) ( ) ( 1 1 ) ( ) ( 1 ) ( ) ( ) ( s R s G s R s G s G s R s E       (3)
  • 7. 7 Steady-state error analysis Based on equation (3), it can be seen that E(s) depends on: (a) Input signal, R(s) (b) G(s), open loop transfer function Now, assume:     j j N i M i p s S z s K s G         1 1 ) ( type N Cases to be considered: 3 2 1 ) ( ) ( 1 ) ( ) ( 1 ) ( ) ( s s R C s s R B s s R A   
  • 8. 8 Case (A): Input is a unit step R(s)=1/s ) ( 1 1 ) ( ) ( 1 1 ) ( s G s s R s G s E     ) ( lim _ 0 s sE Error State Steady e s ss                         ) ( 1 1 lim ) ( 1 1 lim 0 0 s G s G s s e s s ss                      p s K s G 1 1 ) ( lim 1 1 0 where ) ( lim 0 s G K s p    “Static Position Error Constant”
  • 9. 9 If N = 0, Kp = constant finite K e p ss    1 1 If N ≥ 1, Kp = infinite 0 1 1 1 1       p ss K e For unit step response, as the type of system increases (N ≥ 1), the steady state error goes to zero
  • 10. 10 Case (B): Input is a unit ramp R(s)=1/s2 ) ( 1 1 ) ( ) ( 1 1 ) ( 2 s G s s R s G s E     ) ( lim _ 0 s sE Error State Steady e s ss                         ) ( 1 lim ) ( 1 1 lim 0 2 0 s sG s s G s s e s s ss V s s K s sG s sG 1 ) ( lim 1 ) ( lim 0 1 0 0                       where ) ( lim 0 s sG K s v    “Static Velocity Error Constant”
  • 11. 11 If N = 0,    v ss K e 1 If N =1, Kv = finite finite K e v ss   1 , 0 ) ( ) (     j i v p s z s s K   If N ≥2, Kv = infinite 0 1 1     v ss K e For unit ramp response, the steady state error in infinite for system of type zero, finite steady state error for system of type 1, and zero steady state error for systems with type greater or equal to 2.
  • 12. 12 Case (C): Input is a parabolic, R(s)=1/s3 ) ( 1 1 ) ( ) ( 1 1 ) ( 3 s G s s R s G s E     ) ( lim _ 0 s sE Error State Steady e s ss                         ) ( 1 lim ) ( 1 1 lim 2 2 0 3 0 s G s s s G s s e s s ss a s s K s G s s G s 1 ) ( lim 1 ) ( lim 0 1 2 0 2 0                       where ) ( lim 2 0 s G s K s a    “Static Acceleration Error Constant”
  • 13. 13
  • 14. 14 If N = 0,    a ss K e 1 If N =1, Ka = 0    a ss K e 1 , 0 ) ( ) ( 2     j i a p s z s s K   If N = 2, Ka = constant finite K e a ss   1  Increasing system type (N) will accommodate more different inputs. If N ≥3 , Ka = infinite 0 1 1     a ss K e
  • 15. 15 Example 3 R(s) + - C(s) ) 2 ( ) 1 ( 3   s s s If r(t) = (2+3t)u(t), find the steady state error (ess) for the given system. Solution:     ) ( lim 0 s G K s p 2 3 ) ( lim 0    s sG K s v 2 2 3 3 1 2 3 1 2         v p ss K K e