SlideShare a Scribd company logo
1 of 27
ENTROPY OF PERFECT CRYSTAL POWERPOINT PRESENTATION SUBMITTED  BY MABILANGAN, SARAH JANE B. TO DR. W. JOAQUIN
THE THIRD LAW "The entropy of a pure perfect crystal is zero (0) at zero Kelvin (0° K)." ,[object Object]
The Third Law of Thermodynamics means that as the temperature of a system approaches absolute zero, its entropy approaches a constant (for pure perfect crystals, this constant is zero). ,[object Object]
“The entropy of a substance varies with the temperature of the substance. The lower the temperature, the lower the entropy. “
Perfect crystal at 0 K Crystal deforms at T > 0 K
A pure perfect crystal is one in which every molecule is identical, and the molecular alignment is perfectly even throughout the substance. This means that in a perfect crystal, at 0 Kelvin, nearly all molecular motion should cease in order to achieve ΔS=0. The crystal must be perfect, or else there will be some inherent disorder. It also must be at 0 K; otherwise there will be thermal motion within the crystal, which leads to disorder. http://www.allaboutscience.org/third-law-of-thermodynamics-faq.htm
For non-pure crystals, or those with less-than perfect alignment, there will be some energy associated with the imperfections, so the entropy cannot become zero. http://www.allaboutscience.org/third-law-of-thermodynamics-faq.htm
At a temperature of absolute zero there is no thermal energy or heat. At a temperature of zero Kelvin the atoms in a pure crystalline substance are aligned perfectly and do not move. There is no entropy of mixing since the substance is pure.
At absolute zero, the entropy of a pure crystal is also zero.  S = 0   at     T = 0 K
At temperatures near 0 K, nearly all molecular motion ceases and, when entropy = S, ΔS = 0 for any adiabatic process. Pure substances can (ideally) form perfect crystals as T -> 0. Max Planck's strong form of the third law of thermodynamics states the entropy of a perfect crystal vanishes at absolute zero. The original Nernst heat theorem makes the weaker and less controversial claim that the entropy change for any isothermal process approaches zero as T -> 0:The implication is that the entropy of a perfect crystal simply approaches a constant value.http://en.wikipedia.org/wiki/Absolute_zero
Perfect crystals never occur in practice; imperfections, and even entire amorphous materials, simply get "frozen in" at low temperatures, so transitions to more stable states do not occur.    					http://en.wikipedia.org/wiki/Absolute_zero
Based on the third law we can set an absolute scale for entropy based on the “perfect crystal”.  S = klnW voh.chem.ucla.edu/vohtar/summer04/classes/14B/.../notes81304.pdf
Where: K = Boltzman’s constant = 1.381*10-23 J/K  ln = natural log = 2.3*log lnX = 2.3logX  W = degree’s of molecular orientation raised to the power of the number of molecules.  voh.chem.ucla.edu/vohtar/summer04/classes/14B/.../notes81304.pdf
SAMPLE PROBLEM
Four process cycle: An Ideal Diesel cycle with air as the working fluid has a compression ratio of and a cutoff ratio of 2. At the beginning of the compression process, the working fluid is at 14.7 psia, 80 °F, and 117 in³. Utilizing the cold-air standard assumptions, determine: A. temperature and pressure of the air at the end of each process B. the network output and the thermal efficiency, and C. the mean effective pressure THERMODYNAMICS AN ENGINEERING APPROACH 4th edition YUNUS A. CENGEL and MICHAEL A. BOLES,  465
SOLUTION GIVEN: R= 0.3704 psia. Ft³/ lbm.R Cp= 0.240 Btu/ lbm . R Cv= 0.171 Btu/ lbm . R k= 1.4 1-2	s=c 2-3	p=c 3-4	s=c 4=1	v=c
V2=  V1  = 117 in³ 		   r        18 	 V2= 6.5 in ³ 	 V3= rc V2 = (2)(6.5 in³) 	 V3= 13 in³ 	 V4= V1 = 117 in³ Process 1-2 (isentropic compression of an ideal gas, constant 					specific heat) 		T2= T1  V1   ^ k-1        = (540 R)(18) ^ 1.4-1 = 1716 °R 			V2
P2 = P1   V1	  ^ k 	= (14.7 psia)(18)^ 1.4 = 841 psia                   V2	 Process 2-3 (constant- pressure heat addition to an ideal gas) P3= P2= 841 psia P2 V2   =  P3V3    T2           T3 T3= T2   V3  	= (1716 R)(2) = 3432 °R V2
Process 3-4 ( isentropic expansion of an ideal gas, constant specific heats) 	  T4 = T3   V3   ^ k-1     = (3432 R) 13 in³   ^ 1.4 – 1  = 1425 °R                        V2		         117in³ 	  P4= P3  V3   ^ k	= (841 psia)  13 in³  ^ 1.4          = 38.8 psia 		        V4		                    117 in³
b. m = P1V1	     =        (14.7 psia) ( 117 in³)                 1 ft³                                      RT1         (0.307 psia. ft³/ lbm . R)(540 R)     1728 in³     = 0.00498 lbm Qin= mCp(T3-T2)       = ( 0.00498 lbm)(0.240 Btu/ lbm . R) [(3432-1716 R)] Qin= 2.051 Btu Qout= mCv(T4-T1)         = (0.00498 lbm)(0.171 Btu/ lbm. R)[(1425- 540) R] Qout= 0.754 Btu
Wnet = Qin – Qout = 2.051 – 0.754 = 1.297 Btu Thermal efficiency=  Wnet x 100%  =  1.293 Btu  x 100 %                                    Qin	               2.051 Btu Thermal efficiency = 63.2 %
C. Pm =     Wnet Vmax- Vmin        =  Wnet            V1- V2          =     1.297 Btu	           778.17 lbf. ft      12 in              (117 – 6.5) in³             1 Btu             1 ft Pm= 109.6 psia
          S 1-3 = 0            S 2-3 = m Cp lnT3                                          T2 	       = ( 0.00498 lbm) (0.240 Btu/ lbm . R)ln (3432 °R) – 	            (0.00498 lbm) (0.240 Btu/ lbm . R)ln (1716 R)           S 2-3  =  0.00828
              S 3-4 = 0               S 4-1= m CvlnT4                                        T1 = ( 0.00498 lbm) (0.171 Btu/ lbm . R) ln (1425) -                           (0.00498    lbm) (0.171 Btu/ lbm . R) ln   (540 R) S 4-1 =0.00826
P-v DIAGRAM                          P, psia Qin    v=c                               841          2                      60    3                                                                      s=c                                                   s=c  38.8                                                             4     p=c Qout 14.7                                                      30     1                                              1                   60                                  6.5         13                            117       v(in³)
T-S DIAGRAM           T (°R)         3432		Qin	     3       T3 1716                              2         30                            T2 1425                                                      4         T4                                                        Qout  540                              1       60                                 T1 						s
REFERENCES: www.allaboutscience.org/third-law-of-thermodynamics-faq.htm http://en.wikipedia.org/wiki/Absolute_zero voh.chem.ucla.edu/vohtar/summer04/classes/14B/.../notes81304.pdf www2.ucdsb.on.ca/tiss/stretton/CHEM2/entropy4.htm THERMODYNAMICS AN ENGINEERING APPROACH 4th edition YUNUS A. CENGEL and MICHAEL A. BOLES,  465 Thermodynamics 1, Hipolita B. Sta. Maria, 46

More Related Content

What's hot

Kinetic theory of gases
Kinetic theory of gasesKinetic theory of gases
Kinetic theory of gasesDaya Nandan
 
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...Catherine Maria Centanaro Chavez
 
Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022Yuri Melliza
 
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficientThermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficientPEC University Chandigarh
 
J2006 termodinamik 1 unit3
J2006 termodinamik 1 unit3J2006 termodinamik 1 unit3
J2006 termodinamik 1 unit3Malaysia
 
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
Module 6 (ideal or perfect gas and gas mixture) 2021   2022Module 6 (ideal or perfect gas and gas mixture) 2021   2022
Module 6 (ideal or perfect gas and gas mixture) 2021 2022Yuri Melliza
 
Module 7 (processes of fluids)
Module 7 (processes of fluids)Module 7 (processes of fluids)
Module 7 (processes of fluids)Yuri Melliza
 
004 ideal gas_law
004 ideal gas_law004 ideal gas_law
004 ideal gas_lawphysics101
 
Chapter 7 Processes of Fluids
Chapter 7 Processes of FluidsChapter 7 Processes of Fluids
Chapter 7 Processes of FluidsYuri Melliza
 
Cy101 thermodynamics
Cy101  thermodynamicsCy101  thermodynamics
Cy101 thermodynamicsChandan Singh
 
J2006 Thermodinamik Unit 1
J2006 Thermodinamik Unit 1J2006 Thermodinamik Unit 1
J2006 Thermodinamik Unit 1Malaysia
 
Module 2 (forms of energy) 2021 2022
Module 2 (forms of energy) 2021   2022Module 2 (forms of energy) 2021   2022
Module 2 (forms of energy) 2021 2022Yuri Melliza
 

What's hot (20)

Thermodynamics II
Thermodynamics IIThermodynamics II
Thermodynamics II
 
Kinetic theory of gases
Kinetic theory of gasesKinetic theory of gases
Kinetic theory of gases
 
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
 
Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022
 
Heat transfer
Heat transferHeat transfer
Heat transfer
 
Heat 3
Heat 3Heat 3
Heat 3
 
Thermodynamics, part 8
Thermodynamics, part 8Thermodynamics, part 8
Thermodynamics, part 8
 
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficientThermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
 
Unit10
Unit10Unit10
Unit10
 
J2006 termodinamik 1 unit3
J2006 termodinamik 1 unit3J2006 termodinamik 1 unit3
J2006 termodinamik 1 unit3
 
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
Module 6 (ideal or perfect gas and gas mixture) 2021   2022Module 6 (ideal or perfect gas and gas mixture) 2021   2022
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
 
Module 7 (processes of fluids)
Module 7 (processes of fluids)Module 7 (processes of fluids)
Module 7 (processes of fluids)
 
004 ideal gas_law
004 ideal gas_law004 ideal gas_law
004 ideal gas_law
 
Chapter 3 lecture
Chapter 3 lectureChapter 3 lecture
Chapter 3 lecture
 
Chapter 7 Processes of Fluids
Chapter 7 Processes of FluidsChapter 7 Processes of Fluids
Chapter 7 Processes of Fluids
 
Cy101 thermodynamics
Cy101  thermodynamicsCy101  thermodynamics
Cy101 thermodynamics
 
Lecture24
Lecture24Lecture24
Lecture24
 
J2006 Thermodinamik Unit 1
J2006 Thermodinamik Unit 1J2006 Thermodinamik Unit 1
J2006 Thermodinamik Unit 1
 
Module 2 (forms of energy) 2021 2022
Module 2 (forms of energy) 2021   2022Module 2 (forms of energy) 2021   2022
Module 2 (forms of energy) 2021 2022
 
2. fluids 2
2. fluids 22. fluids 2
2. fluids 2
 

Viewers also liked

Mba Alumni - 1st Meeting
Mba Alumni - 1st MeetingMba Alumni - 1st Meeting
Mba Alumni - 1st MeetingMBA Alumni
 
Magazine - front covers codes and conventions
Magazine - front covers codes and conventionsMagazine - front covers codes and conventions
Magazine - front covers codes and conventionsZoe Lorenz
 
Environmental Committee
Environmental CommitteeEnvironmental Committee
Environmental Committeegcheac
 
Vincent Willem Van Gogh
Vincent  Willem  Van  GoghVincent  Willem  Van  Gogh
Vincent Willem Van Gogharlena62
 
Rezultate Chestionar - 1st Meeting
Rezultate Chestionar - 1st MeetingRezultate Chestionar - 1st Meeting
Rezultate Chestionar - 1st MeetingMBA Alumni
 
Istanbul
IstanbulIstanbul
Istanbulcihan
 
The decorative, the expressive and the primitive
The decorative, the expressive and the primitiveThe decorative, the expressive and the primitive
The decorative, the expressive and the primitivePrincess Mae Bentijaba
 
15 Financial Myths Demystified Seminar Presentation
15 Financial Myths Demystified Seminar Presentation15 Financial Myths Demystified Seminar Presentation
15 Financial Myths Demystified Seminar Presentationamjaroch
 
San Diego Trip
San Diego TripSan Diego Trip
San Diego Tripssherron
 
Projecte val d'aran
Projecte val d'aranProjecte val d'aran
Projecte val d'arankendra85
 

Viewers also liked (17)

Mba Alumni - 1st Meeting
Mba Alumni - 1st MeetingMba Alumni - 1st Meeting
Mba Alumni - 1st Meeting
 
Magazine - front covers codes and conventions
Magazine - front covers codes and conventionsMagazine - front covers codes and conventions
Magazine - front covers codes and conventions
 
Marianne1
Marianne1Marianne1
Marianne1
 
Marianne1
Marianne1Marianne1
Marianne1
 
Environmental Committee
Environmental CommitteeEnvironmental Committee
Environmental Committee
 
Vincent Willem Van Gogh
Vincent  Willem  Van  GoghVincent  Willem  Van  Gogh
Vincent Willem Van Gogh
 
Rezultate Chestionar - 1st Meeting
Rezultate Chestionar - 1st MeetingRezultate Chestionar - 1st Meeting
Rezultate Chestionar - 1st Meeting
 
Istanbul
IstanbulIstanbul
Istanbul
 
Myls1
Myls1Myls1
Myls1
 
The decorative, the expressive and the primitive
The decorative, the expressive and the primitiveThe decorative, the expressive and the primitive
The decorative, the expressive and the primitive
 
Don’T Touch
Don’T TouchDon’T Touch
Don’T Touch
 
Tankeläsnings
TankeläsningsTankeläsnings
Tankeläsnings
 
15 Financial Myths Demystified Seminar Presentation
15 Financial Myths Demystified Seminar Presentation15 Financial Myths Demystified Seminar Presentation
15 Financial Myths Demystified Seminar Presentation
 
P2440pl[1]
P2440pl[1]P2440pl[1]
P2440pl[1]
 
San Diego Trip
San Diego TripSan Diego Trip
San Diego Trip
 
Bancure hum
Bancure humBancure hum
Bancure hum
 
Projecte val d'aran
Projecte val d'aranProjecte val d'aran
Projecte val d'aran
 

Similar to Thermo One

thermal science Ch 05
thermal science Ch 05thermal science Ch 05
thermal science Ch 05尚儒 吳
 
Solution Manual for Physical Chemistry – Robert Alberty
Solution Manual for Physical Chemistry – Robert AlbertySolution Manual for Physical Chemistry – Robert Alberty
Solution Manual for Physical Chemistry – Robert AlbertyHenningEnoksen
 
thermal science Ch 04
thermal science Ch 04thermal science Ch 04
thermal science Ch 04尚儒 吳
 
Mass balance: Single-phase System (ideal gas and real gases)
Mass balance: Single-phase System (ideal gas and real gases)Mass balance: Single-phase System (ideal gas and real gases)
Mass balance: Single-phase System (ideal gas and real gases)nhalieza
 
G10_Science_Q4-_Week_1-2-Constant_Temp_of_Gas[1].ppt
G10_Science_Q4-_Week_1-2-Constant_Temp_of_Gas[1].pptG10_Science_Q4-_Week_1-2-Constant_Temp_of_Gas[1].ppt
G10_Science_Q4-_Week_1-2-Constant_Temp_of_Gas[1].pptMelissaGanituenBauti
 
2. Fluids 2.ppt
2. Fluids 2.ppt2. Fluids 2.ppt
2. Fluids 2.pptBlahBeleh
 
volumetric properties.ppt
volumetric properties.pptvolumetric properties.ppt
volumetric properties.pptIyerVasundhara
 
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...Bishal Bhandari
 
Revision on thermodynamics
Revision on thermodynamicsRevision on thermodynamics
Revision on thermodynamicscairo university
 
Ch5 z5e gases
Ch5 z5e gasesCh5 z5e gases
Ch5 z5e gasesblachman
 
G10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
G10 Science Q4- Week 1-2-Constant Temp of Gas.pptG10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
G10 Science Q4- Week 1-2-Constant Temp of Gas.pptjinprix
 
Thermodynamics problems
Thermodynamics problemsThermodynamics problems
Thermodynamics problemsYuri Melliza
 

Similar to Thermo One (20)

Thermodynamics, part 6
Thermodynamics, part 6Thermodynamics, part 6
Thermodynamics, part 6
 
thermal science Ch 05
thermal science Ch 05thermal science Ch 05
thermal science Ch 05
 
Mc conkey 10-pb
Mc conkey 10-pbMc conkey 10-pb
Mc conkey 10-pb
 
Solution Manual for Physical Chemistry – Robert Alberty
Solution Manual for Physical Chemistry – Robert AlbertySolution Manual for Physical Chemistry – Robert Alberty
Solution Manual for Physical Chemistry – Robert Alberty
 
thermal science Ch 04
thermal science Ch 04thermal science Ch 04
thermal science Ch 04
 
Ch.10
Ch.10Ch.10
Ch.10
 
Mass balance: Single-phase System (ideal gas and real gases)
Mass balance: Single-phase System (ideal gas and real gases)Mass balance: Single-phase System (ideal gas and real gases)
Mass balance: Single-phase System (ideal gas and real gases)
 
Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237
 
G10_Science_Q4-_Week_1-2-Constant_Temp_of_Gas[1].ppt
G10_Science_Q4-_Week_1-2-Constant_Temp_of_Gas[1].pptG10_Science_Q4-_Week_1-2-Constant_Temp_of_Gas[1].ppt
G10_Science_Q4-_Week_1-2-Constant_Temp_of_Gas[1].ppt
 
2. Fluids 2.ppt
2. Fluids 2.ppt2. Fluids 2.ppt
2. Fluids 2.ppt
 
Georgeta Ungureanu final Phd
Georgeta Ungureanu final PhdGeorgeta Ungureanu final Phd
Georgeta Ungureanu final Phd
 
volumetric properties.ppt
volumetric properties.pptvolumetric properties.ppt
volumetric properties.ppt
 
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
 
Revision on thermodynamics
Revision on thermodynamicsRevision on thermodynamics
Revision on thermodynamics
 
Chem Unit7
Chem Unit7Chem Unit7
Chem Unit7
 
Ch.8
Ch.8Ch.8
Ch.8
 
Ch5 z5e gases
Ch5 z5e gasesCh5 z5e gases
Ch5 z5e gases
 
G10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
G10 Science Q4- Week 1-2-Constant Temp of Gas.pptG10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
G10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
 
Thermodynamics problems
Thermodynamics problemsThermodynamics problems
Thermodynamics problems
 
Turbine Design
Turbine DesignTurbine Design
Turbine Design
 

Thermo One

  • 1. ENTROPY OF PERFECT CRYSTAL POWERPOINT PRESENTATION SUBMITTED BY MABILANGAN, SARAH JANE B. TO DR. W. JOAQUIN
  • 2.
  • 3.
  • 4. “The entropy of a substance varies with the temperature of the substance. The lower the temperature, the lower the entropy. “
  • 5. Perfect crystal at 0 K Crystal deforms at T > 0 K
  • 6. A pure perfect crystal is one in which every molecule is identical, and the molecular alignment is perfectly even throughout the substance. This means that in a perfect crystal, at 0 Kelvin, nearly all molecular motion should cease in order to achieve ΔS=0. The crystal must be perfect, or else there will be some inherent disorder. It also must be at 0 K; otherwise there will be thermal motion within the crystal, which leads to disorder. http://www.allaboutscience.org/third-law-of-thermodynamics-faq.htm
  • 7. For non-pure crystals, or those with less-than perfect alignment, there will be some energy associated with the imperfections, so the entropy cannot become zero. http://www.allaboutscience.org/third-law-of-thermodynamics-faq.htm
  • 8. At a temperature of absolute zero there is no thermal energy or heat. At a temperature of zero Kelvin the atoms in a pure crystalline substance are aligned perfectly and do not move. There is no entropy of mixing since the substance is pure.
  • 9. At absolute zero, the entropy of a pure crystal is also zero. S = 0 at T = 0 K
  • 10. At temperatures near 0 K, nearly all molecular motion ceases and, when entropy = S, ΔS = 0 for any adiabatic process. Pure substances can (ideally) form perfect crystals as T -> 0. Max Planck's strong form of the third law of thermodynamics states the entropy of a perfect crystal vanishes at absolute zero. The original Nernst heat theorem makes the weaker and less controversial claim that the entropy change for any isothermal process approaches zero as T -> 0:The implication is that the entropy of a perfect crystal simply approaches a constant value.http://en.wikipedia.org/wiki/Absolute_zero
  • 11. Perfect crystals never occur in practice; imperfections, and even entire amorphous materials, simply get "frozen in" at low temperatures, so transitions to more stable states do not occur. http://en.wikipedia.org/wiki/Absolute_zero
  • 12. Based on the third law we can set an absolute scale for entropy based on the “perfect crystal”. S = klnW voh.chem.ucla.edu/vohtar/summer04/classes/14B/.../notes81304.pdf
  • 13. Where: K = Boltzman’s constant = 1.381*10-23 J/K ln = natural log = 2.3*log lnX = 2.3logX W = degree’s of molecular orientation raised to the power of the number of molecules. voh.chem.ucla.edu/vohtar/summer04/classes/14B/.../notes81304.pdf
  • 15. Four process cycle: An Ideal Diesel cycle with air as the working fluid has a compression ratio of and a cutoff ratio of 2. At the beginning of the compression process, the working fluid is at 14.7 psia, 80 °F, and 117 in³. Utilizing the cold-air standard assumptions, determine: A. temperature and pressure of the air at the end of each process B. the network output and the thermal efficiency, and C. the mean effective pressure THERMODYNAMICS AN ENGINEERING APPROACH 4th edition YUNUS A. CENGEL and MICHAEL A. BOLES, 465
  • 16. SOLUTION GIVEN: R= 0.3704 psia. Ft³/ lbm.R Cp= 0.240 Btu/ lbm . R Cv= 0.171 Btu/ lbm . R k= 1.4 1-2 s=c 2-3 p=c 3-4 s=c 4=1 v=c
  • 17. V2= V1 = 117 in³ r 18 V2= 6.5 in ³ V3= rc V2 = (2)(6.5 in³) V3= 13 in³ V4= V1 = 117 in³ Process 1-2 (isentropic compression of an ideal gas, constant specific heat) T2= T1 V1 ^ k-1 = (540 R)(18) ^ 1.4-1 = 1716 °R V2
  • 18. P2 = P1 V1 ^ k = (14.7 psia)(18)^ 1.4 = 841 psia V2 Process 2-3 (constant- pressure heat addition to an ideal gas) P3= P2= 841 psia P2 V2 = P3V3 T2 T3 T3= T2 V3 = (1716 R)(2) = 3432 °R V2
  • 19. Process 3-4 ( isentropic expansion of an ideal gas, constant specific heats) T4 = T3 V3 ^ k-1 = (3432 R) 13 in³ ^ 1.4 – 1 = 1425 °R V2 117in³ P4= P3 V3 ^ k = (841 psia) 13 in³ ^ 1.4 = 38.8 psia V4 117 in³
  • 20. b. m = P1V1 = (14.7 psia) ( 117 in³) 1 ft³ RT1 (0.307 psia. ft³/ lbm . R)(540 R) 1728 in³ = 0.00498 lbm Qin= mCp(T3-T2) = ( 0.00498 lbm)(0.240 Btu/ lbm . R) [(3432-1716 R)] Qin= 2.051 Btu Qout= mCv(T4-T1) = (0.00498 lbm)(0.171 Btu/ lbm. R)[(1425- 540) R] Qout= 0.754 Btu
  • 21. Wnet = Qin – Qout = 2.051 – 0.754 = 1.297 Btu Thermal efficiency= Wnet x 100% = 1.293 Btu x 100 % Qin 2.051 Btu Thermal efficiency = 63.2 %
  • 22. C. Pm = Wnet Vmax- Vmin = Wnet V1- V2 = 1.297 Btu 778.17 lbf. ft 12 in (117 – 6.5) in³ 1 Btu 1 ft Pm= 109.6 psia
  • 23. S 1-3 = 0 S 2-3 = m Cp lnT3 T2 = ( 0.00498 lbm) (0.240 Btu/ lbm . R)ln (3432 °R) – (0.00498 lbm) (0.240 Btu/ lbm . R)ln (1716 R) S 2-3 = 0.00828
  • 24. S 3-4 = 0 S 4-1= m CvlnT4 T1 = ( 0.00498 lbm) (0.171 Btu/ lbm . R) ln (1425) - (0.00498 lbm) (0.171 Btu/ lbm . R) ln (540 R) S 4-1 =0.00826
  • 25. P-v DIAGRAM P, psia Qin v=c 841 2 60 3 s=c s=c 38.8 4 p=c Qout 14.7 30 1 1 60 6.5 13 117 v(in³)
  • 26. T-S DIAGRAM T (°R) 3432 Qin 3 T3 1716 2 30 T2 1425 4 T4 Qout 540 1 60 T1 s
  • 27. REFERENCES: www.allaboutscience.org/third-law-of-thermodynamics-faq.htm http://en.wikipedia.org/wiki/Absolute_zero voh.chem.ucla.edu/vohtar/summer04/classes/14B/.../notes81304.pdf www2.ucdsb.on.ca/tiss/stretton/CHEM2/entropy4.htm THERMODYNAMICS AN ENGINEERING APPROACH 4th edition YUNUS A. CENGEL and MICHAEL A. BOLES, 465 Thermodynamics 1, Hipolita B. Sta. Maria, 46