SlideShare a Scribd company logo
1 of 37
Download to read offline
Asymptotes
Asymptotes
Curves always bend towards the asymptotes
Asymptotes
Curves always bend towards the asymptotes

Curves never cross a vertical asymptote
Asymptotes
Curves always bend towards the asymptotes

Curves never cross a vertical asymptote
Curves approach horizontal and oblique asymptotes as x  
Asymptotes
Curves always bend towards the asymptotes

Curves never cross a vertical asymptote
Curves approach horizontal and oblique asymptotes as x  




                      P x             R x 
                   y         Q x  
                      A x             A x 
Asymptotes
Curves always bend towards the asymptotes

Curves never cross a vertical asymptote
Curves approach horizontal and oblique asymptotes as x  




                      P x             R x 
                   y         Q x  
                      A x             A x 


                                         solve A(x) = 0 to find
                                          vertical asymptotes
Asymptotes
Curves always bend towards the asymptotes

Curves never cross a vertical asymptote
Curves approach horizontal and oblique asymptotes as x  




                      P x             R x 
                   y         Q x  
                      A x             A x 


                y = Q(x) is the          solve A(x) = 0 to find
              horizontal/oblique          vertical asymptotes
                  asymptote
Asymptotes
Curves always bend towards the asymptotes

Curves never cross a vertical asymptote
Curves approach horizontal and oblique asymptotes as x  
                                             solve R(x) = 0 to find where
                                             (if anywhere) the curve cuts
                                                 the horizontal/oblique
                                                       asymptote
                      P x             R x 
                   y         Q x  
                      A x             A x 


                y = Q(x) is the          solve A(x) = 0 to find
              horizontal/oblique          vertical asymptotes
                  asymptote
e.g.  i  y 
                x  3 x  2 
                x  1 x  1
e.g.  i  y 
                x  3 x  2 
                x  1 x  1

  x2 1 x2  x  6
e.g.  i  y 
                x  3 x  2 
                x  1 x  1
        1
  x2 1 x2  x  6
        x2     1
e.g.  i  y 
                x  3 x  2 
                x  1 x  1
        1
  x2 1 x2  x  6
        x2     1
             x 5
e.g.  i  y 
                x  3 x  2 
                x  1 x  1
         1
  x2 1 x2  x  6
         x2      1
               x 5
               x5
  y  1
          x  1 x  1
e.g.  i  y 
                x  3 x  2 
                x  1 x  1
         1
  x2 1 x2  x  6                      y
         x2      1
               x 5
               x5
  y  1
          x  1 x  1

  x intercepts: (–3,0) , (2,0)
                                   –3       2   x
e.g.  i  y 
                x  3 x  2 
                x  1 x  1
         1
  x2 1 x2  x  6                      y
         x2      1                     6
               x 5
               x5
  y  1
          x  1 x  1

  x intercepts: (–3,0) , (2,0)
                                   –3       2   x
  y intercept: (0,6)
e.g.  i  y 
                x  3 x  2 
                x  1 x  1
         1
  x2 1 x2  x  6                           y
         x2      1                          6
               x 5
               x5
  y  1
          x  1 x  1

  x intercepts: (–3,0) , (2,0)
                                   –3   –1       1   2   x
  y intercept: (0,6)
  vertical asymptotes: x  1
e.g.  i  y 
                x  3 x  2 
                x  1 x  1
         1
  x2 1 x2  x  6                           y
         x2      1                          6
               x 5
               x5
  y  1
          x  1 x  1
                                             1
  x intercepts: (–3,0) , (2,0)
                                   –3   –1       1   2   x
  y intercept: (0,6)
  vertical asymptotes: x  1
  horizontal asymptote: y  1
e.g.  i  y 
                x  3 x  2 
                x  1 x  1
         1
  x2 1 x2  x  6                           y
         x2      1                          6
               x 5
               x5
  y  1
          x  1 x  1
                                             1
  x intercepts: (–3,0) , (2,0)                           (5,1)
                                   –3   –1       1   2           x
  y intercept: (0,6)
  vertical asymptotes: x  1
  horizontal asymptote: y  1
        cuts horizontal
      asymptote at x  5
e.g.  i  y 
                x  3 x  2 
                x  1 x  1
         1
  x2 1 x2  x  6                           y
         x2      1                          6
               x 5
               x5
  y  1
          x  1 x  1
                                             1
  x intercepts: (–3,0) , (2,0)                           (5,1)
                                   –3   –1       1   2           x
  y intercept: (0,6)
  vertical asymptotes: x  1
  horizontal asymptote: y  1
        cuts horizontal
      asymptote at x  5
e.g.  i  y 
                x  3 x  2 
                x  1 x  1
         1
  x2 1 x2  x  6                           y
         x2      1                          6
               x 5
               x5
  y  1
          x  1 x  1
                                             1
  x intercepts: (–3,0) , (2,0)                           (5,1)
                                   –3   –1       1   2           x
  y intercept: (0,6)
  vertical asymptotes: x  1
  horizontal asymptote: y  1
        cuts horizontal
      asymptote at x  5
e.g.  i  y 
                x  3 x  2 
                x  1 x  1
         1
  x2 1 x2  x  6                           y
         x2      1                          6
               x 5
               x5
  y  1
          x  1 x  1
                                             1
  x intercepts: (–3,0) , (2,0)                           (5,1)
                                   –3   –1       1   2           x
  y intercept: (0,6)
  vertical asymptotes: x  1
  horizontal asymptote: y  1
        cuts horizontal
      asymptote at x  5
e.g.  i  y 
                x  2  x  1 x  1
                    x  2  x  3
e.g.  i  y 
                x  2  x  1 x  1
                    x  2  x  3

   x 2  x  6 x3  2 x 2  x  2
e.g.  i  y 
                x  2  x  1 x  1
                    x  2  x  3
               x
   x 2  x  6 x3  2 x 2  x  2
               x3  x 2  6 x
e.g.  i  y 
                x  2  x  1 x  1
                    x  2  x  3
               x
   x 2  x  6 x3  2 x 2  x  2
               x3  x 2  6 x
                   x2  5x  2
e.g.  i  y 
                x  2  x  1 x  1
                    x  2  x  3
               x 1
   x 2  x  6 x3  2 x 2  x  2
               x3  x 2  6 x
                   x2  5 x  2
                      2

                  x  x  6
e.g.  i  y 
                x  2  x  1 x  1
                    x  2  x  3
               x 1
   x 2  x  6 x3  2 x 2  x  2
               x3  x 2  6 x
                   x2  5 x  2
                      2

                  x  x  6
                          4x  4
e.g.  i  y 
                x  2  x  1 x  1
                    x  2  x  3
               x 1
  x 2  x  6 x3  2 x 2  x  2
               x3  x 2  6 x
                   x2  5 x  2
                      2

                  x  x  6
                          4x  4
                  4x  4
 y  x 1
              x  2  x  3
e.g.  i  y 
                x  2  x  1 x  1
                    x  2  x  3
               x 1
  x 2  x  6 x3  2 x 2  x  2                y
               x3  x 2  6 x
                   x2  5 x  2
                      2

                  x  x  6
                          4x  4
                  4x  4
 y  x 1
              x  2  x  3
  x intercepts: (–1,0), (1,0), (2,0)       –1       1   2   x
e.g.  i  y 
                x  2  x  1 x  1
                    x  2  x  3
               x 1
  x 2  x  6 x3  2 x 2  x  2              y
               x3  x 2  6 x
                   x2  5 x  2
                      2

                  x  x  6
                          4x  4
                  4x  4
 y  x 1
              x  2  x  3
 x intercepts: (–1,0), (1,0), (2,0)        –1 1   1   2   x
                                            
 y intercept:  0,  
                    1
                                            3
                   3
e.g.  i  y 
                x  2  x  1 x  1
                    x  2  x  3
               x 1
  x 2  x  6 x3  2 x 2  x  2                   y
               x3  x 2  6 x
                   x2  5 x  2
                      2

                  x  x  6
                          4x  4
                  4x  4
 y  x 1
              x  2  x  3
 x intercepts: (–1,0), (1,0), (2,0)        –2   –1 1   1   2 3   x
                                                 
 y intercept:  0,  
                    1
                                                 3
                   3
vertical asymptotes: x  2,3
e.g.  i  y 
                x  2  x  1 x  1
                    x  2  x  3
               x 1
  x 2  x  6 x3  2 x 2  x  2                   y
               x3  x 2  6 x
                                                                 y  x 1
                   x2  5 x  2
                      2

                  x  x  6
                          4x  4
                  4x  4
 y  x 1
              x  2  x  3
 x intercepts: (–1,0), (1,0), (2,0)        –2   –1 1   1   2 3     x
                                                 
 y intercept:  0,  
                    1
                                                 3
                   3
vertical asymptotes: x  2,3
oblique asymptote: y  x  1
e.g.  i  y 
                x  2  x  1 x  1
                    x  2  x  3
               x 1
  x 2  x  6 x3  2 x 2  x  2                   y
               x3  x 2  6 x
                                                                 y  x 1
                   x2  5 x  2
                      2

                  x  x  6
                          4x  4
                  4x  4
 y  x 1
              x  2  x  3
 x intercepts: (–1,0), (1,0), (2,0)        –2   –1 1   1   2 3     x
                                                 
 y intercept:  0,  
                    1
                                                 3
                   3
vertical asymptotes: x  2,3
oblique asymptote: y  x  1
       cuts horizontal
      asymptote at x  1
e.g.  i  y 
                x  2  x  1 x  1
                    x  2  x  3
               x 1
  x 2  x  6 x3  2 x 2  x  2                   y
               x3  x 2  6 x
                                                                 y  x 1
                   x2  5 x  2
                      2

                  x  x  6
                          4x  4
                  4x  4
 y  x 1
              x  2  x  3
 x intercepts: (–1,0), (1,0), (2,0)        –2   –1 1   1   2 3     x
                                                 
 y intercept:  0,  
                    1
                                                 3
                   3
vertical asymptotes: x  2,3
oblique asymptote: y  x  1
       cuts horizontal
      asymptote at x  1
e.g.  i  y 
                x  2  x  1 x  1
                    x  2  x  3
               x 1
  x 2  x  6 x3  2 x 2  x  2                   y
               x3  x 2  6 x
                                                                 y  x 1
                   x2  5 x  2
                      2

                  x  x  6
                          4x  4
                  4x  4
 y  x 1
              x  2  x  3
 x intercepts: (–1,0), (1,0), (2,0)        –2   –1 1   1   2 3     x
                                                 
 y intercept:  0,  
                    1
                                                 3
                   3
vertical asymptotes: x  2,3
oblique asymptote: y  x  1
       cuts horizontal
      asymptote at x  1
e.g.  i  y 
                x  2  x  1 x  1
                    x  2  x  3
               x 1
  x 2  x  6 x3  2 x 2  x  2                   y
               x3  x 2  6 x
                                                                 y  x 1
                   x2  5 x  2
                      2

                  x  x  6
                          4x  4
                  4x  4
 y  x 1
              x  2  x  3
 x intercepts: (–1,0), (1,0), (2,0)        –2   –1 1   1   2 3     x
                                                 
 y intercept:  0,  
                    1
                                                 3
                   3
vertical asymptotes: x  2,3
oblique asymptote: y  x  1
       cuts horizontal
      asymptote at x  1
Exercise 3G; 3, 6, 8ac, 16cf, 17a

More Related Content

What's hot (11)

Limit dan kontinuan
Limit dan kontinuanLimit dan kontinuan
Limit dan kontinuan
 
Bài tập mũ và logarit
Bài tập mũ và logaritBài tập mũ và logarit
Bài tập mũ và logarit
 
11X1 T01 10 matrices
11X1 T01 10 matrices11X1 T01 10 matrices
11X1 T01 10 matrices
 
Ex algebra (4)
Ex algebra  (4)Ex algebra  (4)
Ex algebra (4)
 
Limiti i Funksionit USHTRIME
Limiti i Funksionit USHTRIMELimiti i Funksionit USHTRIME
Limiti i Funksionit USHTRIME
 
Korenovanje
KorenovanjeKorenovanje
Korenovanje
 
Sistemi kvadratmih jednacina_sa%20dve%20nepoynate
Sistemi kvadratmih jednacina_sa%20dve%20nepoynateSistemi kvadratmih jednacina_sa%20dve%20nepoynate
Sistemi kvadratmih jednacina_sa%20dve%20nepoynate
 
Kalkulus modul 3a turunan fungsi revisi
Kalkulus modul 3a turunan fungsi revisiKalkulus modul 3a turunan fungsi revisi
Kalkulus modul 3a turunan fungsi revisi
 
Operacije sa racionalnim_algebarskim_izrazima
Operacije sa racionalnim_algebarskim_izrazimaOperacije sa racionalnim_algebarskim_izrazima
Operacije sa racionalnim_algebarskim_izrazima
 
Tema 3 (Soluciones cálculo de derivadas)
Tema 3 (Soluciones cálculo de derivadas)Tema 3 (Soluciones cálculo de derivadas)
Tema 3 (Soluciones cálculo de derivadas)
 
Ejercicios de limites 2º bach.ccss
Ejercicios de limites 2º bach.ccssEjercicios de limites 2º bach.ccss
Ejercicios de limites 2º bach.ccss
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

11 x1 t03 06 asymptotes (2012)

  • 2. Asymptotes Curves always bend towards the asymptotes
  • 3. Asymptotes Curves always bend towards the asymptotes Curves never cross a vertical asymptote
  • 4. Asymptotes Curves always bend towards the asymptotes Curves never cross a vertical asymptote Curves approach horizontal and oblique asymptotes as x  
  • 5. Asymptotes Curves always bend towards the asymptotes Curves never cross a vertical asymptote Curves approach horizontal and oblique asymptotes as x   P x  R x  y  Q x   A x  A x 
  • 6. Asymptotes Curves always bend towards the asymptotes Curves never cross a vertical asymptote Curves approach horizontal and oblique asymptotes as x   P x  R x  y  Q x   A x  A x  solve A(x) = 0 to find vertical asymptotes
  • 7. Asymptotes Curves always bend towards the asymptotes Curves never cross a vertical asymptote Curves approach horizontal and oblique asymptotes as x   P x  R x  y  Q x   A x  A x  y = Q(x) is the solve A(x) = 0 to find horizontal/oblique vertical asymptotes asymptote
  • 8. Asymptotes Curves always bend towards the asymptotes Curves never cross a vertical asymptote Curves approach horizontal and oblique asymptotes as x   solve R(x) = 0 to find where (if anywhere) the curve cuts the horizontal/oblique asymptote P x  R x  y  Q x   A x  A x  y = Q(x) is the solve A(x) = 0 to find horizontal/oblique vertical asymptotes asymptote
  • 9. e.g.  i  y   x  3 x  2   x  1 x  1
  • 10. e.g.  i  y   x  3 x  2   x  1 x  1 x2 1 x2  x  6
  • 11. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 x2 1
  • 12. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 x2 1 x 5
  • 13. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 x2 1 x 5 x5 y  1  x  1 x  1
  • 14. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 x 5 x5 y  1  x  1 x  1 x intercepts: (–3,0) , (2,0) –3 2 x
  • 15. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 x intercepts: (–3,0) , (2,0) –3 2 x y intercept: (0,6)
  • 16. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 x intercepts: (–3,0) , (2,0) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1
  • 17. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 1 x intercepts: (–3,0) , (2,0) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1 horizontal asymptote: y  1
  • 18. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 1 x intercepts: (–3,0) , (2,0) (5,1) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1 horizontal asymptote: y  1 cuts horizontal asymptote at x  5
  • 19. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 1 x intercepts: (–3,0) , (2,0) (5,1) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1 horizontal asymptote: y  1 cuts horizontal asymptote at x  5
  • 20. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 1 x intercepts: (–3,0) , (2,0) (5,1) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1 horizontal asymptote: y  1 cuts horizontal asymptote at x  5
  • 21. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 1 x intercepts: (–3,0) , (2,0) (5,1) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1 horizontal asymptote: y  1 cuts horizontal asymptote at x  5
  • 22. e.g.  i  y   x  2  x  1 x  1  x  2  x  3
  • 23. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 2  x  6 x3  2 x 2  x  2
  • 24. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x x 2  x  6 x3  2 x 2  x  2 x3  x 2  6 x
  • 25. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x x 2  x  6 x3  2 x 2  x  2 x3  x 2  6 x  x2  5x  2
  • 26. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 x3  x 2  6 x  x2  5 x  2 2 x  x  6
  • 27. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 x3  x 2  6 x  x2  5 x  2 2 x  x  6 4x  4
  • 28. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 x3  x 2  6 x  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3
  • 29. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –1 1 2 x
  • 30. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –1 1 1 2 x  y intercept:  0,   1   3  3
  • 31. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3 vertical asymptotes: x  2,3
  • 32. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x y  x 1  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3 vertical asymptotes: x  2,3 oblique asymptote: y  x  1
  • 33. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x y  x 1  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3 vertical asymptotes: x  2,3 oblique asymptote: y  x  1 cuts horizontal asymptote at x  1
  • 34. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x y  x 1  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3 vertical asymptotes: x  2,3 oblique asymptote: y  x  1 cuts horizontal asymptote at x  1
  • 35. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x y  x 1  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3 vertical asymptotes: x  2,3 oblique asymptote: y  x  1 cuts horizontal asymptote at x  1
  • 36. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x y  x 1  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3 vertical asymptotes: x  2,3 oblique asymptote: y  x  1 cuts horizontal asymptote at x  1
  • 37. Exercise 3G; 3, 6, 8ac, 16cf, 17a