• Like

Big Dating at eHarmony

  • 1,290 views
Uploaded on

eHarmony uses MongoDB to make it easier for couples to find each other. At the forefront of big data and machine learning, eHarmony’s matching system uses a flow algorithm to process a billion …

eHarmony uses MongoDB to make it easier for couples to find each other. At the forefront of big data and machine learning, eHarmony’s matching system uses a flow algorithm to process a billion potential matches per day. The Compatibility Matching System® uses bi-directional, user-defined criteria to match members based on a comprehensive set of traits and preferences. The system was originally built on a relational database, but with over 51MM+ users, it took more than 2 weeks for the matching algorithm to run. By switching to MongoDB, eHarmony reduced the time to match by 95% to under 12 hours. Learn about eHarmony's matching system, its technology evaluation process, and how it has used MongoDB to make the happiest couples in the world.

More in: Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
1,290
On Slideshare
0
From Embeds
0
Number of Embeds
3

Actions

Shares
Downloads
26
Comments
0
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Thod  Nguyen   Chief  Technology  Officer   Big Dating at eHarmony
  • 2. social impact
  • 3. big dating at scale !   3B+  poten9al  matches  daily  ~  25+  TB  of  data   !   60M+  mul9-­‐aDribute  queries  daily  looking  across  250+   aDributes       !   212M+  photos  ~  15+  TB  of  data   !   4B+  rela9onship  ques9onnaires  ~  25+  TB  of  data    
  • 4. the big win for product  Decreased  the  processing  0me  to  match  by  95%,     from  2+  weeks  to  12  hours   on  3B+  poten0al  matches/day     !   30%  increase  in  2-­‐way  communica9ons   !   50%  increase  in  paid  subs   !   60%  increase  in  unique  visitors        
  • 5. today     !   Compa9bility  Matching  System   !      The  Old   !      The  New   !      Why  MongoDB   !      What’s  Next    
  • 6. compatibility matching system®   Compa0bility  Matching  System®   Match   Distribu0on   3! Compa0bility     Matching   1! Affinity     Matching   2!
  • 7. Compa0bility  Matching  System®   Affinity     Matching   Match   Distribu0on   2! 3! compatibility matching system (cont’d) Compa0bility     Matching   1!
  • 8. traditional search
  • 9. eharmony matching
  • 10. compatibility models
  • 11. compatibility matching process
  • 12. legacy compatibility match processor (CMP)
  • 13. legacy compatibility match processor V.2 (CMP)
  • 14. challenges with existing v2. design
  • 15. challenges with existing v2. design (contd.)
  • 16. challenges with existing v2. design (contd.)
  • 17. challenges with existing v2. design (contd.)
  • 18. challenges with existing v2. design (contd.)
  • 19. new data store requirements
  • 20. why Mongodb?
  • 21. tradeoffs !   No  schema  =  larger  footprint   !   Aggrega9on  queries  are  different     !   Ini9al  configura9on  can  be  long,  manual  process    
  • 22. lessons learned !   Turn  on  the  Firehose   !   Unleash  the  Chaos  Monkey   !   Engage  MongoDB,  Inc.  early  –  dev  to  produc9on   !   Try  to  isolate  your  queries  to  a  shard   !   Run  in  shadow  mode  
  • 23. what’s next New  matching  use  cases:     !   Globaliza9on  and  Localiza9on  of  eH  site   !   Careers  by  eHarmony   !   Internet  of  Things  “Compa9ble”     New  use  cases  within  eHarmony:     !   Real-­‐9me  geo  loca9on  based  matching  service     !   Careers  
  • 24. technology stack
  • 25. linkedin.com/in/thodnguyen   We’re  Hiring  @jobs.eharmony.com