SlideShare a Scribd company logo
1 of 96
A Graduation project on

                            Wireless RF Transceiver


                               Presented by
Ain Sham Univer sit y
        s
                                              Ahmad Ibrahim
Facul t y Of Engineer ing                     Hazem Mohammad
Graduation Project 2001                       Mohammad Atef
                                              Mohammad Khalifa
                                              Sherif Sobhi

                               Presented to
                                              Dr. Khaled Sharaf
‫شكر‬
   ‫نتقدم بخالص الشكر و التقدير‬
‫للدكتور/ خالد شرف لما بذله معنا من‬
 ‫جهد ووقت كان فيهما خير قدوة فى‬
  ‫الدب و العلم و نحسبه على خير‬
      ‫ول نزكي على ال أحدا‬
Introduction


• Tx transmits at a centre frequency of
  950MHz with a 20MHz B.W.

• Rx receives at a centre frequency of
  1GHz with a 20MHz B.W.
Tx




GFSK Transmitter
Rx
• Single conversion superheterodyne receiver.
Heterodyne vs. homodyne

• Heterodyne receiver is preferred over
  homodyne Rx by its superior selectivity &
  sensitivity.
• Heterodyne requires off-chip filters.
• Heterodyne requires greater area & so cost.
• However it is still used it is too much easier to
  design.(no oscillator isolation problem)
Some related terms
Oscillators

• General considerations

     - Output frequency

     - Frequency stability

     - Power output
Basic Oscillator Topologies

-   Hartley Oscillator
-   Colpitts Oscillator
-   Clapp Oscillator
-   Crystal Oscillator
-   Negative Oscillator
Frequency Stability
• How to improve frequency stability ?

   -   Reduce noise
   -   Follow the oscillator with a buffer
   -   Thermally isolate the oscillator
   -   Use crystal to control the frequency
Voltage controlled oscillator
• If the output frequency can be adjusted by a
  voltage, then we have a VCO.
• The tank capacitance can be replaced by a
  reverse-biased diode (varactor)
Oscillator’s Parameters
• Phase Noise in LC circuits
   - It may affect both the frequency and
      amplitude of the output signal.

   - The higher the Q of the tank, the lower the

      phase noise.
Oscillator’s Parameters

• Phase Noise in VCO
     Depends on the path into which the noise is

      injected.
   - Noise in signal path
   - Noise in control path
• Another source of noise is generated by the
  active device.
Oscillator’s parameters
•   Oscillator Pulling
      - Coupling from the power amplifier
      - The desired signal is accompanied by a
         large interferer
      - The load pulling
•   Oscillator Pushing
Receiver VCO
• Simplified VCO Schematic
Receiver VCO
• VCO design
Receiver VCO
• Negative Resistance

                                     Gm
          Negative Re sis tan ce ≈ 2
                                  ω Cbe C1

• Oscillating Frequency
                  1     1      1
         ωo L −      −      −      ≈0
                ωo CV ωo Cbe ωo C1
Receiver VCO
• Output Waveforms
1.0V

                                                                         394mV




                                                                             0V
  0V




                                                                         -394mV



-1.0V                                                                    -777mV
        0s               0.2us   0.4us          0.6us    0.8us   1.0us       991.46ns      992.00ns   993.00ns   994.00ns   994.68ns
             V(out+)   V(out-)                                                      V(out+) V(out-)
                                                                                                         Time
                                         Time
Receiver VCO
          • Output Waveforms
400mV
                                                                             394mV



                                                                             300mV




200mV                                                                        200mV




                                                                             100mV




   0V                                                                           0V
    0Hz          5GHz     10GHz   15GHz      20GHz   25GHz   30GHz   35GHz     0.966GHz 1.000GHz      1.040GHz   1.080GHz       1.120GHz   1.160GHz   1.200GHz
          V(out+) V(out-)                                                             V(out+) V(out-)
                                      Frequency                                                                     Frequency
Receiver VCO
• Output Waveforms

   5KV




    0V




   -5KV




  -10KV


    103MHz               300MHz      1.0GHz       3.0GHz   10GHz
             Vr(I12:-,C306:2)
                                      Frequency
Receiver VCO
• Tuning Range
Driver
• Driver design

              0                        0

                   0




          0                        0




                       0




                           0   0
Driver
• Waveforms
 1 0 0 mV




      0V




- 1 0 0 mV




- 1 5 4 mV
             150. 00ns                  152. 00ns                    154. 00ns        156. 00ns   158. 00ns   159. 65ns
               V( C4 : 1 , R2 3 : 1 )    V( R2 7 : 2 , L 3 1 : 2 )
                                                                             T i me
Driver
    • S_parameters
       - S21 13.69 dB
 200




    0




- 200




- 400
    1 0 Hz          1 0 0 Hz   1 0 KHz     1 . 0 MHz        1 0 0 MHz   1 0 GHz
             s 21
                                         Fr e q u e n c y
Driver
    • S_parameters
       - S11 -34.059 dB
   0




- 10




- 20




- 30




- 39
 1 3 . 2 MHz     3 0 . 0 MHz   1 0 0 . 0 MHz                 3 0 0 . 0 MHz   1 . 0 0 GHz   2 . 6 6 GHz
          s 11
                                               Fr e q u e n c y
Driver
       • S_parameters
          - S22 -14.751 dB
 20




   0




- 20




- 40
   1 0 Hz          1 0 0 Hz   1 0 KHz     1 . 0 MHz        1 0 0 MHz   1 0 GHz
            s 22
                                        Fr e q u e n c y
Driver
    • S_parameters
       - S12 -15.821 dB
    0




- 250




- 500
    1 0 Hz         1 0 0 Hz   1 0 KHz     1 . 0 MHz        1 0 0 MHz   1 0 GHz
             s12
                                        Fr e q u e n c y
Transmitter VCO

• VCO Topology
    - Negative Resistance

• VCO Blocks
    - Negative Resistance Cell
    - Tank Circuit
    - Output Buffer
Transmitter VCO
• VCO Schematic
Transmitter VCO
• Negative Resistance Cell
      - Uses active feedback network
                                   -2(1/gm +RE)
         instead of passive                       Vcc


         network used in other                              Q4                                        Q3



         topologies                                                       Q1                 Q2

                                                                           RE           RE




                                        {
                                                                     Q5                 Q6            Q7
                       CURRENT SOURCE       Vcs
                                                                     R4                 R5            R3

                                                        0        0                  0             0

                                                                          -R cell
Transmitter VCO
  • Verification of –R cell by Simulation
   -0.016KV                                                                           200V
N                                                                                N
e                                                                                e
g                                                                                g
a                                                                                a
 t -0.250KV                                                                       t
 i                                                             (950M,-66.844)     i
v                                                                                v      0V
e                                                                                e

R -0.500KV                                                                       R
e                                                                                e
s                                                                                s
 i                                                                                i
s                                                                                s -200V
 t                                                                                t
   -0.750KV                                                                                                                            (954M,-320.383)
a                                                                                a
n                                                                                n
c                                                                                c
e                                                                                e
   -1.000KV                                                                           -400V
      1.5MHz           10MHz     100MHz          1.0GHz    10GHz        100GHz           30.6MHz           100.0MHz         1.00GHz                      10.0GHz   28.6GHz
               VR(Q21:c,Q23:c)                                                                     Vr(Q23:c,Q22:b)
                                          Frequency                                                                        Frequency


                   Without tank                                                                                       With tank
Transmitter VCO
• The Tank Circuit
    - Used to select the frequency
    - Used to change the frequency

• The Output Buffer
    - Acts as an isolation stage
Transmitter VCO
 • Simulation Results
 3 4 9 mV                                                                                                                   5 0 mV
                                                                                                                       A
                                                                                                                       M
                                                                                                                       P
                                                                                                                       L
                                                                                                                       I
                                                                                                                       T
 2 0 0 mV
                                                                                                                       U
                                                                                                                       D
                                                                                                                       E
                                                                                                                               0V




      0V




                                                                                                                           - 5 0 mV
- 1 4 9 mV
             0s                 0. 5us   1. 0us               1. 5us     2. 0us          2. 5us     3. 0us                   3. 00802us                 3. 01000us           3. 01200us         3. 01400us   3. 01600us
                  V( C9 : 2 )                                                                                                       V( R4 0 : 1 )
                                                               T i me                                                                                                                  T i me
                                             4 0 mV
                                         A
                                         M
                                         P
                                         L
                                         I
                                         T
                                         U
                                         D
                                         E

                                             2 0 mV




                                                0V
                                             9 5 5 . 0 5 MHz                      9 6 0 . 0 0 MHz                                     9 6 5 . 0 0 MHz                9 6 9 . 6 0 MHz
                                                         V( R4 0 : 1 )
                                                                                                    Fr e q u e n c y
Transmitter VCO
• Tuning Range
    - The tuning range of the VCO is 20MHz
        while Vcontrol is from 0 to 2.7v
Transmitter VCO
• Loading Effect
Transmitter Section
• Transmitter As GFSK Modulator
     - GFSK  FSK+ Gaussian low pass filter
• Its advantage
     - Increases spectral efficiency ( BW )
• It consists of
     - Gaussian Filter as gaussian
      shaping
    - VCO as FSK modulator
    - Driver
Transmitter Section
• Gaussian Filter
                            R1              L1                      L2              L3            L4                 L5



    Vpulse                                                                                                                                   R2


                                                               C1              C2            C3                 C4                  C5



                     0                                     0             0               0                  0                   0        0



• Simulation Results
             3. 0V
                           i nput   dat a




             2. 0V
                                                 out put   dat a




             1. 0V




               0V
               1. 51us    2. 00us                      3. 00us               4. 00us              5. 00us                 6. 00us
                     V( R1 : 1 )  V( R2 : 2 )
                                                                              T i me
Transmitter Section
    • Output Signal
 4 2 1 mV




 2 5 0 mV




      0V




- 2 5 0 mV




- 4 9 5 mV
             732. 00ns                733. 00ns                 734. 00ns        735. 00ns   736. 00ns   736. 84ns
               V( L 3 0 : 1 , MNMN)    V( R2 3 : 2 , C3 : 2 )
                                                                        T i me
Transmitter Section
    • Output Signal
3 0 0 mV




2 0 0 mV




1 0 0 mV




    0V
    9 4 6 . 0 0 MHz                  9 4 8 . 0 0 MHz          9 5 0 . 0 0 MHz   9 5 2 . 0 0 MHz   9 5 3 . 9 8 MHz
             V( L 3 0 : 1 , MNMN)   V( R2 3 : 2 , C3 : 2 )
                                                             Fr e q u e n c y
LNA

• LNA main charactaristics
       - Noise figure
       - Gain
       - linearity
       - S-parameters
       - Power consumption
LNA input stage topologies
                       Vcc                                    Vcc


                         Zc
                                                      Rb        Zc
                                   Output

                                                                     Output
                              Vb            Input

  Input
             Rs

                       bias                                     Ze

Common base                                 Common emitter
-better isolation         0                 -poor isolation      0
-high unavoidable                            (Miller capacitance)
noise for 50Ohm                             -lower NF
input match((gm) -1 = 50)
Cascode amplifier
                                                      Vcc



                                                      Zc
-Better isolation than CE                                                Output
                                                                  o/p
      (no Miller)                      Vb                       match.
-Less components than cascade
-Easily converted to differential
                               Input
                                              i/p
                                            match.


                                                       Ze
                                                       &
                                                     bias


                                                            0
Input Matching networks
              Input
                                                                                 Input
                                      Input

Zin                                                                                                       0
                                                                                 Zin
                                      Zin

                             0                                    0      0                        0




                                              Input
      Input                                                                         Input


                                                      Zin                                   Zin
      Zin
                      i/p
                      M.N.

                             0    0                         Chosen one       0
                                                                                                      0
Cascode Differential
                                                                      Vcc



                                                                Zc              Zc

                                     output-                                                       ouput+
                                                    o/p                                     o/p
                                                  match.                                  match.
Advantages
                                                           Vb                        Vb
-Immunity to external noise
-Increased dynamic range,
                                     Input+                                                             Input-
-Easier use in integrated circuits               i/p                                        i/p
                                               match.                                     match.
-Reduced second order harmonics.
                                                                Ze              Ze




                                                                     bias



                                                                            0
Designing an LNA
                                                                       1/ 2
                      n     2Jc              f2   1        n2 
 NFmin ( J c ) = 1 +     +      (re + rb )u  2 +          +    
                     β DC  VT               f    β DC      β 
                                             T              DC 




J c − opt ≈ 2π (C je + C jc )u VT β DC f
                                                             J                        fT
                                                                                            2
                                                                                                       n 2 fT 
                                                                                                             2     0.5
                                                                                                                        
                                                             C (r + r ) (1 +                  )+                    
                                                              2VT e b u              β DC f        4 β DC f 2       
                 1  f T 2
                                                                                               2

                      ( n VT /(2 J C ) + (re + rb ) u ) × 
                                                                                                                      
RS −opt ( M ) ≅                                                                                                          
                 MN  f                                    JC                      fT
                                                                                         2
                                                                                                  n2           fT
                                                                                                                  2
                                                                                                                        
                                                                 (re + rb ) u (1 +           )+      (1 +             )
                                                            2VT                   β DC f 2      4         β DC f 2 
                      
                                                                                                                      

RS − opt ( M ) = 50 = 9855.4 /( MN )
∴ MN ≈ 200
Input match & Le choice
                                           1
Z in ≅ ωT Le + j (ϖLe + ωLb −                 )
                                          ωCπ                                 Input

thus for Z in = Rs = 50
                                                                                      Zin
∴ ωT Le ≅ Rs
& ω 2 ( Le + Lb )Cπ = 1
                                                                                                   0


           5.0         40       200
      1            2        3

                                          (300.000p,2.5642)


           2.5         20       100




                                >>
             0         0          0
                                      0            0.5n        1.0n          1.5n           2.0n
       1         YatX(NF,1G)     2        YatX(Gain,1G)   3   YatX(Zin,1G)
                                                                 Le
Other parameters
•   Area of CB is 55
               20        40
           1        2                                                     (55.000,23.011)




               10         0


                                                                          (55.000,2.5642)

                        >>
               0        -40
                              1                 20                   40          60         70
                              1   YatX(NF,1g)        2    YatX(Gain,1g)
                                                               area2


                                                         ωL
•   Lc = 9nh & Rs = 11Ohm thus              Q=              ≈5
                                                          R
Full circuit diagram
                                                                                                              3V
                              9nH                                                            9nH
             Q ~ 5
               ~                                                                                       Q ~ 5
                                                                                                         ~         0



                                      11                                                     11



OUT-                                                                                                      Vbias2
                      1.85p


                                           AREA = 55                             AREA = 55
                                                                                                                       0
OUT+
                      1.85p


                                           AREA = 70                         AREA = 70
IN+
       4p        22.2nH                                                                              22.2nH                4p

                                                          Rbias
                              0.3nH                                                          0.3nH


                                                                                 Vbias1

                                                                                 0
IN-
                      3V




             0
                                                                  AREA = 1
                                               AREA = 1


                                                                      0
Simulation results
    20             40       1.2K
1             2         3




                   20       0.8K


    10


                    0       0.4K




                            >>
     0            -20            0
                                     1                     20                           40                  60        70
                                     1   YatX(nf,1g)   2        YatX(Gain,1g)       3        YatX(Zin,1g)
                                                                                area

         30
                                                                      (1.0000G,23.111)


         20




         10

                                                                      (1.0000G,2.5583)


         0


    696.40MH                                                          1.000GHz                                   1.367GHz
    z     NF            Gain
                                                                  Frequency
S-parameters
 20.0

                                (1.0000G,22.850)


    0




-20.0                                      (1.0000G,-27.460)


-33.7
  526.54MH                      1.000GHz                               1.995GHz
  z     S11   S21
                                 Frequency
 -0.0


                                                   (1.0000G,-24.762)
-20.0

                    (1.0000G,-46.103)

-40.0




-60.0

-71.6
  332.2MH                               1.00GHz                        2.43GHz
  z     S12   S22
                                 Frequency
Aplac outputs (linearity& NF)
MWO outputs(linearity &
                                 S-parameters)
                                                                  Pout vs Pin
                              0




                             -50


                                                                            IM1_SP[PORT_2,1] (dBm)
                                                                            Schematic 1
                            -100                                            IM3_SP[PORT_2,1] (dBm)
                                                                            Schematic 1



                            -150
                                   -60               -50             -40             -30             -20
                                                                  Power (dBm)




                                                                                                                                            s-parameters
                                                                                                                                                                                          Swp Max




                                                                                                                                                         1.0
                                         s param




                                                                                                                                             0.8
                                                                                                                                                                                           1.1GHz
30




                                                                                                                                    6
                                                                                                                                 0.




                                                                                                                                                                           0
                                                                                                                                                                        2.
                                                                                                                         4
                                                                                                                       0.
                                                                                                                                                                                            0
                                                                                                                                                                                         3.
                                                                                                                                    S[1,1]
 0                                                                                                                                  Schematic 1                                                 4.
                                                                                                                                                                                                     0

                                                                                                                                                                                                    5.0
                                                                                                               0.2                  S[2,1]
                                                                                                                                    Schematic 1
                                                                                                                                                                                                         10.0
            DB(|S[1,1]|)                                                                                                            S[1,2]
-30         Schematic 1
                                                                                                                                    Schematic 1




                                                                                                                                                                                            10.0
                                                                                                                        0.2




                                                                                                                                   0.4



                                                                                                                                           0.6


                                                                                                                                                   0.8

                                                                                                                                                          1.0




                                                                                                                                                                2.0


                                                                                                                                                                      3.0

                                                                                                                                                                            4.0
                                                                                                                                                                                  5.0
                                                                                                           0
                                                                                                                                    S[2,2]
            DB(|S[2,1]|)                                                                                                            Schematic 1


            Schematic 1                                                                                                                                                                              -10.0

-60                                                                                                                2
                                                                                                               -0.
            DB(|S[1,2]|)                                                                                                                                                                        0
                                                                                                                                                                                                    -5.

            Schematic 1
                                                                                                                                                                                            0      .
                                                                                                                                                                                                -4

                                                                                                                                                                                          .0
                                                                                                                                                                                        -3
                                                                                                                            .4
-90         DB(|S[2,2]|)                                                                                               -0

            Schematic 1




                                                                                                                                                                          .0
      0.9            0.95                 1                1.05           1.1




                                                                                                                                                                        -2
                                                                                                                                   6.
                                                                                                                                 -0
                                   Frequency (GHz)




                                                                                                                                            -0.8
                                                                                                                                                                                           Swp Min




                                                                                                                                                         -1.0
                                                                                                                                                                                            0.9GHz
Final aspects
•   NF = 2.56 db
•   Gain = 23 db
•   IIP3 = -19 dbm
•   IRL = -27.4 db
•   ORL = -24.6db
•   Reverse isolation = -46.1db
Preselect filter
Mixer

• Mixer parameters:

        - Gain
        - Linearity
        - Noise figure
        - Port isolation
Mixer topologies

• Passive mixer

   - Microwave frequency
   - No conversion gain
   - high power consumption
   - Transformer coupling
   - Good linearity
Mixer topologies
Active mixer:                               Vcc


                               LO

                               LO
 - Provides conversion gain
 - Low power from LO port     RF

 - Excellent isolation              Vbias

 - No matching problem
Single balanced vs double
                               balanced
                Vcc                               Vcc


   LO
                                  LO

   LO                             LO


  RF                             RF                                         RF


        Vbias                         Vbias                         Vbias
                                                         0




-Poor port to port isolation                  -perfect isolation
-Less noise contribution                      -higher noise contribution
Mixer of choice



Active mixer
Double balanced      Gilbert cell
Switching mixer
Common emitter

• Consists of:

       - Driver stage
       - Switcher stage
       - Load
       Driver stage have the main effect in the mixer
       linearity and noise figure
Gain
                                                         18
       18

                                                         16
       16


       14                                                14


       12                                                12




                                                  Gain
Gain




       10                                                10


        8                                                8


        6                                                6

        4                                                4

        2                                                2
            1   2   3   4     5   6   7   8   9               0    5   10   15         20   25   30   35
                            Idc
                                                                             driverarea




Gain with biasing current                                         gain with driver area
Noise figure
         12                                                      10.5

                                                                  10
         11

                                                                  9.5
         10
                                                                   9
          9
NF(dB)




                                                                  8.5




                                                        NF(DB)
          8                                                        8


          7                                                       7.5

                                                                   7
          6

                                                                  6.5
          5
              0   5   10        15       20   25   30
                                                                   6
                           driver area                                  1   2   3   4    5       6    7   8   9   10
                                                                                        switch area




          NF against driver area                                    NF against switches area
Shot noise
          11

         10.5

          10

          9.5

           9
NF(dB)




          8.5

           8

          7.5

           7

          6.5

           6
                1   2   3   4    5        6    7   8   9   10
                                bias current



            NF against bias current


   Base noise will be more effected at high bias current
Linearity

Linearity techniques:

        - Emitter resistance degeneration
        - Capacitance degeneration
        - Inductance degeneration
        - Multitanh techniques
Gain vs Pin
           18.5                                                                          12.5


            18                                                                           12.4

                                                                                         12.3
           17.5
                                                                                         12.2
            17
                                                                                         12.1
Gain(db)




                                                                              Gain(db)
           16.5
                                                                                          12

            16                                                                           11.9

           15.5                                                                          11.8

                                                                                         11.7
            15

                                                                                         11.6
           14.5
              -36   -34    -32   -30   -28      -26   -24   -22   -20   -18
                                                                                         11.5
                                        input power                                         -40   -35      -30       -25       -20   -15   -10
                                                                                                                 input power




                          Without degeneration                                                          With degeneration
Noise degradation
                           200




                           100


                                                                           ( 1 0 0 . 0 0 0 M, 1 0 . 2 2 2 )


 NF=14db                      0
                            1 . 0 KHz    1 0 KHz   1 . 0 MHz                      1 0 0 MHz                   1 0 GHz

 Inductance degeneration            nf
                                                               Fr e q u e n c y


                           200




                                                                           ( 1 0 0 . 0 0 0 M, 1 3 . 3 5 7 )

                           100


NF=17db
Resistive degeneration        0
                            1 . 0 KHz    1 0 KHz   1 . 0 MHz                      1 0 0 MHz                   1 0 GHz
                                    nf
                                                               Fr e q u e n c y
Final results



Gain=12db
ICP= -17.3dbm
NF=14db
Voltage gain=18db
Simulation result
       1 . 0 mV
                                                                                 I F s i gnal




           0V

                                                                                 RF s i g n a l




      - 1 . 0 mV
      152. 5ns                    156. 0ns                   160. 0ns                      164. 0ns            168. 0ns          172. 0ns
                   V( R1 9 : 1 , OUT 2 )   V( N1 0 1 9 8 3 , N1 0 6 9 0 8 )
                                                                                  T i me




1 . 0 mV


                                                     out put        I F c o mp o n e n t


                             ( 1 0 0 . 0 0 0 M, 8 2 2 . 4 6 4 u )

                                                                                                                 I nput   RF c o mp o n e n t


                                                                                                                      ( 1 . 0 0 0 0 G, 1 0 3 . 1 6 7 u )

100uV




 10uV
    1 0 MHz                   3 0 MHz                      1 0 0 MHz                               3 0 0 MHz              1 . 0 GHz                3 . 0 GHz
           V( R1 9 : 1 , OUT 2 )    V( N1 0 1 9 8 3 , N1 0 6 9 0 8 )
                                                                                Fr e q u e n c y
Intermediate Frequency
           (IF)




Super heterodyne Receiver
Why IF ?

  Selecting a
narrow channel
at RF , means
very high Q for
                             f0
the filters , so a
down shift in             Q=
frequency is                 ∆f
needed to relax
the channel
select filter’s Q .
IF STAGE FOR FM RECEIVERS
Automatic Gain Control
                (AGC)
AGC means high gain for weak signals ,
 and lower gain for relatively strong
 signals , in order to maintain a near
 constant output level, and to To buffer
 the receiver electronics from change in
 input signal strength .
AGC TECHNIQUES



     




    Digitally controlled
AGC TECHNIQUES (2)




Analog controlled
RSSI

Received Signal Strength Indicator :


 Used to indicate
 the changes in
 the received signal
 level , to control
 the gain of the VGA
Variable Gain Amplifier
Gilbert cell


Maximum gain occurs
at negative V AGC ,
,which causes
the emitter followers
to be off.
Second stage


*Area = 5
*Bias current
   = 2 mA
Simulation Results




Variable Gain of the wide band VGA
Simulation Results (2)




Linear response of the VGA with VAGC
Simulation Results (3)




Noise Figure and Gain Vs. VAGC
Simulation Results (4)




Gain Vs. Area
RSSI Circuit




Peak Detector
Differential amplifier in large signal , acts as
           a rectifier at its emitter .
Simulation Results




Signals at different points
Simulation Results (2)




DC o/p for sweep on IF amplitude
Simulation Results (3)




         DC o/p Vs. i/p strength
( received signal strength indicator )
FSK Demodulator

Quadrature detector :
• Most common for IC applications.
• Used for non I-Q Reception.
• Converts the FM signal to a PM signal ,then
  detected by a PM detector .
FSK Demodulator




Quadrature detector
Quadrature Theory
Phase Network




900 phase at the center frequency
  ± 900 at 2 FSK frequencies
The multiplier




Gilbert Multiplier
Simulation Results




o/p spectrum of the multiplier
Simulation Results (2)




The DC output of the LPF , after
        the multiplier
Receiver Section
    Receiver Noise figure




NF(calc.) = 2.9 db & NF(sim.) = 3.1db
Receiver Section
      Front end wave form
 1 4 . 3 mV



 1 0 . 0 mV




        0V




- 1 0 . 0 mV




- 1 6 . 0 mV
         568. 1ns           572. 0ns            576. 0ns           580. 0ns             584. 0ns     588. 0ns   592. 0ns
               V( L 6 : 1 , R7 3 4 2 6 : 2 )   V( F RONT , F RONT 1 )   V( I F 1 , I F 2 )
                                                                         T i me




                   Gain(calc.) = 41db                                                              Gain(sim.) =44db
Receiver section
• AGC Action

    1 5 . 9 mV




    1 0 . 0 mV




           0V




   - 1 0 . 0 mV



   - 1 5 . 2 mV
            213. 0ns                   220. 0ns                    230. 0ns   240. 0ns   247. 8ns
                  V( I F 1 , I F 2 )    V( C2 0 7 , Q2 0 8 : c )
                                                                     T i me

More Related Content

What's hot

SPICE MODEL of NJM5532 in SPICE PARK
SPICE MODEL of NJM5532 in SPICE PARKSPICE MODEL of NJM5532 in SPICE PARK
SPICE MODEL of NJM5532 in SPICE PARKTsuyoshi Horigome
 
Lecture 2 basics of electric machines
Lecture 2 basics of electric machinesLecture 2 basics of electric machines
Lecture 2 basics of electric machinesArslan Ahmed Amin
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignSimen Li
 
Original Opto TLP350 P350 350 DIP-8 New Toshiba
Original Opto TLP350 P350 350 DIP-8 New ToshibaOriginal Opto TLP350 P350 350 DIP-8 New Toshiba
Original Opto TLP350 P350 350 DIP-8 New Toshibaauthelectroniccom
 
Link Engineering Catalogue 2009
Link Engineering Catalogue 2009Link Engineering Catalogue 2009
Link Engineering Catalogue 2009barryduffy
 
SPICE MODEL of NJM072 in SPICE PARK
SPICE MODEL of NJM072 in SPICE PARKSPICE MODEL of NJM072 in SPICE PARK
SPICE MODEL of NJM072 in SPICE PARKTsuyoshi Horigome
 
Lm 741 datasheet
Lm 741 datasheetLm 741 datasheet
Lm 741 datasheetAndy Medina
 
Original Opto PC957L PC957 P957 957 DIP-8 New Sharp
Original Opto PC957L PC957 P957 957 DIP-8 New SharpOriginal Opto PC957L PC957 P957 957 DIP-8 New Sharp
Original Opto PC957L PC957 P957 957 DIP-8 New Sharpauthelectroniccom
 
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...authelectroniccom
 
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541マルツエレック株式会社 marutsuelec
 
Lm 324 datasheet
Lm 324 datasheetLm 324 datasheet
Lm 324 datasheetAndy Medina
 
Original N-Channel Mosfet 20N06 FQP20N06 60V 20A TO-220 New Fairchild
Original N-Channel Mosfet 20N06 FQP20N06 60V 20A TO-220 New FairchildOriginal N-Channel Mosfet 20N06 FQP20N06 60V 20A TO-220 New Fairchild
Original N-Channel Mosfet 20N06 FQP20N06 60V 20A TO-220 New FairchildAUTHELECTRONIC
 
Control & Isolation 5
Control & Isolation 5Control & Isolation 5
Control & Isolation 5Andy Birdsall
 
SPICE MODEL of NJM082 in SPICE PARK
SPICE MODEL of NJM082 in SPICE PARKSPICE MODEL of NJM082 in SPICE PARK
SPICE MODEL of NJM082 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of NJM78LR05 in SPICE PARK
SPICE MODEL of NJM78LR05 in SPICE PARKSPICE MODEL of NJM78LR05 in SPICE PARK
SPICE MODEL of NJM78LR05 in SPICE PARKTsuyoshi Horigome
 
1 mrg000577 en_application_of_unit_protection_schemes_for_auto-transformers1
1 mrg000577 en_application_of_unit_protection_schemes_for_auto-transformers11 mrg000577 en_application_of_unit_protection_schemes_for_auto-transformers1
1 mrg000577 en_application_of_unit_protection_schemes_for_auto-transformers1NASSAR KALLIKETTIYAPURAKAL
 

What's hot (20)

Pll Basic Linkedin2
Pll Basic Linkedin2Pll Basic Linkedin2
Pll Basic Linkedin2
 
SPICE MODEL of NJM5532 in SPICE PARK
SPICE MODEL of NJM5532 in SPICE PARKSPICE MODEL of NJM5532 in SPICE PARK
SPICE MODEL of NJM5532 in SPICE PARK
 
Datasheet LM741
Datasheet LM741Datasheet LM741
Datasheet LM741
 
Lecture 2 basics of electric machines
Lecture 2 basics of electric machinesLecture 2 basics of electric machines
Lecture 2 basics of electric machines
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
Original Opto TLP350 P350 350 DIP-8 New Toshiba
Original Opto TLP350 P350 350 DIP-8 New ToshibaOriginal Opto TLP350 P350 350 DIP-8 New Toshiba
Original Opto TLP350 P350 350 DIP-8 New Toshiba
 
ASP
ASPASP
ASP
 
Link Engineering Catalogue 2009
Link Engineering Catalogue 2009Link Engineering Catalogue 2009
Link Engineering Catalogue 2009
 
SPICE MODEL of NJM072 in SPICE PARK
SPICE MODEL of NJM072 in SPICE PARKSPICE MODEL of NJM072 in SPICE PARK
SPICE MODEL of NJM072 in SPICE PARK
 
Lm 741 datasheet
Lm 741 datasheetLm 741 datasheet
Lm 741 datasheet
 
Original Opto PC957L PC957 P957 957 DIP-8 New Sharp
Original Opto PC957L PC957 P957 957 DIP-8 New SharpOriginal Opto PC957L PC957 P957 957 DIP-8 New Sharp
Original Opto PC957L PC957 P957 957 DIP-8 New Sharp
 
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
 
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
 
Lm 324 datasheet
Lm 324 datasheetLm 324 datasheet
Lm 324 datasheet
 
Original N-Channel Mosfet 20N06 FQP20N06 60V 20A TO-220 New Fairchild
Original N-Channel Mosfet 20N06 FQP20N06 60V 20A TO-220 New FairchildOriginal N-Channel Mosfet 20N06 FQP20N06 60V 20A TO-220 New Fairchild
Original N-Channel Mosfet 20N06 FQP20N06 60V 20A TO-220 New Fairchild
 
Control & Isolation 5
Control & Isolation 5Control & Isolation 5
Control & Isolation 5
 
SPICE MODEL of NJM082 in SPICE PARK
SPICE MODEL of NJM082 in SPICE PARKSPICE MODEL of NJM082 in SPICE PARK
SPICE MODEL of NJM082 in SPICE PARK
 
SPICE MODEL of NJM78LR05 in SPICE PARK
SPICE MODEL of NJM78LR05 in SPICE PARKSPICE MODEL of NJM78LR05 in SPICE PARK
SPICE MODEL of NJM78LR05 in SPICE PARK
 
1 mrg000577 en_application_of_unit_protection_schemes_for_auto-transformers1
1 mrg000577 en_application_of_unit_protection_schemes_for_auto-transformers11 mrg000577 en_application_of_unit_protection_schemes_for_auto-transformers1
1 mrg000577 en_application_of_unit_protection_schemes_for_auto-transformers1
 
Lecture10
Lecture10Lecture10
Lecture10
 

Viewers also liked

You neededme are...
You neededme are...You neededme are...
You neededme are...tombrescia
 
automatedbricklayout[1]
automatedbricklayout[1]automatedbricklayout[1]
automatedbricklayout[1]David Winkler
 
motors d'hidrógen
motors d'hidrógenmotors d'hidrógen
motors d'hidrógendavifon
 
Diapositivas del grupo 4
Diapositivas del grupo 4Diapositivas del grupo 4
Diapositivas del grupo 4roxanarivas15
 
Earthen Restaurant Group - TOAST presentation
Earthen Restaurant Group - TOAST presentation Earthen Restaurant Group - TOAST presentation
Earthen Restaurant Group - TOAST presentation Albert Talcott
 
Celebración día del Estudiante 2014
Celebración día del Estudiante 2014Celebración día del Estudiante 2014
Celebración día del Estudiante 2014IEJuliusSieber
 
Domnul este duhul
Domnul este duhulDomnul este duhul
Domnul este duhulDejan Andov
 
Presentatie themafeest 13okt
Presentatie themafeest 13oktPresentatie themafeest 13okt
Presentatie themafeest 13oktgarfield199
 
Colegio nacional pomasqui
Colegio nacional pomasquiColegio nacional pomasqui
Colegio nacional pomasquiMyrian Sanchez
 
Octapharma le groupe
Octapharma le groupeOctapharma le groupe
Octapharma le groupeLJBO
 
Clasificaciòn de animales
Clasificaciòn de animalesClasificaciòn de animales
Clasificaciòn de animalesNoemi Baez
 
Correct cart 1
Correct cart 1Correct cart 1
Correct cart 1iZovator
 
Banca - WALL TRICKS APP: Aplicativo para registro e compartilhamento de manob...
Banca - WALL TRICKS APP: Aplicativo para registro e compartilhamento de manob...Banca - WALL TRICKS APP: Aplicativo para registro e compartilhamento de manob...
Banca - WALL TRICKS APP: Aplicativo para registro e compartilhamento de manob...Bruno Sartori Quadros
 
Presentacion unes
Presentacion unesPresentacion unes
Presentacion unesDvj Kaiser
 
Textiles miño
Textiles miñoTextiles miño
Textiles miñoanahimino
 

Viewers also liked (19)

You neededme are...
You neededme are...You neededme are...
You neededme are...
 
Retkipaikka esittely
Retkipaikka esittelyRetkipaikka esittely
Retkipaikka esittely
 
Christos tzelepis cv
Christos tzelepis cvChristos tzelepis cv
Christos tzelepis cv
 
automatedbricklayout[1]
automatedbricklayout[1]automatedbricklayout[1]
automatedbricklayout[1]
 
Colegio nacional nicolas esgerra
Colegio nacional nicolas esgerraColegio nacional nicolas esgerra
Colegio nacional nicolas esgerra
 
motors d'hidrógen
motors d'hidrógenmotors d'hidrógen
motors d'hidrógen
 
Diapositivas del grupo 4
Diapositivas del grupo 4Diapositivas del grupo 4
Diapositivas del grupo 4
 
Earthen Restaurant Group - TOAST presentation
Earthen Restaurant Group - TOAST presentation Earthen Restaurant Group - TOAST presentation
Earthen Restaurant Group - TOAST presentation
 
Celebración día del Estudiante 2014
Celebración día del Estudiante 2014Celebración día del Estudiante 2014
Celebración día del Estudiante 2014
 
Domnul este duhul
Domnul este duhulDomnul este duhul
Domnul este duhul
 
Presentatie themafeest 13okt
Presentatie themafeest 13oktPresentatie themafeest 13okt
Presentatie themafeest 13okt
 
Colegio nacional pomasqui
Colegio nacional pomasquiColegio nacional pomasqui
Colegio nacional pomasqui
 
SACHIN-HR
SACHIN-HRSACHIN-HR
SACHIN-HR
 
Octapharma le groupe
Octapharma le groupeOctapharma le groupe
Octapharma le groupe
 
Clasificaciòn de animales
Clasificaciòn de animalesClasificaciòn de animales
Clasificaciòn de animales
 
Correct cart 1
Correct cart 1Correct cart 1
Correct cart 1
 
Banca - WALL TRICKS APP: Aplicativo para registro e compartilhamento de manob...
Banca - WALL TRICKS APP: Aplicativo para registro e compartilhamento de manob...Banca - WALL TRICKS APP: Aplicativo para registro e compartilhamento de manob...
Banca - WALL TRICKS APP: Aplicativo para registro e compartilhamento de manob...
 
Presentacion unes
Presentacion unesPresentacion unes
Presentacion unes
 
Textiles miño
Textiles miñoTextiles miño
Textiles miño
 

Similar to Project

Pulse generator comparison chart
Pulse generator comparison chartPulse generator comparison chart
Pulse generator comparison chartQuantum Composers
 
Radiated Emissions Example; LVDS - Low Voltage Differential Signaling
Radiated Emissions Example; LVDS - Low Voltage Differential SignalingRadiated Emissions Example; LVDS - Low Voltage Differential Signaling
Radiated Emissions Example; LVDS - Low Voltage Differential SignalingEMI Software LLC
 
Krishnan_defence.ppt
Krishnan_defence.pptKrishnan_defence.ppt
Krishnan_defence.pptberk51
 
Magnetic hall effect based sensors final
Magnetic hall effect based sensors finalMagnetic hall effect based sensors final
Magnetic hall effect based sensors finalsjykmuch
 
射頻期中整理.pptx
射頻期中整理.pptx射頻期中整理.pptx
射頻期中整理.pptxssuserb4d806
 
Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.Prajwal M B Raj
 
Digital ic ajal crc
Digital ic ajal crcDigital ic ajal crc
Digital ic ajal crcAJAL A J
 
OSCILATORS introduction & ring oscillator
OSCILATORS introduction & ring oscillator OSCILATORS introduction & ring oscillator
OSCILATORS introduction & ring oscillator NandanavanamRajesh1
 
Capacity analysis of gsm systems using slow frequency hoppin
Capacity analysis of gsm systems using slow frequency hoppinCapacity analysis of gsm systems using slow frequency hoppin
Capacity analysis of gsm systems using slow frequency hoppinShiju Chacko
 
Design of Energy- and Area-Efficient Sensor Readout Circuits (Chih-Chan Tu)
Design of Energy- and Area-Efficient Sensor Readout Circuits (Chih-Chan Tu)Design of Energy- and Area-Efficient Sensor Readout Circuits (Chih-Chan Tu)
Design of Energy- and Area-Efficient Sensor Readout Circuits (Chih-Chan Tu)Chih-Chan Tu
 
Device Modeling of Stepping Motor using SPICE
Device Modeling of Stepping Motor using SPICEDevice Modeling of Stepping Motor using SPICE
Device Modeling of Stepping Motor using SPICETsuyoshi Horigome
 
Probe Series Antenna
Probe Series AntennaProbe Series Antenna
Probe Series AntennaRFecho
 
KEMET Webinar - Using varistors for circuit protection
KEMET Webinar - Using varistors for circuit protectionKEMET Webinar - Using varistors for circuit protection
KEMET Webinar - Using varistors for circuit protectionIvana Ivanovska
 
Low dropout regulator(ldo)
Low dropout regulator(ldo)Low dropout regulator(ldo)
Low dropout regulator(ldo)altaf423
 

Similar to Project (20)

Pulse generator comparison chart
Pulse generator comparison chartPulse generator comparison chart
Pulse generator comparison chart
 
Radiated Emissions Example; LVDS - Low Voltage Differential Signaling
Radiated Emissions Example; LVDS - Low Voltage Differential SignalingRadiated Emissions Example; LVDS - Low Voltage Differential Signaling
Radiated Emissions Example; LVDS - Low Voltage Differential Signaling
 
Krishnan_defence.ppt
Krishnan_defence.pptKrishnan_defence.ppt
Krishnan_defence.ppt
 
000715
000715000715
000715
 
Magnetic hall effect based sensors final
Magnetic hall effect based sensors finalMagnetic hall effect based sensors final
Magnetic hall effect based sensors final
 
射頻期中整理.pptx
射頻期中整理.pptx射頻期中整理.pptx
射頻期中整理.pptx
 
IMS2016 Session WE3H
IMS2016 Session WE3H IMS2016 Session WE3H
IMS2016 Session WE3H
 
Mo rx3400
Mo rx3400Mo rx3400
Mo rx3400
 
Bashir_04142016
Bashir_04142016Bashir_04142016
Bashir_04142016
 
PMIC_V3
PMIC_V3PMIC_V3
PMIC_V3
 
Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.
 
Digital ic ajal crc
Digital ic ajal crcDigital ic ajal crc
Digital ic ajal crc
 
OSCILATORS introduction & ring oscillator
OSCILATORS introduction & ring oscillator OSCILATORS introduction & ring oscillator
OSCILATORS introduction & ring oscillator
 
Gto1014 td
Gto1014 tdGto1014 td
Gto1014 td
 
Capacity analysis of gsm systems using slow frequency hoppin
Capacity analysis of gsm systems using slow frequency hoppinCapacity analysis of gsm systems using slow frequency hoppin
Capacity analysis of gsm systems using slow frequency hoppin
 
Design of Energy- and Area-Efficient Sensor Readout Circuits (Chih-Chan Tu)
Design of Energy- and Area-Efficient Sensor Readout Circuits (Chih-Chan Tu)Design of Energy- and Area-Efficient Sensor Readout Circuits (Chih-Chan Tu)
Design of Energy- and Area-Efficient Sensor Readout Circuits (Chih-Chan Tu)
 
Device Modeling of Stepping Motor using SPICE
Device Modeling of Stepping Motor using SPICEDevice Modeling of Stepping Motor using SPICE
Device Modeling of Stepping Motor using SPICE
 
Probe Series Antenna
Probe Series AntennaProbe Series Antenna
Probe Series Antenna
 
KEMET Webinar - Using varistors for circuit protection
KEMET Webinar - Using varistors for circuit protectionKEMET Webinar - Using varistors for circuit protection
KEMET Webinar - Using varistors for circuit protection
 
Low dropout regulator(ldo)
Low dropout regulator(ldo)Low dropout regulator(ldo)
Low dropout regulator(ldo)
 

Recently uploaded

Marel Q1 2024 Investor Presentation from May 8, 2024
Marel Q1 2024 Investor Presentation from May 8, 2024Marel Q1 2024 Investor Presentation from May 8, 2024
Marel Q1 2024 Investor Presentation from May 8, 2024Marel
 
Cracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptxCracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptxWorkforce Group
 
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...amitlee9823
 
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai KuwaitThe Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwaitdaisycvs
 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876dlhescort
 
BAGALUR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
BAGALUR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRLBAGALUR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
BAGALUR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRLkapoorjyoti4444
 
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...allensay1
 
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service NoidaCall Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service Noidadlhescort
 
Falcon Invoice Discounting: The best investment platform in india for investors
Falcon Invoice Discounting: The best investment platform in india for investorsFalcon Invoice Discounting: The best investment platform in india for investors
Falcon Invoice Discounting: The best investment platform in india for investorsFalcon Invoice Discounting
 
Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂EscortCall Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escortdlhescort
 
Uneak White's Personal Brand Exploration Presentation
Uneak White's Personal Brand Exploration PresentationUneak White's Personal Brand Exploration Presentation
Uneak White's Personal Brand Exploration Presentationuneakwhite
 
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...lizamodels9
 
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...lizamodels9
 
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...Sheetaleventcompany
 
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangaloreamitlee9823
 
Falcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business GrowthFalcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business GrowthFalcon investment
 
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...daisycvs
 

Recently uploaded (20)

Marel Q1 2024 Investor Presentation from May 8, 2024
Marel Q1 2024 Investor Presentation from May 8, 2024Marel Q1 2024 Investor Presentation from May 8, 2024
Marel Q1 2024 Investor Presentation from May 8, 2024
 
Cracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptxCracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptx
 
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
 
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai KuwaitThe Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
 
BAGALUR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
BAGALUR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRLBAGALUR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
BAGALUR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
 
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
 
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service NoidaCall Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
 
Falcon Invoice Discounting: The best investment platform in india for investors
Falcon Invoice Discounting: The best investment platform in india for investorsFalcon Invoice Discounting: The best investment platform in india for investors
Falcon Invoice Discounting: The best investment platform in india for investors
 
Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂EscortCall Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
 
Uneak White's Personal Brand Exploration Presentation
Uneak White's Personal Brand Exploration PresentationUneak White's Personal Brand Exploration Presentation
Uneak White's Personal Brand Exploration Presentation
 
(Anamika) VIP Call Girls Napur Call Now 8617697112 Napur Escorts 24x7
(Anamika) VIP Call Girls Napur Call Now 8617697112 Napur Escorts 24x7(Anamika) VIP Call Girls Napur Call Now 8617697112 Napur Escorts 24x7
(Anamika) VIP Call Girls Napur Call Now 8617697112 Napur Escorts 24x7
 
Falcon Invoice Discounting platform in india
Falcon Invoice Discounting platform in indiaFalcon Invoice Discounting platform in india
Falcon Invoice Discounting platform in india
 
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
 
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
 
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabiunwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
 
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
 
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
 
Falcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business GrowthFalcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business Growth
 
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
 

Project

  • 1. A Graduation project on Wireless RF Transceiver Presented by Ain Sham Univer sit y s Ahmad Ibrahim Facul t y Of Engineer ing Hazem Mohammad Graduation Project 2001 Mohammad Atef Mohammad Khalifa Sherif Sobhi Presented to Dr. Khaled Sharaf
  • 2. ‫شكر‬ ‫نتقدم بخالص الشكر و التقدير‬ ‫للدكتور/ خالد شرف لما بذله معنا من‬ ‫جهد ووقت كان فيهما خير قدوة فى‬ ‫الدب و العلم و نحسبه على خير‬ ‫ول نزكي على ال أحدا‬
  • 3. Introduction • Tx transmits at a centre frequency of 950MHz with a 20MHz B.W. • Rx receives at a centre frequency of 1GHz with a 20MHz B.W.
  • 5. Rx • Single conversion superheterodyne receiver.
  • 6. Heterodyne vs. homodyne • Heterodyne receiver is preferred over homodyne Rx by its superior selectivity & sensitivity. • Heterodyne requires off-chip filters. • Heterodyne requires greater area & so cost. • However it is still used it is too much easier to design.(no oscillator isolation problem)
  • 8. Oscillators • General considerations - Output frequency - Frequency stability - Power output
  • 9. Basic Oscillator Topologies - Hartley Oscillator - Colpitts Oscillator - Clapp Oscillator - Crystal Oscillator - Negative Oscillator
  • 10. Frequency Stability • How to improve frequency stability ? - Reduce noise - Follow the oscillator with a buffer - Thermally isolate the oscillator - Use crystal to control the frequency
  • 11. Voltage controlled oscillator • If the output frequency can be adjusted by a voltage, then we have a VCO. • The tank capacitance can be replaced by a reverse-biased diode (varactor)
  • 12. Oscillator’s Parameters • Phase Noise in LC circuits - It may affect both the frequency and amplitude of the output signal. - The higher the Q of the tank, the lower the phase noise.
  • 13. Oscillator’s Parameters • Phase Noise in VCO Depends on the path into which the noise is injected. - Noise in signal path - Noise in control path • Another source of noise is generated by the active device.
  • 14. Oscillator’s parameters • Oscillator Pulling - Coupling from the power amplifier - The desired signal is accompanied by a large interferer - The load pulling • Oscillator Pushing
  • 17. Receiver VCO • Negative Resistance Gm Negative Re sis tan ce ≈ 2 ω Cbe C1 • Oscillating Frequency 1 1 1 ωo L − − − ≈0 ωo CV ωo Cbe ωo C1
  • 18. Receiver VCO • Output Waveforms 1.0V 394mV 0V 0V -394mV -1.0V -777mV 0s 0.2us 0.4us 0.6us 0.8us 1.0us 991.46ns 992.00ns 993.00ns 994.00ns 994.68ns V(out+) V(out-) V(out+) V(out-) Time Time
  • 19. Receiver VCO • Output Waveforms 400mV 394mV 300mV 200mV 200mV 100mV 0V 0V 0Hz 5GHz 10GHz 15GHz 20GHz 25GHz 30GHz 35GHz 0.966GHz 1.000GHz 1.040GHz 1.080GHz 1.120GHz 1.160GHz 1.200GHz V(out+) V(out-) V(out+) V(out-) Frequency Frequency
  • 20. Receiver VCO • Output Waveforms 5KV 0V -5KV -10KV 103MHz 300MHz 1.0GHz 3.0GHz 10GHz Vr(I12:-,C306:2) Frequency
  • 22. Driver • Driver design 0 0 0 0 0 0 0 0
  • 23. Driver • Waveforms 1 0 0 mV 0V - 1 0 0 mV - 1 5 4 mV 150. 00ns 152. 00ns 154. 00ns 156. 00ns 158. 00ns 159. 65ns V( C4 : 1 , R2 3 : 1 ) V( R2 7 : 2 , L 3 1 : 2 ) T i me
  • 24. Driver • S_parameters - S21 13.69 dB 200 0 - 200 - 400 1 0 Hz 1 0 0 Hz 1 0 KHz 1 . 0 MHz 1 0 0 MHz 1 0 GHz s 21 Fr e q u e n c y
  • 25. Driver • S_parameters - S11 -34.059 dB 0 - 10 - 20 - 30 - 39 1 3 . 2 MHz 3 0 . 0 MHz 1 0 0 . 0 MHz 3 0 0 . 0 MHz 1 . 0 0 GHz 2 . 6 6 GHz s 11 Fr e q u e n c y
  • 26. Driver • S_parameters - S22 -14.751 dB 20 0 - 20 - 40 1 0 Hz 1 0 0 Hz 1 0 KHz 1 . 0 MHz 1 0 0 MHz 1 0 GHz s 22 Fr e q u e n c y
  • 27. Driver • S_parameters - S12 -15.821 dB 0 - 250 - 500 1 0 Hz 1 0 0 Hz 1 0 KHz 1 . 0 MHz 1 0 0 MHz 1 0 GHz s12 Fr e q u e n c y
  • 28. Transmitter VCO • VCO Topology - Negative Resistance • VCO Blocks - Negative Resistance Cell - Tank Circuit - Output Buffer
  • 30. Transmitter VCO • Negative Resistance Cell - Uses active feedback network -2(1/gm +RE) instead of passive Vcc network used in other Q4 Q3 topologies Q1 Q2 RE RE { Q5 Q6 Q7 CURRENT SOURCE Vcs R4 R5 R3 0 0 0 0 -R cell
  • 31. Transmitter VCO • Verification of –R cell by Simulation -0.016KV 200V N N e e g g a a t -0.250KV t i (950M,-66.844) i v v 0V e e R -0.500KV R e e s s i i s s -200V t t -0.750KV (954M,-320.383) a a n n c c e e -1.000KV -400V 1.5MHz 10MHz 100MHz 1.0GHz 10GHz 100GHz 30.6MHz 100.0MHz 1.00GHz 10.0GHz 28.6GHz VR(Q21:c,Q23:c) Vr(Q23:c,Q22:b) Frequency Frequency Without tank With tank
  • 32. Transmitter VCO • The Tank Circuit - Used to select the frequency - Used to change the frequency • The Output Buffer - Acts as an isolation stage
  • 33. Transmitter VCO • Simulation Results 3 4 9 mV 5 0 mV A M P L I T 2 0 0 mV U D E 0V 0V - 5 0 mV - 1 4 9 mV 0s 0. 5us 1. 0us 1. 5us 2. 0us 2. 5us 3. 0us 3. 00802us 3. 01000us 3. 01200us 3. 01400us 3. 01600us V( C9 : 2 ) V( R4 0 : 1 ) T i me T i me 4 0 mV A M P L I T U D E 2 0 mV 0V 9 5 5 . 0 5 MHz 9 6 0 . 0 0 MHz 9 6 5 . 0 0 MHz 9 6 9 . 6 0 MHz V( R4 0 : 1 ) Fr e q u e n c y
  • 34. Transmitter VCO • Tuning Range - The tuning range of the VCO is 20MHz while Vcontrol is from 0 to 2.7v
  • 36. Transmitter Section • Transmitter As GFSK Modulator - GFSK  FSK+ Gaussian low pass filter • Its advantage - Increases spectral efficiency ( BW ) • It consists of - Gaussian Filter as gaussian shaping - VCO as FSK modulator - Driver
  • 37. Transmitter Section • Gaussian Filter R1 L1 L2 L3 L4 L5 Vpulse R2 C1 C2 C3 C4 C5 0 0 0 0 0 0 0 • Simulation Results 3. 0V i nput dat a 2. 0V out put dat a 1. 0V 0V 1. 51us 2. 00us 3. 00us 4. 00us 5. 00us 6. 00us V( R1 : 1 ) V( R2 : 2 ) T i me
  • 38. Transmitter Section • Output Signal 4 2 1 mV 2 5 0 mV 0V - 2 5 0 mV - 4 9 5 mV 732. 00ns 733. 00ns 734. 00ns 735. 00ns 736. 00ns 736. 84ns V( L 3 0 : 1 , MNMN) V( R2 3 : 2 , C3 : 2 ) T i me
  • 39. Transmitter Section • Output Signal 3 0 0 mV 2 0 0 mV 1 0 0 mV 0V 9 4 6 . 0 0 MHz 9 4 8 . 0 0 MHz 9 5 0 . 0 0 MHz 9 5 2 . 0 0 MHz 9 5 3 . 9 8 MHz V( L 3 0 : 1 , MNMN) V( R2 3 : 2 , C3 : 2 ) Fr e q u e n c y
  • 40. LNA • LNA main charactaristics - Noise figure - Gain - linearity - S-parameters - Power consumption
  • 41. LNA input stage topologies Vcc Vcc Zc Rb Zc Output Output Vb Input Input Rs bias Ze Common base Common emitter -better isolation 0 -poor isolation 0 -high unavoidable (Miller capacitance) noise for 50Ohm -lower NF input match((gm) -1 = 50)
  • 42. Cascode amplifier Vcc Zc -Better isolation than CE Output o/p (no Miller) Vb match. -Less components than cascade -Easily converted to differential Input i/p match. Ze & bias 0
  • 43. Input Matching networks Input Input Input Zin 0 Zin Zin 0 0 0 0 Input Input Input Zin Zin Zin i/p M.N. 0 0 Chosen one 0 0
  • 44. Cascode Differential Vcc Zc Zc output- ouput+ o/p o/p match. match. Advantages Vb Vb -Immunity to external noise -Increased dynamic range, Input+ Input- -Easier use in integrated circuits i/p i/p match. match. -Reduced second order harmonics. Ze Ze bias 0
  • 45. Designing an LNA 1/ 2 n  2Jc  f2 1  n2  NFmin ( J c ) = 1 + +  (re + rb )u  2 + +  β DC  VT f β DC  β    T  DC  J c − opt ≈ 2π (C je + C jc )u VT β DC f    J fT 2 n 2 fT  2 0.5     C (r + r ) (1 + )+     2VT e b u β DC f 4 β DC f 2    1  f T 2 2  ( n VT /(2 J C ) + (re + rb ) u ) ×     RS −opt ( M ) ≅    MN  f  JC fT 2 n2 fT 2   (re + rb ) u (1 + )+ (1 + )   2VT β DC f 2 4 β DC f 2      RS − opt ( M ) = 50 = 9855.4 /( MN ) ∴ MN ≈ 200
  • 46. Input match & Le choice 1 Z in ≅ ωT Le + j (ϖLe + ωLb − ) ωCπ Input thus for Z in = Rs = 50 Zin ∴ ωT Le ≅ Rs & ω 2 ( Le + Lb )Cπ = 1 0 5.0 40 200 1 2 3 (300.000p,2.5642) 2.5 20 100 >> 0 0 0 0 0.5n 1.0n 1.5n 2.0n 1 YatX(NF,1G) 2 YatX(Gain,1G) 3 YatX(Zin,1G) Le
  • 47. Other parameters • Area of CB is 55 20 40 1 2 (55.000,23.011) 10 0 (55.000,2.5642) >> 0 -40 1 20 40 60 70 1 YatX(NF,1g) 2 YatX(Gain,1g) area2 ωL • Lc = 9nh & Rs = 11Ohm thus Q= ≈5 R
  • 48. Full circuit diagram 3V 9nH 9nH Q ~ 5 ~ Q ~ 5 ~ 0 11 11 OUT- Vbias2 1.85p AREA = 55 AREA = 55 0 OUT+ 1.85p AREA = 70 AREA = 70 IN+ 4p 22.2nH 22.2nH 4p Rbias 0.3nH 0.3nH Vbias1 0 IN- 3V 0 AREA = 1 AREA = 1 0
  • 49. Simulation results 20 40 1.2K 1 2 3 20 0.8K 10 0 0.4K >> 0 -20 0 1 20 40 60 70 1 YatX(nf,1g) 2 YatX(Gain,1g) 3 YatX(Zin,1g) area 30 (1.0000G,23.111) 20 10 (1.0000G,2.5583) 0 696.40MH 1.000GHz 1.367GHz z NF Gain Frequency
  • 50. S-parameters 20.0 (1.0000G,22.850) 0 -20.0 (1.0000G,-27.460) -33.7 526.54MH 1.000GHz 1.995GHz z S11 S21 Frequency -0.0 (1.0000G,-24.762) -20.0 (1.0000G,-46.103) -40.0 -60.0 -71.6 332.2MH 1.00GHz 2.43GHz z S12 S22 Frequency
  • 52. MWO outputs(linearity & S-parameters) Pout vs Pin 0 -50 IM1_SP[PORT_2,1] (dBm) Schematic 1 -100 IM3_SP[PORT_2,1] (dBm) Schematic 1 -150 -60 -50 -40 -30 -20 Power (dBm) s-parameters Swp Max 1.0 s param 0.8 1.1GHz 30 6 0. 0 2. 4 0. 0 3. S[1,1] 0 Schematic 1 4. 0 5.0 0.2 S[2,1] Schematic 1 10.0 DB(|S[1,1]|) S[1,2] -30 Schematic 1 Schematic 1 10.0 0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0 5.0 0 S[2,2] DB(|S[2,1]|) Schematic 1 Schematic 1 -10.0 -60 2 -0. DB(|S[1,2]|) 0 -5. Schematic 1 0 . -4 .0 -3 .4 -90 DB(|S[2,2]|) -0 Schematic 1 .0 0.9 0.95 1 1.05 1.1 -2 6. -0 Frequency (GHz) -0.8 Swp Min -1.0 0.9GHz
  • 53. Final aspects • NF = 2.56 db • Gain = 23 db • IIP3 = -19 dbm • IRL = -27.4 db • ORL = -24.6db • Reverse isolation = -46.1db
  • 55. Mixer • Mixer parameters: - Gain - Linearity - Noise figure - Port isolation
  • 56. Mixer topologies • Passive mixer - Microwave frequency - No conversion gain - high power consumption - Transformer coupling - Good linearity
  • 57. Mixer topologies Active mixer: Vcc LO LO - Provides conversion gain - Low power from LO port RF - Excellent isolation Vbias - No matching problem
  • 58. Single balanced vs double balanced Vcc Vcc LO LO LO LO RF RF RF Vbias Vbias Vbias 0 -Poor port to port isolation -perfect isolation -Less noise contribution -higher noise contribution
  • 59. Mixer of choice Active mixer Double balanced Gilbert cell Switching mixer
  • 60. Common emitter • Consists of: - Driver stage - Switcher stage - Load Driver stage have the main effect in the mixer linearity and noise figure
  • 61. Gain 18 18 16 16 14 14 12 12 Gain Gain 10 10 8 8 6 6 4 4 2 2 1 2 3 4 5 6 7 8 9 0 5 10 15 20 25 30 35 Idc driverarea Gain with biasing current gain with driver area
  • 62. Noise figure 12 10.5 10 11 9.5 10 9 9 NF(dB) 8.5 NF(DB) 8 8 7 7.5 7 6 6.5 5 0 5 10 15 20 25 30 6 driver area 1 2 3 4 5 6 7 8 9 10 switch area NF against driver area NF against switches area
  • 63. Shot noise 11 10.5 10 9.5 9 NF(dB) 8.5 8 7.5 7 6.5 6 1 2 3 4 5 6 7 8 9 10 bias current NF against bias current Base noise will be more effected at high bias current
  • 64. Linearity Linearity techniques: - Emitter resistance degeneration - Capacitance degeneration - Inductance degeneration - Multitanh techniques
  • 65. Gain vs Pin 18.5 12.5 18 12.4 12.3 17.5 12.2 17 12.1 Gain(db) Gain(db) 16.5 12 16 11.9 15.5 11.8 11.7 15 11.6 14.5 -36 -34 -32 -30 -28 -26 -24 -22 -20 -18 11.5 input power -40 -35 -30 -25 -20 -15 -10 input power Without degeneration With degeneration
  • 66. Noise degradation 200 100 ( 1 0 0 . 0 0 0 M, 1 0 . 2 2 2 ) NF=14db 0 1 . 0 KHz 1 0 KHz 1 . 0 MHz 1 0 0 MHz 1 0 GHz Inductance degeneration nf Fr e q u e n c y 200 ( 1 0 0 . 0 0 0 M, 1 3 . 3 5 7 ) 100 NF=17db Resistive degeneration 0 1 . 0 KHz 1 0 KHz 1 . 0 MHz 1 0 0 MHz 1 0 GHz nf Fr e q u e n c y
  • 68. Simulation result 1 . 0 mV I F s i gnal 0V RF s i g n a l - 1 . 0 mV 152. 5ns 156. 0ns 160. 0ns 164. 0ns 168. 0ns 172. 0ns V( R1 9 : 1 , OUT 2 ) V( N1 0 1 9 8 3 , N1 0 6 9 0 8 ) T i me 1 . 0 mV out put I F c o mp o n e n t ( 1 0 0 . 0 0 0 M, 8 2 2 . 4 6 4 u ) I nput RF c o mp o n e n t ( 1 . 0 0 0 0 G, 1 0 3 . 1 6 7 u ) 100uV 10uV 1 0 MHz 3 0 MHz 1 0 0 MHz 3 0 0 MHz 1 . 0 GHz 3 . 0 GHz V( R1 9 : 1 , OUT 2 ) V( N1 0 1 9 8 3 , N1 0 6 9 0 8 ) Fr e q u e n c y
  • 69. Intermediate Frequency (IF) Super heterodyne Receiver
  • 70. Why IF ? Selecting a narrow channel at RF , means very high Q for f0 the filters , so a down shift in Q= frequency is ∆f needed to relax the channel select filter’s Q .
  • 71. IF STAGE FOR FM RECEIVERS
  • 72. Automatic Gain Control (AGC) AGC means high gain for weak signals , and lower gain for relatively strong signals , in order to maintain a near constant output level, and to To buffer the receiver electronics from change in input signal strength .
  • 73. AGC TECHNIQUES     Digitally controlled
  • 75. RSSI Received Signal Strength Indicator : Used to indicate the changes in the received signal level , to control the gain of the VGA
  • 77. Gilbert cell Maximum gain occurs at negative V AGC , ,which causes the emitter followers to be off.
  • 78. Second stage *Area = 5 *Bias current = 2 mA
  • 79. Simulation Results Variable Gain of the wide band VGA
  • 80. Simulation Results (2) Linear response of the VGA with VAGC
  • 81. Simulation Results (3) Noise Figure and Gain Vs. VAGC
  • 83. RSSI Circuit Peak Detector Differential amplifier in large signal , acts as a rectifier at its emitter .
  • 84. Simulation Results Signals at different points
  • 85. Simulation Results (2) DC o/p for sweep on IF amplitude
  • 86. Simulation Results (3) DC o/p Vs. i/p strength ( received signal strength indicator )
  • 87. FSK Demodulator Quadrature detector : • Most common for IC applications. • Used for non I-Q Reception. • Converts the FM signal to a PM signal ,then detected by a PM detector .
  • 90. Phase Network 900 phase at the center frequency ± 900 at 2 FSK frequencies
  • 92. Simulation Results o/p spectrum of the multiplier
  • 93. Simulation Results (2) The DC output of the LPF , after the multiplier
  • 94. Receiver Section Receiver Noise figure NF(calc.) = 2.9 db & NF(sim.) = 3.1db
  • 95. Receiver Section Front end wave form 1 4 . 3 mV 1 0 . 0 mV 0V - 1 0 . 0 mV - 1 6 . 0 mV 568. 1ns 572. 0ns 576. 0ns 580. 0ns 584. 0ns 588. 0ns 592. 0ns V( L 6 : 1 , R7 3 4 2 6 : 2 ) V( F RONT , F RONT 1 ) V( I F 1 , I F 2 ) T i me Gain(calc.) = 41db Gain(sim.) =44db
  • 96. Receiver section • AGC Action 1 5 . 9 mV 1 0 . 0 mV 0V - 1 0 . 0 mV - 1 5 . 2 mV 213. 0ns 220. 0ns 230. 0ns 240. 0ns 247. 8ns V( I F 1 , I F 2 ) V( C2 0 7 , Q2 0 8 : c ) T i me