Lesson 9 Feb 22 2010
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Lesson 9 Feb 22 2010

on

  • 282 views

 

Statistics

Views

Total Views
282
Views on SlideShare
282
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Lesson 9 Feb 22 2010 Presentation Transcript

  • 1. Transition Matrices
  • 2. Solve for x and y.
  • 3. An Example A small community has a workforce of 1800 people, with 1680  employed and 120 unemployed. During the course of one year, 10% of  the employed workers will lose their jobs and 60% of the unemployed  will find jobs. The "Initial State Matrix" The "Transition Diagram" E U S = E U E U S =
  • 4. The "Transition Matrix" E U E T = U E U T = E U
  • 5. Predicting the future ... A small community has a workforce of 1800 people, with 1680 employed  and 120 unemployed. During the course of one year, 10% of the  employed workers will lose their jobs and 60% of the unemployed will  find jobs. After 1 Year S0T = S1 After 2 years S0T2 = S2 After 5 Years S0T5 = S5
  • 6. Predicting the future ... A small community has a workforce of 1800 people, with 1680 employed  and 120 unemployed. During the course of one year, 10% of the  employed workers will lose their jobs and 60% of the unemployed will  find jobs. After 1 Year S0T = S1 After 2 years S0T2 = S2 After 5 Years S0T5 = S5
  • 7. After 50 years S0T50 = S50 Demonstrate stabilization ...
  • 8. Exercise 6 Questions 1 ­ 5