SlideShare a Scribd company logo
1 of 30
Fundamentals of Transport Phenomena
ChE 715
Lecture 18
Ch 3 cont’d
• Transient prob-similarity method
R l P t b ti• Regular Perturbation
• Singular Perturbation
Spring 2011
Characteristic time scales
Two relevant approximations for time dependent problems
SECTION 3.4
• Quasi-steady state approximation (QSSA):
At “long” times, neglect time derivative(s).
• “Penetration” approximation:
At “short” times, assume that certain boundaries
are far away from the perturbationare far away from the perturbation.
Time for concentration (diffusion) or temperature (conduction)
propagation over distance L:propagation over distance L:
tD ~
L2
Di
; tC ~
L2
α
α ≡
k
ρC
⎛
⎝
⎜
⎞
⎠
⎟.
Di α ρCp⎝ ⎠
Characteristic time scales: membrane pore
C1(t); C2(t);
volume V
(well-mixed)
volume V
(well-mixed)
In the pore: C(x,t)
x = 0 x = Lx 0 x L
Initial conditions (I.C.’s): C1(0) = KC0 (the perturbation)
C (0) = 0C2(0) = 0
C(x,0) = 0
Characteristic time scales: membrane pore
C1(t); C2(t);1
volume V
(well-mixed)
2
volume V
(well-mixed)
In the pore: C(x,t)
x = 0 x = Lx = 0 x = L
Develop solutions for the QSSA and penetration regimes.p Q p g
Characteristic time scales: membrane pore
C1(t); C2(t);
volume V
(well-mixed)
volume V
(well-mixed)
In the pore: C(x,t)
x = 0 x = L
Generally speaking, what is the essence of the QSSA?
Membrane pore example: QSSA solution
2
2
0;
C C
D
t x
∂ ∂
∂ ∂
= ≈
1 2 1( , ) (t) + [ ( ) - ( )]
x
C x t KC K C t C t
L
=
C1(t) C2(t)
C A Bx= +
L
What BCs have we used?
C1(t) 2( )
1 20, ( ); , ( )x C KC t x L C KC t= = = =1
1 00
; (0)x x
dC
V AN C C
dt =
= − =
( )1 2
x x
C C
N J DK
L
−
= ≈ From solution of C(x,t)
0
( )/0
1( ) 1 ;
2 2
tC LV
C t e
KAD
τ
τ−
= + = How?
1
1 2[ ]
dC ADK
C C
dt LV
= − −
x = 0 x = L
2
2; (0) 0x x L
dC
V AN C
dt =
= − =
C
dt LV
1
1 0
2
[ / 2]
dC ADK
dt
C C LV
= −
−
2 1dC dC
V V
dt dt
= −
( )0
2 ( ) 1
2
C
C t e τ−
= −
Integrate, and use BC
Membrane pore example: QSSA solution (cont.)
When is the QSSA justified for this problem?
1. From scaling analysis, the time is well beyond the penetration regime:
t >> L2/D
2. We also need the following (membrane vol << external vol):
2
2
1
L ALK
D Vτ
= <<
Membrane pore example: penetration solution
C1(t);
l V
C2(t);
l Vvolume V
(well-mixed)
volume V
(well-mixed)
In the pore: C(x,t)
x = 0 x = L
Clearly, “short” times means that t << L2/D
In this regime, the length of the pore is semi-infinite!
Membrane pore example: penetration solution
Solution of PDE’s by the Similarity Method
∂C
= D
∂2
C
;
SECTION 3.5
∂t
D
∂x2
;
C(0,t) = C0
; C(∞,t) = C(x,0) = 0.
∂C
∂t
=
∂η
∂t
dC
dη
= −
x ′g
g2
dC
dη
= −
η ′g
g
dC
dη
;
Propose a substitution variable, η = x/g(t):
∂t ∂t dη g dη g dη
∂2
C
∂x2
=
1
g2
d2
C
dη2
;
d2
C
dη2
+
ηg ′g
D
dC
dη
= 0.
Essence of the similarity method: must be a constantg ′g
Membrane pore example: penetration solution
let
g ′g
D
= a;
d2
C dC
0
dη2
+ aη
dη
= 0
let Y =
dC
d
; ′Y + aηY = 0.
dη
η
Apply the integrating factor method:
Y exp aη2
2( )= constant ≡ A;
dC
d
= Aexp −aη2
2( ); let a = 2.
dη
p η( )
00 (0)(0, ) C CC t C= ⇒ =
BC
( , ) ( ,0) 0 ( ) 0CC t C x∞ = ⇒ ∞= =
BCs:
Membrane pore example: penetration solution
Solution of PDE’s by the Similarity Method (cont.)
C(η)
C0
=1−
2
π
e−s2
ds0
η
∫
≡ erfc η =1− erf η.
Apply B.C.’s and solve:
η η
0 8
1
0
0.6
0.8
0.2
0.4
0
0 0.5 1 1.5 2
η
Membrane pore example: penetration solution
Solution of PDE’s by the Similarity Method (cont.)
Not done yet: need to determine g(t):
Initial and boundary conditions must be consistent:
g ′g = 2D;
C(x,0) = C(∞,t) = 0; requires that g(0) = 0.
η = x/g(t)
g ′g =
1
2
g2
( )′;
g = 4Dt.g
C(η)
C
= erfc
x
4DtC0 4Dt
Regular Perturbation
Perturbation: Regular, Singularg g
Define small parameter: ε
Mathematical Order: O(1)
1 ~ 1 O(1)
15 ~ 10 O(10)
O( )ε ~ ε O(ε)
ε2 O(ε2)
Regular Perturbation
Solution when ε = 0 has the same
h t th l ti hcharacter as the solution when
ε 0:
Solution:
2
0 1 2 ...
n
ε ε
ε
∞
Θ = Θ + Θ + Θ +
= Θ∑0
n
n
ε
=
= Θ∑
Example Problem – Heated Wire
Ts = T∞
From Example 2.8-1
2
; ;
/
T T r hR
r Bi
H R k R k
∞−
Θ = = =
k, Hv (Bih >> 1)
v /H R k R k
2
2
1
4 2
V Vr
T T R R
R
H H
k h∞
⎡ ⎤⎛ ⎞
− − +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦
=
2
1 1T T r∞− −
Θ = = +
0
How?
2
/ 4 2v nH R k Bi
Θ = = +
In this case let
How?
( )( ) 1k T k a T T∞ ∞= + −⎡ ⎤⎣ ⎦
( )⎡ ⎤
In this case, let
( )( ) 1vH T H a T T∞ ∞= + −⎡ ⎤⎣ ⎦
Example Problem – Heated Wire
1
( ) ( ) 0v
d dT
rk T H T
r dr dr
⎛ ⎞
+ =⎜ ⎟
⎝ ⎠
Ts = T∞
r dr dr⎝ ⎠
( )T R T=
k, Hv
BC’s:
0
dT;( )T R T∞BC s:
0
0
r
r
dr =
=;
Define:
2
2
; ;
/
T T H Rr
r a
H R k R k
ε∞ ∞
∞ ∞ ∞
−
Θ = = =
ε <<1 (basis for pert method)ε <<1 (basis for pert. method)
Example Problem – Heated Wire
Ts = T∞
1
( ) ( ) 0v
d dT
rk T H T
r dr dr
⎛ ⎞
+ =⎜ ⎟
⎝ ⎠
k, Hv
( )( ) 1k T k a T T∞ ∞= + −⎡ ⎤⎣ ⎦
( )( ) 1vH T H a T T∞ ∞= + −⎡ ⎤⎣ ⎦
2
2
; ;
/
H R
a
T T r
r
H kR k R
ε∞
∞ ∞
∞
∞
−
Θ == =
1
(1 ) (1 ) 0
d d
r
r dr dr
ε ε
Θ⎛ ⎞
+ Θ + + Θ =⎜ ⎟
⎝ ⎠
∞ ∞ ∞
⎝ ⎠
(1) 0Θ =BC’s:
0
d
r
Θ
=( )
0
0
r
r
dr =
Example Problem – Heated Wire
1
(1 ) (1 ) 0
d d
r
r dr dr
ε ε
Θ⎛ ⎞
+ Θ + + Θ =⎜ ⎟
⎝ ⎠
Ts = T∞
(1) 0Θ =
k, Hv
BC’s:
0
0
d
r
dr
Θ
=;
0rdr =
2
0 1 ( )Oε εΘ = Θ + Θ +Solve within O(ε) :
⎡ ⎤⎛ ⎞
Then:
( )2 3 20 1
0 1
1
1 ( ) ( )
d dd
r O O
r dr dr dr
ε ε ε ε ε
⎡ Θ ⎤Θ⎛ ⎞
+ Θ + Θ + + +⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦
( )2 3
0 11 ( ) 0Oε ε ε+ + Θ + Θ + =
Example Problem – Heated Wire
(1) 0Θ =
k H
Ts = T∞
BC:
k, Hv
then:
2
0 1(1) (1) ( ) 0Oε εΘ + Θ + =
( )2 3
1 ( ) 0OΘ Θ
( )2 3 20 1
0 1
1
1 ( ) ( )
d dd
r O O
r dr dr dr
ε ε ε ε ε
⎡ Θ ⎤Θ⎛ ⎞
+ Θ + Θ + + +⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦
01
1 0
dd Θ⎛ ⎞
⎜ ⎟ 0dΘ
O(1) problem: 0 ?Θ =
;
( )2 3
0 11 ( ) 0Oε ε ε+ + Θ + Θ + =
0
1 0r
r dr dr
⎛ ⎞
+ =⎜ ⎟
⎝ ⎠
0
0
0
r
d
r
dr =
Θ
=0 (1) 0Θ =
( )2
0
1
( ) 1
4
r rΘ = −
Solving :
Example Problem – Heated Wire
⎡ ⎤⎛ ⎞k H
Ts = T∞
O(ε) problem: 1 ?Θ =
0 1
0 0
1
0
d dd
r
r dr dr dr
⎡ Θ ⎤Θ⎛ ⎞
Θ + + Θ =⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦
k, Hv
1
0
0
r
d
r
dr =
Θ
=1(1) 0Θ =
;
1dΘ solving: 0r=
( )4
1
1
( ) 1
64
r rΘ = −
0 1
2
d
r
dr
Θ
= −
solving:
64
and the total
( ) ( )2 4 21
( ) 1 1 ( )O
ε
Θsolution is: ( ) ( )2 4 21
( ) 1 1 ( )
4 64
r r r O
ε
εΘ = − + − +
Example Problem 2 – Regular Perturbation
Diffusion and second order
reaction (slow) at steady state A B
y=0
Inert surfacey=L2
CAo
Liq film
L t
Inert surfacey=L2
1 AVAR k C= −
at x=L0AdC
dy
=BCs: CA=CAO at y=0
Let
2
2
0A
A VA
d C
D R
dy
+ =
2
d C
2
; x= ; Da= AoA
Ao AB
kC LC y
C L D
θ =
d2
Θ
Θ2
0
2
2
2
0A
A A
d C
D kC
dy
− = Assume Da <<1 and Da=є
dx2
−εΘ2
= 0;
Θ(0) =1; ′Θ (1) = 0.
2 3
1 2( ) ( ) ( ) ( ) ( )ox x x x Oε ε εΘ = Θ + Θ + Θ +
Example Problem 2 – Regular Perturbation
Example: Diffusion and second order reaction (slow) at
steady state.
d2
Θ
dx2
−εΘ2
= 0;
Θ(0) =1; ′Θ (1) = 0.
Θ2
= Θ0 +εΘ1 +ε2
Θ2 + O(ε3
)( )
2
= Θ 2
+ 2εΘ Θ +ε2
Θ 2
+ 2Θ Θ( )+O(ε3
)
O(1) problem:
2
= Θ0 + 2εΘ0Θ1 +ε2
Θ1 + 2Θ0Θ2( )+O(ε3
)
d2
Θ0
dx2
= 0;
Θ0 (0) =1; Θ0
′(1) = 0;0 ( ) ; 0 ( ) ;
Θ0 (x) =1
Example Problem 2 – Regular Perturbation
Example: Second order reaction (slow)
d2
Θ1
dx2
=Θ0
2
=1;
′
O(ε) problem:
Θ1(0) = 0; Θ1
′(1) = 0;
Θ1(x) =
x2
2
− x.
d2
Θ2
d 2
= 2Θ0Θ1 = x2
− 2x;
O(ε2) problem:
dx2 0 1 ;
Θ2 (0) = 0; Θ2
′(1) = 0;
Θ ( )
x4
x3
2
Θ2 (x) =
x
12
−
x
3
+
2
3
x.
Example Problem 2 – Regular Perturbation
Example: Second order reaction (slow)
⎛ ⎞ ⎛ ⎞2 3 4
2 32
( ) 1 ( )
2 3 3 12
x x x
x x x Oε ε ε
⎛ ⎞ ⎛ ⎞
Θ = − − + − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
1
0.95
1
ε = 0.1
0.9
ε = 0.2( )xΘ
0.85 ε = 0.5
0.8
0 0.2 0.4 0.6 0.8 1
Position, x
Example Problem – Singular Perturbation
CA(R) = Co
R
2
1k R
RA = k1CA
R
r 1
A
k R
Da
D
= >> 1 (fast reaction)
1
CA/C0
0
0 1 r/R
1 - ñ01
Example Problem – Singular Perturbation
CA(R) = Co
R 1C r
RA = k1CA
R
r 1
0
; ;AC r
r Da
C R
ε −
Θ = = =
(1) 1Θ =BC’s: 0
d
r
Θ
=;0
d d
r
ε Θ⎛ ⎞
− Θ =⎜ ⎟
⎝ ⎠ 0
0
r
r
dr =
r dr dr
⎜ ⎟
⎝ ⎠
(trivial solution)ε = 0 Θ = 0
Define:
( )1 b
rξ ε≡ − (b < 0)
Example Problem – Singular Perturbation
CA(R) = Co
R
( )1 b
rξ ε≡ − 1 b
r ξε −
= −
RA = k1CA
R
r b
dr dε ξ−
= −
bd d
dr d
ε
ξ
Θ Θ
= −
2 2
2
2 2
bd d
dr d
ε
ξ
Θ Θ
=
dr dξ dr dξ
2
0
d dε
ε
Θ Θ
+ Θ =
Replacing in the
d d l 2
0
dr r dr
ε + − Θ =expanded original eq.
2 1b
d dε +
Θ Θ
We obtain:
2 1
2
0
1
b
b
d d
d d
ε
ε
ξ ξε ξ
+
−
Θ Θ
− − Θ =
−
Example Problem – Singular Perturbation
CA(R) = Co
R
First term (Diffusion in a
slab: O(1)
RA = k1CA
R
r
2 1/ 2
0
d dεΘ Θ
− − Θ =
Set: b = -1/2
2 1/ 2
0
1d dξ ξε ξ
Θ
−
1/2 3/2
0 1 2 ( )Oε ε εΘ = Θ + Θ + Θ + 21
1 ( ) ..... x 0
1
x O x for= + + + →
Replacing:
0 1 2 ( )
2 2
d dΘ Θ
1/2
1/2
1
1 ( ) ...
1
Oξε ε
ξε
= + + +
−
( )
1
f
x−
1/20 1
2
...
d d
d d
ε
ξ ξ
Θ Θ
+ +
1/ 2 0dΘ
ξ
1/ 2 0
...
d
ε
ξ
− −
( )1/2
0 1 ... 0ε− Θ + Θ + =
Example Problem – Singular Perturbation
CA(R) = Co
R
2
1/2 1/2 1/2 1/20 01 1
2
[1 ( )][ ]
d dd d
O
d d d d
ε ε ξε ε ε
ξ ξ ξ ξ
Θ ΘΘ Θ
+ − + + +
RA = k1CA
R
r 1/2
0 1 ( ) 0
d d d d
O
ξ ξ ξ ξ
ε ε− Θ − Θ + =
BC’s:
2
d Θ
O(1) problem:
(0) 1Θ =2
0
02
0
d
dξ
Θ
− Θ = Other BC:
dΘ0
(1) 0
d
dξ
Θ
= (?)
NO! because BL doesn’t
extend to cylindrical
center
Example Problem – Singular Perturbation
CA(R) = Co
R
2
0
02
0
d
dξ
Θ
− Θ =
RA = k1CA
R
r
BC’s:
dξ
(0) 1Θ =
New BC:
( ) 0Θ ∞ =
Solving:
0 e ξ−
Θ =
O(ε1/2) problem: 2
01
0
dd ΘΘ
+ + Θ BC’s:
1(0) 0Θ =01
12
0
d dξ ξ
+ + Θ = BC s:
1( ) 0Θ ∞ =
e ξ
ξ −
1
2
eξ
Θ =Solving:

More Related Content

What's hot

What's hot (19)

Math resources trigonometric_formulas
Math resources trigonometric_formulasMath resources trigonometric_formulas
Math resources trigonometric_formulas
 
Numerical Methods Solving Linear Equations
Numerical Methods Solving Linear EquationsNumerical Methods Solving Linear Equations
Numerical Methods Solving Linear Equations
 
Gamma function
Gamma functionGamma function
Gamma function
 
Week3 ap3421 2019_part1
Week3 ap3421 2019_part1Week3 ap3421 2019_part1
Week3 ap3421 2019_part1
 
Ch06 1
Ch06 1Ch06 1
Ch06 1
 
corripio
corripio corripio
corripio
 
Capitulo 2 corripio
Capitulo 2 corripioCapitulo 2 corripio
Capitulo 2 corripio
 
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
 
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
 
Ch15s
Ch15sCh15s
Ch15s
 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
 
Beta & Gamma Functions
Beta & Gamma FunctionsBeta & Gamma Functions
Beta & Gamma Functions
 
Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...
 
Calculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manualCalculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manual
 
Digital Signal Processing
Digital Signal ProcessingDigital Signal Processing
Digital Signal Processing
 
IVR - Chapter 4 - Variational methods
IVR - Chapter 4 - Variational methodsIVR - Chapter 4 - Variational methods
IVR - Chapter 4 - Variational methods
 
Funcion gamma
Funcion gammaFuncion gamma
Funcion gamma
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)
 

Viewers also liked

Mothers day ideas for college students
Mothers day ideas for college studentsMothers day ideas for college students
Mothers day ideas for college students
HelpWithAssignment.com
 

Viewers also liked (14)

Significance of information in marketing
Significance of information in marketingSignificance of information in marketing
Significance of information in marketing
 
Mothers day ideas for college students
Mothers day ideas for college studentsMothers day ideas for college students
Mothers day ideas for college students
 
Forecasting Assignment Help
Forecasting Assignment HelpForecasting Assignment Help
Forecasting Assignment Help
 
Systems Programming Assignment Help - Processes
Systems Programming Assignment Help - ProcessesSystems Programming Assignment Help - Processes
Systems Programming Assignment Help - Processes
 
Halloween Party, Costume and Theme Ideas for Students
Halloween Party, Costume and Theme Ideas for StudentsHalloween Party, Costume and Theme Ideas for Students
Halloween Party, Costume and Theme Ideas for Students
 
Rights of the Parties and Discharge; Remedies for Breach of Contract
Rights of the Parties and Discharge; Remedies for Breach of ContractRights of the Parties and Discharge; Remedies for Breach of Contract
Rights of the Parties and Discharge; Remedies for Breach of Contract
 
Target market selection
Target market selectionTarget market selection
Target market selection
 
Performance appraisal in human resource management
Performance appraisal in human resource managementPerformance appraisal in human resource management
Performance appraisal in human resource management
 
International Accounting
International AccountingInternational Accounting
International Accounting
 
Proportions and Confidence Intervals in Biostatistics
Proportions and Confidence Intervals in BiostatisticsProportions and Confidence Intervals in Biostatistics
Proportions and Confidence Intervals in Biostatistics
 
Quantum Assignment Help
Quantum Assignment HelpQuantum Assignment Help
Quantum Assignment Help
 
Systems Programming - File IO
Systems Programming - File IOSystems Programming - File IO
Systems Programming - File IO
 
Hypothesis Testing Assignment Help
Hypothesis Testing Assignment HelpHypothesis Testing Assignment Help
Hypothesis Testing Assignment Help
 
Constructivism assignment help
Constructivism assignment helpConstructivism assignment help
Constructivism assignment help
 

Similar to Fundamentals of Transport Phenomena ChE 715

T2311 - Ch 4_Part1.pptx
T2311 - Ch 4_Part1.pptxT2311 - Ch 4_Part1.pptx
T2311 - Ch 4_Part1.pptx
GadaFarhan
 
Trigo Sheet Cheat :D
Trigo Sheet Cheat :DTrigo Sheet Cheat :D
Trigo Sheet Cheat :D
Quimm Lee
 

Similar to Fundamentals of Transport Phenomena ChE 715 (20)

Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Copy of ctlti.pdf
Copy of ctlti.pdfCopy of ctlti.pdf
Copy of ctlti.pdf
 
Lecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdfLecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdf
 
UNIT I_4.pdf
UNIT I_4.pdfUNIT I_4.pdf
UNIT I_4.pdf
 
L2
L2L2
L2
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
Recurrence relation solutions
Recurrence relation solutionsRecurrence relation solutions
Recurrence relation solutions
 
T2311 - Ch 4_Part1.pptx
T2311 - Ch 4_Part1.pptxT2311 - Ch 4_Part1.pptx
T2311 - Ch 4_Part1.pptx
 
Applied numerical methods lec14
Applied numerical methods lec14Applied numerical methods lec14
Applied numerical methods lec14
 
Recurrences
RecurrencesRecurrences
Recurrences
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Admission in india 2014
Admission in india 2014Admission in india 2014
Admission in india 2014
 
Ch03 4
Ch03 4Ch03 4
Ch03 4
 
Statistics Homework Help
Statistics Homework HelpStatistics Homework Help
Statistics Homework Help
 
Multiple Linear Regression Homework Help
Multiple Linear Regression Homework HelpMultiple Linear Regression Homework Help
Multiple Linear Regression Homework Help
 
Trigo Sheet Cheat :D
Trigo Sheet Cheat :DTrigo Sheet Cheat :D
Trigo Sheet Cheat :D
 

Recently uploaded

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 

Recently uploaded (20)

Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 

Fundamentals of Transport Phenomena ChE 715

  • 1. Fundamentals of Transport Phenomena ChE 715 Lecture 18 Ch 3 cont’d • Transient prob-similarity method R l P t b ti• Regular Perturbation • Singular Perturbation Spring 2011
  • 2. Characteristic time scales Two relevant approximations for time dependent problems SECTION 3.4 • Quasi-steady state approximation (QSSA): At “long” times, neglect time derivative(s). • “Penetration” approximation: At “short” times, assume that certain boundaries are far away from the perturbationare far away from the perturbation. Time for concentration (diffusion) or temperature (conduction) propagation over distance L:propagation over distance L: tD ~ L2 Di ; tC ~ L2 α α ≡ k ρC ⎛ ⎝ ⎜ ⎞ ⎠ ⎟. Di α ρCp⎝ ⎠
  • 3. Characteristic time scales: membrane pore C1(t); C2(t); volume V (well-mixed) volume V (well-mixed) In the pore: C(x,t) x = 0 x = Lx 0 x L Initial conditions (I.C.’s): C1(0) = KC0 (the perturbation) C (0) = 0C2(0) = 0 C(x,0) = 0
  • 4. Characteristic time scales: membrane pore C1(t); C2(t);1 volume V (well-mixed) 2 volume V (well-mixed) In the pore: C(x,t) x = 0 x = Lx = 0 x = L Develop solutions for the QSSA and penetration regimes.p Q p g
  • 5. Characteristic time scales: membrane pore C1(t); C2(t); volume V (well-mixed) volume V (well-mixed) In the pore: C(x,t) x = 0 x = L Generally speaking, what is the essence of the QSSA?
  • 6. Membrane pore example: QSSA solution 2 2 0; C C D t x ∂ ∂ ∂ ∂ = ≈ 1 2 1( , ) (t) + [ ( ) - ( )] x C x t KC K C t C t L = C1(t) C2(t) C A Bx= + L What BCs have we used? C1(t) 2( ) 1 20, ( ); , ( )x C KC t x L C KC t= = = =1 1 00 ; (0)x x dC V AN C C dt = = − = ( )1 2 x x C C N J DK L − = ≈ From solution of C(x,t) 0 ( )/0 1( ) 1 ; 2 2 tC LV C t e KAD τ τ− = + = How? 1 1 2[ ] dC ADK C C dt LV = − − x = 0 x = L 2 2; (0) 0x x L dC V AN C dt = = − = C dt LV 1 1 0 2 [ / 2] dC ADK dt C C LV = − − 2 1dC dC V V dt dt = − ( )0 2 ( ) 1 2 C C t e τ− = − Integrate, and use BC
  • 7. Membrane pore example: QSSA solution (cont.) When is the QSSA justified for this problem? 1. From scaling analysis, the time is well beyond the penetration regime: t >> L2/D 2. We also need the following (membrane vol << external vol): 2 2 1 L ALK D Vτ = <<
  • 8. Membrane pore example: penetration solution C1(t); l V C2(t); l Vvolume V (well-mixed) volume V (well-mixed) In the pore: C(x,t) x = 0 x = L Clearly, “short” times means that t << L2/D In this regime, the length of the pore is semi-infinite!
  • 9. Membrane pore example: penetration solution Solution of PDE’s by the Similarity Method ∂C = D ∂2 C ; SECTION 3.5 ∂t D ∂x2 ; C(0,t) = C0 ; C(∞,t) = C(x,0) = 0. ∂C ∂t = ∂η ∂t dC dη = − x ′g g2 dC dη = − η ′g g dC dη ; Propose a substitution variable, η = x/g(t): ∂t ∂t dη g dη g dη ∂2 C ∂x2 = 1 g2 d2 C dη2 ; d2 C dη2 + ηg ′g D dC dη = 0. Essence of the similarity method: must be a constantg ′g
  • 10. Membrane pore example: penetration solution let g ′g D = a; d2 C dC 0 dη2 + aη dη = 0 let Y = dC d ; ′Y + aηY = 0. dη η Apply the integrating factor method: Y exp aη2 2( )= constant ≡ A; dC d = Aexp −aη2 2( ); let a = 2. dη p η( ) 00 (0)(0, ) C CC t C= ⇒ = BC ( , ) ( ,0) 0 ( ) 0CC t C x∞ = ⇒ ∞= = BCs:
  • 11. Membrane pore example: penetration solution Solution of PDE’s by the Similarity Method (cont.) C(η) C0 =1− 2 π e−s2 ds0 η ∫ ≡ erfc η =1− erf η. Apply B.C.’s and solve: η η 0 8 1 0 0.6 0.8 0.2 0.4 0 0 0.5 1 1.5 2 η
  • 12. Membrane pore example: penetration solution Solution of PDE’s by the Similarity Method (cont.) Not done yet: need to determine g(t): Initial and boundary conditions must be consistent: g ′g = 2D; C(x,0) = C(∞,t) = 0; requires that g(0) = 0. η = x/g(t) g ′g = 1 2 g2 ( )′; g = 4Dt.g C(η) C = erfc x 4DtC0 4Dt
  • 13. Regular Perturbation Perturbation: Regular, Singularg g Define small parameter: ε Mathematical Order: O(1) 1 ~ 1 O(1) 15 ~ 10 O(10) O( )ε ~ ε O(ε) ε2 O(ε2)
  • 14. Regular Perturbation Solution when ε = 0 has the same h t th l ti hcharacter as the solution when ε 0: Solution: 2 0 1 2 ... n ε ε ε ∞ Θ = Θ + Θ + Θ + = Θ∑0 n n ε = = Θ∑
  • 15. Example Problem – Heated Wire Ts = T∞ From Example 2.8-1 2 ; ; / T T r hR r Bi H R k R k ∞− Θ = = = k, Hv (Bih >> 1) v /H R k R k 2 2 1 4 2 V Vr T T R R R H H k h∞ ⎡ ⎤⎛ ⎞ − − +⎢ ⎥⎜ ⎟ ⎝ ⎠⎢ ⎥⎣ ⎦ = 2 1 1T T r∞− − Θ = = + 0 How? 2 / 4 2v nH R k Bi Θ = = + In this case let How? ( )( ) 1k T k a T T∞ ∞= + −⎡ ⎤⎣ ⎦ ( )⎡ ⎤ In this case, let ( )( ) 1vH T H a T T∞ ∞= + −⎡ ⎤⎣ ⎦
  • 16. Example Problem – Heated Wire 1 ( ) ( ) 0v d dT rk T H T r dr dr ⎛ ⎞ + =⎜ ⎟ ⎝ ⎠ Ts = T∞ r dr dr⎝ ⎠ ( )T R T= k, Hv BC’s: 0 dT;( )T R T∞BC s: 0 0 r r dr = =; Define: 2 2 ; ; / T T H Rr r a H R k R k ε∞ ∞ ∞ ∞ ∞ − Θ = = = ε <<1 (basis for pert method)ε <<1 (basis for pert. method)
  • 17. Example Problem – Heated Wire Ts = T∞ 1 ( ) ( ) 0v d dT rk T H T r dr dr ⎛ ⎞ + =⎜ ⎟ ⎝ ⎠ k, Hv ( )( ) 1k T k a T T∞ ∞= + −⎡ ⎤⎣ ⎦ ( )( ) 1vH T H a T T∞ ∞= + −⎡ ⎤⎣ ⎦ 2 2 ; ; / H R a T T r r H kR k R ε∞ ∞ ∞ ∞ ∞ − Θ == = 1 (1 ) (1 ) 0 d d r r dr dr ε ε Θ⎛ ⎞ + Θ + + Θ =⎜ ⎟ ⎝ ⎠ ∞ ∞ ∞ ⎝ ⎠ (1) 0Θ =BC’s: 0 d r Θ =( ) 0 0 r r dr =
  • 18. Example Problem – Heated Wire 1 (1 ) (1 ) 0 d d r r dr dr ε ε Θ⎛ ⎞ + Θ + + Θ =⎜ ⎟ ⎝ ⎠ Ts = T∞ (1) 0Θ = k, Hv BC’s: 0 0 d r dr Θ =; 0rdr = 2 0 1 ( )Oε εΘ = Θ + Θ +Solve within O(ε) : ⎡ ⎤⎛ ⎞ Then: ( )2 3 20 1 0 1 1 1 ( ) ( ) d dd r O O r dr dr dr ε ε ε ε ε ⎡ Θ ⎤Θ⎛ ⎞ + Θ + Θ + + +⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦ ( )2 3 0 11 ( ) 0Oε ε ε+ + Θ + Θ + =
  • 19. Example Problem – Heated Wire (1) 0Θ = k H Ts = T∞ BC: k, Hv then: 2 0 1(1) (1) ( ) 0Oε εΘ + Θ + = ( )2 3 1 ( ) 0OΘ Θ ( )2 3 20 1 0 1 1 1 ( ) ( ) d dd r O O r dr dr dr ε ε ε ε ε ⎡ Θ ⎤Θ⎛ ⎞ + Θ + Θ + + +⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦ 01 1 0 dd Θ⎛ ⎞ ⎜ ⎟ 0dΘ O(1) problem: 0 ?Θ = ; ( )2 3 0 11 ( ) 0Oε ε ε+ + Θ + Θ + = 0 1 0r r dr dr ⎛ ⎞ + =⎜ ⎟ ⎝ ⎠ 0 0 0 r d r dr = Θ =0 (1) 0Θ = ( )2 0 1 ( ) 1 4 r rΘ = − Solving :
  • 20. Example Problem – Heated Wire ⎡ ⎤⎛ ⎞k H Ts = T∞ O(ε) problem: 1 ?Θ = 0 1 0 0 1 0 d dd r r dr dr dr ⎡ Θ ⎤Θ⎛ ⎞ Θ + + Θ =⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦ k, Hv 1 0 0 r d r dr = Θ =1(1) 0Θ = ; 1dΘ solving: 0r= ( )4 1 1 ( ) 1 64 r rΘ = − 0 1 2 d r dr Θ = − solving: 64 and the total ( ) ( )2 4 21 ( ) 1 1 ( )O ε Θsolution is: ( ) ( )2 4 21 ( ) 1 1 ( ) 4 64 r r r O ε εΘ = − + − +
  • 21. Example Problem 2 – Regular Perturbation Diffusion and second order reaction (slow) at steady state A B y=0 Inert surfacey=L2 CAo Liq film L t Inert surfacey=L2 1 AVAR k C= − at x=L0AdC dy =BCs: CA=CAO at y=0 Let 2 2 0A A VA d C D R dy + = 2 d C 2 ; x= ; Da= AoA Ao AB kC LC y C L D θ = d2 Θ Θ2 0 2 2 2 0A A A d C D kC dy − = Assume Da <<1 and Da=є dx2 −εΘ2 = 0; Θ(0) =1; ′Θ (1) = 0. 2 3 1 2( ) ( ) ( ) ( ) ( )ox x x x Oε ε εΘ = Θ + Θ + Θ +
  • 22. Example Problem 2 – Regular Perturbation Example: Diffusion and second order reaction (slow) at steady state. d2 Θ dx2 −εΘ2 = 0; Θ(0) =1; ′Θ (1) = 0. Θ2 = Θ0 +εΘ1 +ε2 Θ2 + O(ε3 )( ) 2 = Θ 2 + 2εΘ Θ +ε2 Θ 2 + 2Θ Θ( )+O(ε3 ) O(1) problem: 2 = Θ0 + 2εΘ0Θ1 +ε2 Θ1 + 2Θ0Θ2( )+O(ε3 ) d2 Θ0 dx2 = 0; Θ0 (0) =1; Θ0 ′(1) = 0;0 ( ) ; 0 ( ) ; Θ0 (x) =1
  • 23. Example Problem 2 – Regular Perturbation Example: Second order reaction (slow) d2 Θ1 dx2 =Θ0 2 =1; ′ O(ε) problem: Θ1(0) = 0; Θ1 ′(1) = 0; Θ1(x) = x2 2 − x. d2 Θ2 d 2 = 2Θ0Θ1 = x2 − 2x; O(ε2) problem: dx2 0 1 ; Θ2 (0) = 0; Θ2 ′(1) = 0; Θ ( ) x4 x3 2 Θ2 (x) = x 12 − x 3 + 2 3 x.
  • 24. Example Problem 2 – Regular Perturbation Example: Second order reaction (slow) ⎛ ⎞ ⎛ ⎞2 3 4 2 32 ( ) 1 ( ) 2 3 3 12 x x x x x x Oε ε ε ⎛ ⎞ ⎛ ⎞ Θ = − − + − + +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ 1 0.95 1 ε = 0.1 0.9 ε = 0.2( )xΘ 0.85 ε = 0.5 0.8 0 0.2 0.4 0.6 0.8 1 Position, x
  • 25. Example Problem – Singular Perturbation CA(R) = Co R 2 1k R RA = k1CA R r 1 A k R Da D = >> 1 (fast reaction) 1 CA/C0 0 0 1 r/R 1 - ñ01
  • 26. Example Problem – Singular Perturbation CA(R) = Co R 1C r RA = k1CA R r 1 0 ; ;AC r r Da C R ε − Θ = = = (1) 1Θ =BC’s: 0 d r Θ =;0 d d r ε Θ⎛ ⎞ − Θ =⎜ ⎟ ⎝ ⎠ 0 0 r r dr = r dr dr ⎜ ⎟ ⎝ ⎠ (trivial solution)ε = 0 Θ = 0 Define: ( )1 b rξ ε≡ − (b < 0)
  • 27. Example Problem – Singular Perturbation CA(R) = Co R ( )1 b rξ ε≡ − 1 b r ξε − = − RA = k1CA R r b dr dε ξ− = − bd d dr d ε ξ Θ Θ = − 2 2 2 2 2 bd d dr d ε ξ Θ Θ = dr dξ dr dξ 2 0 d dε ε Θ Θ + Θ = Replacing in the d d l 2 0 dr r dr ε + − Θ =expanded original eq. 2 1b d dε + Θ Θ We obtain: 2 1 2 0 1 b b d d d d ε ε ξ ξε ξ + − Θ Θ − − Θ = −
  • 28. Example Problem – Singular Perturbation CA(R) = Co R First term (Diffusion in a slab: O(1) RA = k1CA R r 2 1/ 2 0 d dεΘ Θ − − Θ = Set: b = -1/2 2 1/ 2 0 1d dξ ξε ξ Θ − 1/2 3/2 0 1 2 ( )Oε ε εΘ = Θ + Θ + Θ + 21 1 ( ) ..... x 0 1 x O x for= + + + → Replacing: 0 1 2 ( ) 2 2 d dΘ Θ 1/2 1/2 1 1 ( ) ... 1 Oξε ε ξε = + + + − ( ) 1 f x− 1/20 1 2 ... d d d d ε ξ ξ Θ Θ + + 1/ 2 0dΘ ξ 1/ 2 0 ... d ε ξ − − ( )1/2 0 1 ... 0ε− Θ + Θ + =
  • 29. Example Problem – Singular Perturbation CA(R) = Co R 2 1/2 1/2 1/2 1/20 01 1 2 [1 ( )][ ] d dd d O d d d d ε ε ξε ε ε ξ ξ ξ ξ Θ ΘΘ Θ + − + + + RA = k1CA R r 1/2 0 1 ( ) 0 d d d d O ξ ξ ξ ξ ε ε− Θ − Θ + = BC’s: 2 d Θ O(1) problem: (0) 1Θ =2 0 02 0 d dξ Θ − Θ = Other BC: dΘ0 (1) 0 d dξ Θ = (?) NO! because BL doesn’t extend to cylindrical center
  • 30. Example Problem – Singular Perturbation CA(R) = Co R 2 0 02 0 d dξ Θ − Θ = RA = k1CA R r BC’s: dξ (0) 1Θ = New BC: ( ) 0Θ ∞ = Solving: 0 e ξ− Θ = O(ε1/2) problem: 2 01 0 dd ΘΘ + + Θ BC’s: 1(0) 0Θ =01 12 0 d dξ ξ + + Θ = BC s: 1( ) 0Θ ∞ = e ξ ξ − 1 2 eξ Θ =Solving: