SlideShare a Scribd company logo
1 of 18
Download to read offline
Motivation         Model    SIMP         Objective Functions         Numeriacal Results           Conclusions




                Topology Optimization of a Piezoelectric
             Loudspeaker Coupled with the Acoustic Domain

             F. Wein, M. Kaltenbacher, F. Schury, E. B¨nsch, G. Leugering
                                                      a


                                       WCSMO-8
                                      03. June 2009




                                   Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization
Motivation         Model     SIMP         Objective Functions         Numeriacal Results           Conclusions



 Motivation


      Overview
             • Ersatz material/ “SIMP” optimization
             • Piezoelectric-mechanical laminate coupled with acoustics
             • Piezoelectric layer is design domain

      Topics
             • Acoustic optimization vs. structural approximation
             • Self-penalized piezoelectric optimization without . . .
                 • penalization (e.g. RAMP)
                 • volume constraint
                 • regularization (filtering)




                                    Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization
Motivation     Model       SIMP         Objective Functions         Numeriacal Results           Conclusions



 Piezoelectric-Mechanical Laminate




      Bending due to inverse piezoelectric effect




      Piezoelectric layer: PZT-5A, 5 cm×5 cm, 50 µm thick, ideal electrodes
      Mechanicial layer: Aluminum, 5 cm×5 cm, 100 µm thick, no glue layer

                                  Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization
Motivation         Model     SIMP         Objective Functions         Numeriacal Results           Conclusions



 Coupling to Acoustic Domain




             • Discretization of Ωair via cair = 343 m/s = λac f
             • Dimension of Ωair determined by acoustic far field
             • Fine discretization of Ωpiezo and Ωplate
             • Non-matching grids Ωplate → Ωair-fine and Ωair-fine → Ωair-coarse
                                    Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization
Motivation    Model     SIMP         Objective Functions         Numeriacal Results           Conclusions



 Coupled Piezoelectric-Mechanical-Acoustic PDEs


         PDEs:        ρm u − B T [cE ]Bu + [e]T φ
                         ¨                                            = 0         in Ωpiezo

                               B T [e]Bu − [           S
                                                           ] φ        = 0         in Ωpiezo
                                         ρm u − B T [c]Bu = 0 in Ωplate
                                            ¨
                                              1 ¨
                                                 ψ − ∆ψ = 0 in Ωair
                                              c2
                                             1 ¨
                                               ψ − A2 ψ = 0 in ΩPML
                                            c2

                                                ∂ψ
        Interface conditions: n · u = −
                                  ˙                    on Γiface × (0, T )
                                                ∂n
                                   σn                ˙
                                             = −n ρf ψ      on Γiface × (0, T )

      Full 3D FEM formulation (quadratic / linear with softening)
                               Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization
Motivation         Model       SIMP          Objective Functions         Numeriacal Results           Conclusions



 Solid Isotropic Material with Penalization


             • Sample reference: K¨gl, Silva; 2005
                                  o
             • Design vector ρ (pseudo density )
             • ρ = (ρ1 . . . ρne )T is piecewise constant within elements
             • ρe ∈ [ρmin : 1] from void (ρmin ) to full (1) material
             • Replace piezoelectric material constants:

                [cE ] = ρe [cE ],
                  e                   ρm = ρe ρm ,
                                       e                   [ee ] = ρe [e],         [εS ] = ρe [εS ]
                                                                                     e

             • Intermediate values are non-physical!
                  • Small ρ → low stiffness
                  • Large ρ → high piezoelectric coupling




                                       Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization
Motivation         Model          SIMP         Objective Functions         Numeriacal Results           Conclusions



 Linear Systems
             • Piezoelectric-mechanical-acoustic coupling

                 ¯
                                                                          
                 Sψ ψ        Cψ um              0             ¯     0  
                                                                          0
               CT           Sum um   Sum up (ρ)            ψ(ρ)    0
                ψ um                                       um (ρ)  0 
                           T                                       = 
                0
                          Sum up (ρ) Sup up (ρ) Kup φ (ρ)   up (ρ)   0 
                                                           
                                        T                      φ(ρ)      ¯
                                                                         qφ
                   0           0      Kup φ (ρ) −Kφ φ (ρ)

             • Piezoelectric-mechanical laminate
                   
                       Su m u m˜
                               Sum up (ρ)      0
                                                               
                                                       um (ρ)        0
                   ˜T         ˜ up up (ρ) Ku φ (ρ)   up (ρ)  =  0 
                                           ˜
                   Sum up (ρ) S              p     
                        0      ˜ T φ (ρ) −Kφφ (ρ)
                               Kup           ˜          φ(ρ)        ¯
                                                                    qφ

             • Harmonic excitation: S(ω) = K + jω(αK K + αM M) − ω 2 M
                           ˜
             • Short form: S u = f
                                         Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization
Motivation         Model     SIMP          Objective Functions         Numeriacal Results           Conclusions



 Sound Power

             • What one wants to optimize

                                              1                 ∗
                                    Pac =                 Re{p vn } dΓ
                                              2    Γopt

               Sound power Pac , pressure p, normal particle velocity vn
             • Acoustic impedance Z

                                                          p(x)
                                           Z (x) =
                                                          vn (x)
             • Z can bee assumed to be constant on Γopt
                 • For plane waves
                 • In the acoustic far field (some wavelengths)


                                     Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization
Motivation            Model   SIMP         Objective Functions         Numeriacal Results           Conclusions



 Optimizing for the Sound Power

      Use                   ∗                             ¯
                      Re{p vn } dΓ with Z = p/vn and u = (ψ um up φ)T
               Γopt

      Optimization framework
             • J = uT L u∗ with L selecting from u ≈ Sigmund, Jensen; 2003

                ∂J            ∂S
                    = 2 Re{λT     u} where λ solves                          ST λ = −L u∗
                ∂ρe           ∂ρe
      Acoustic optimization assume Z constant on Γopt
                                                       ˙
        • Jac = ω 2 ψ T L ψ ∗ with vn = p/Z and p = ρf ψ
             • ≈ D¨hring, Jensen, Sigmund; 2008
                  u
      Structural optimization assume Z constant on Γiface
             • Jst = ω 2 um T L u∗ with p = vn Z and v = u
                                 m                       ˙
             • ≈ Du, Olhoff; 2007 (approximation is discussed!)

                                     Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization
Motivation         Model     SIMP         Objective Functions         Numeriacal Results           Conclusions



 Eigenfrequency Analysis
      We want resonating structures, so consider eigenmodes




             (a) 1. mode       (b) 2./3. m             (c) 4. mode                (d) 5. mode




             (e) 6. mode       (f) 7./8. m            (g) 9./10. m               (h) 11. mode

             • Only (a) and (e) can be excited electrically
             • Acoustic short circuits for all patterns but (a) and (e)
                                    Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization
Motivation                                 Model   SIMP         Objective Functions         Numeriacal Results           Conclusions



 Structural Optimization

                              • Objective function Jst = ω 2 um T L u∗
                                                                     m
                              • Several hundred mono-frequent optimizations
       Objective Function (m /s )
      2 2




                                       5
                                    10
                                       4
                                    10
                                    103
                                       2
                                    10
                                       1
                                    10                                                    Jst (max Jst)
                                                                                          Jst (max Jac)
                                    100                                           Jst (Sweep full plate)
                                    10-1
                                           0       500             1000         1500                        2000
                                                               Target Frequency (Hz)

                              • Robust shifting/ creation of resonances
                              • KKT-condition often not reached

                                                          Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization
Motivation                              Model   SIMP         Objective Functions         Numeriacal Results            Conclusions



 Validate Acoustic Approximation

                             • Validate Jac = ω 2 ψ T L ψ ∗ against Γ Re{p vn } dΓ
                                                                            ∗
                                                                     opt

                             • Use one mesh (23 cm height)
      Objective Function (Pa2)




                                    7                                                                              0




                                                                                                                          Acoustic Power (W)
                                 10                                                                             10
                                 106                                                                            10-1
                                 105                                                                            10-2
                                 104                                                                            10-3
                                 103                                                                            10-4
                                 102                                                                            10-5
                                 101                                 Jac (Sweep full plate)                     10-6
                                 100                                 Pac (Sweep full plate)                     10-7
                                 10-1                                                                           10-8
                                        0       500        1000        1500                    2000
                                                       Target Frequency (Hz)

                             • Good approximation above 1000 Hz (0.64 wave length)
                             • Two antiresonances (acoustic short circuits)
                             • Approximation detects only one antiresonance!
                                                       Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization
Motivation                              Model   SIMP         Objective Functions         Numeriacal Results            Conclusions



 Acoustic Optimization

                             • Objective function Jac = ω 2 ψ T L ψ ∗
      Objective Function (Pa2)




                                    7                                                                              0




                                                                                                                          Acoustic Power (W)
                                 10                                                                             10
                                 106                                                                            10-1
                                 105                                                                            10
                                                                                                                  -2
                                 104                                                                            10-3
                                    3
                                 10                                                                               -4
                                 102                                        Jac (max Jac)                       10
                                 101                                        Pac (max Jst)                       10-5
                                 100                                 Jac (Sweep full plate)                     10-6
                                 10-1                                                                           10-7
                                        0       500        1000        1500                    2000
                                                       Target Frequency (Hz)

                             • Jac avoids acoustic short circuits
                             • Structural approximation unfeasible (above first mode)
                             • Note Jac approximation unfeasible below 1000 Hz


                                                       Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization
Motivation          Model            SIMP               Objective Functions              Numeriacal Results          Conclusions



 Grayness and Volumes


             • Remember No penalization, no volume constraint
             • Normalized grayness: g (ρ) = 4 Ω (1 − ρ) ρ dx,
       0.3                                                    1
                                          g(Jst)                                                  Vol(Jst)
                                          g(Jac)             0.9                                  Vol(Jac)
      0.25
                                                             0.8
       0.2                                                   0.7
      0.15                                                   0.6
                                                             0.5
       0.1
                                                             0.4
      0.05
                                                             0.3
         0                                                   0.2
             0      500     1000       1500      2000              0        500      1000       1500      2000
                 Grayness over Target Frequenzy (Hz)                       Volume over Target Frequenzy (Hz)


             • Good avoidance of grayness
             • Optimal volumes 25% . . . 100%


                                               Fabian Wein             Acoustic Piezoelectric Loudspeaker Optimization
Motivation        Model   SIMP         Objective Functions         Numeriacal Results           Conclusions



 Selected Results




             (a) 565 Hz     (b) 575 Hz               (c) 875 Hz                 (d) 975 Hz




             (e) 985 Hz    (f) 1405 Hz              (g) 1585 Hz                (h) 2160 Hz


      Legend: black = full material; white = void material

                                 Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization
Motivation   Model       SIMP         Objective Functions         Numeriacal Results           Conclusions



 Experimental Prototype (200 µm Piezoceramic)




                (a) Original          (b) Sputter                  (c) Lasing




                (d) Temper            (e) Polarize              (f) Prototype

                                Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization
Motivation         Model     SIMP         Objective Functions         Numeriacal Results           Conclusions



 Conclusions and Future Work


      Conclusions
             • Structural approximation does not handle acoustic short
               circuits
             • Piezoelectric-mechanical laminate allows optimization . . .
                 • without penalization and regularization
                 • without constraints (especially volume)
      Future Work
             • Use Taylor-Hood elements to compute p and v simultanuously
             • Find suitable structural approximation
             • Create more resonance patterns




                                    Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization
Motivation   Model         SIMP         Objective Functions         Numeriacal Results           Conclusions



 The End


                     Thank you for listening and for questions!




                                  Fabian Wein      Acoustic Piezoelectric Loudspeaker Optimization

More Related Content

Viewers also liked

Chapter 7 stepper motor
Chapter 7 stepper motorChapter 7 stepper motor
Chapter 7 stepper motorHattori Sidek
 
Digital Architecture - Modern Technologies in Architecture
Digital Architecture - Modern Technologies in ArchitectureDigital Architecture - Modern Technologies in Architecture
Digital Architecture - Modern Technologies in ArchitectureÇelik Nimani
 
Types of microphones
Types of microphonesTypes of microphones
Types of microphonesJason Nix
 
electromagnetic spectrum & its uses
 electromagnetic spectrum & its uses  electromagnetic spectrum & its uses
electromagnetic spectrum & its uses Tarun Joshi
 
Creating a Modern Data Architecture for Digital Transformation
Creating a Modern Data Architecture for Digital TransformationCreating a Modern Data Architecture for Digital Transformation
Creating a Modern Data Architecture for Digital TransformationMongoDB
 
Powerpoint presentation on internet and its uses
Powerpoint presentation on internet and its usesPowerpoint presentation on internet and its uses
Powerpoint presentation on internet and its usessumitsc
 
Introduction to Computers
Introduction to ComputersIntroduction to Computers
Introduction to ComputersSamudin Kassan
 

Viewers also liked (10)

Chapter 7 stepper motor
Chapter 7 stepper motorChapter 7 stepper motor
Chapter 7 stepper motor
 
Digital Architecture - Modern Technologies in Architecture
Digital Architecture - Modern Technologies in ArchitectureDigital Architecture - Modern Technologies in Architecture
Digital Architecture - Modern Technologies in Architecture
 
Types of microphones
Types of microphonesTypes of microphones
Types of microphones
 
electromagnetic spectrum & its uses
 electromagnetic spectrum & its uses  electromagnetic spectrum & its uses
electromagnetic spectrum & its uses
 
Creating a Modern Data Architecture for Digital Transformation
Creating a Modern Data Architecture for Digital TransformationCreating a Modern Data Architecture for Digital Transformation
Creating a Modern Data Architecture for Digital Transformation
 
Internet
InternetInternet
Internet
 
Powerpoint presentation on internet and its uses
Powerpoint presentation on internet and its usesPowerpoint presentation on internet and its uses
Powerpoint presentation on internet and its uses
 
Final Year Project
Final Year ProjectFinal Year Project
Final Year Project
 
100 Stats About Social Media Around the World
100 Stats About Social Media Around the World100 Stats About Social Media Around the World
100 Stats About Social Media Around the World
 
Introduction to Computers
Introduction to ComputersIntroduction to Computers
Introduction to Computers
 

Similar to Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Topology Optimization Using the SIMP Method
Topology Optimization Using the SIMP MethodTopology Optimization Using the SIMP Method
Topology Optimization Using the SIMP MethodFabian Wein
 
Semi-Infinite and Robust Optimization
Semi-Infinite and Robust OptimizationSemi-Infinite and Robust Optimization
Semi-Infinite and Robust OptimizationSSA KPI
 
Protein Folding Prediction
Protein Folding PredictionProtein Folding Prediction
Protein Folding Predictionwarrenyates
 
Understand Of Linear Algebra
Understand Of Linear AlgebraUnderstand Of Linear Algebra
Understand Of Linear AlgebraEdward Yoon
 
אגרות חוב
אגרות חובאגרות חוב
אגרות חובasafnovak
 
אגרות חוב
אגרות חובאגרות חוב
אגרות חובbarm
 
Lesson 12: Linear Independence
Lesson 12: Linear IndependenceLesson 12: Linear Independence
Lesson 12: Linear IndependenceMatthew Leingang
 
Elastic Modulus And Residual Stress Of Thin Films
Elastic Modulus And Residual Stress Of Thin FilmsElastic Modulus And Residual Stress Of Thin Films
Elastic Modulus And Residual Stress Of Thin Filmserikgherbert
 
11X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 211X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 2Nigel Simmons
 
Confrontation of symmetries
Confrontation of symmetriesConfrontation of symmetries
Confrontation of symmetriesTapio Salminen
 
Further Advanced Methods from Mathematical Optimization
Further Advanced Methods from Mathematical OptimizationFurther Advanced Methods from Mathematical Optimization
Further Advanced Methods from Mathematical OptimizationSSA KPI
 

Similar to Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain (12)

Topology Optimization Using the SIMP Method
Topology Optimization Using the SIMP MethodTopology Optimization Using the SIMP Method
Topology Optimization Using the SIMP Method
 
Semi-Infinite and Robust Optimization
Semi-Infinite and Robust OptimizationSemi-Infinite and Robust Optimization
Semi-Infinite and Robust Optimization
 
Protein Folding Prediction
Protein Folding PredictionProtein Folding Prediction
Protein Folding Prediction
 
Understand Of Linear Algebra
Understand Of Linear AlgebraUnderstand Of Linear Algebra
Understand Of Linear Algebra
 
אגרות חוב
אגרות חובאגרות חוב
אגרות חוב
 
אגרות חוב
אגרות חובאגרות חוב
אגרות חוב
 
אגרות חוב
אגרות חובאגרות חוב
אגרות חוב
 
Lesson 12: Linear Independence
Lesson 12: Linear IndependenceLesson 12: Linear Independence
Lesson 12: Linear Independence
 
Elastic Modulus And Residual Stress Of Thin Films
Elastic Modulus And Residual Stress Of Thin FilmsElastic Modulus And Residual Stress Of Thin Films
Elastic Modulus And Residual Stress Of Thin Films
 
11X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 211X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 2
 
Confrontation of symmetries
Confrontation of symmetriesConfrontation of symmetries
Confrontation of symmetries
 
Further Advanced Methods from Mathematical Optimization
Further Advanced Methods from Mathematical OptimizationFurther Advanced Methods from Mathematical Optimization
Further Advanced Methods from Mathematical Optimization
 

More from Fabian Wein

Design of a solar air heater using feature-mapping methods
Design of a solar air heater using feature-mapping methodsDesign of a solar air heater using feature-mapping methods
Design of a solar air heater using feature-mapping methodsFabian Wein
 
Parametric Shape Optimization of Lattice Structures for Phononic Band Gaps
Parametric Shape Optimization of Lattice Structures for Phononic Band GapsParametric Shape Optimization of Lattice Structures for Phononic Band Gaps
Parametric Shape Optimization of Lattice Structures for Phononic Band GapsFabian Wein
 
Interpretation of local oriented microstructures by a streamline approach to ...
Interpretation of local oriented microstructures by a streamline approach to ...Interpretation of local oriented microstructures by a streamline approach to ...
Interpretation of local oriented microstructures by a streamline approach to ...Fabian Wein
 
Local Optimal Polarization of Piezoelectric Material
Local Optimal Polarization of Piezoelectric MaterialLocal Optimal Polarization of Piezoelectric Material
Local Optimal Polarization of Piezoelectric MaterialFabian Wein
 
Self-Penalization in Topology Optimization
Self-Penalization in Topology OptimizationSelf-Penalization in Topology Optimization
Self-Penalization in Topology OptimizationFabian Wein
 
Acoustic near field topology optimization of a piezoelectric loudspeaker
Acoustic near field topology optimization of a piezoelectric loudspeakerAcoustic near field topology optimization of a piezoelectric loudspeaker
Acoustic near field topology optimization of a piezoelectric loudspeakerFabian Wein
 
ECCM 2010 in Paris
ECCM 2010 in ParisECCM 2010 in Paris
ECCM 2010 in ParisFabian Wein
 
Acoustic near field topology optimization of a piezoelectric loudspeaker
Acoustic near field topology optimization of a piezoelectric loudspeakerAcoustic near field topology optimization of a piezoelectric loudspeaker
Acoustic near field topology optimization of a piezoelectric loudspeakerFabian Wein
 

More from Fabian Wein (9)

Design of a solar air heater using feature-mapping methods
Design of a solar air heater using feature-mapping methodsDesign of a solar air heater using feature-mapping methods
Design of a solar air heater using feature-mapping methods
 
Parametric Shape Optimization of Lattice Structures for Phononic Band Gaps
Parametric Shape Optimization of Lattice Structures for Phononic Band GapsParametric Shape Optimization of Lattice Structures for Phononic Band Gaps
Parametric Shape Optimization of Lattice Structures for Phononic Band Gaps
 
Interpretation of local oriented microstructures by a streamline approach to ...
Interpretation of local oriented microstructures by a streamline approach to ...Interpretation of local oriented microstructures by a streamline approach to ...
Interpretation of local oriented microstructures by a streamline approach to ...
 
Local Optimal Polarization of Piezoelectric Material
Local Optimal Polarization of Piezoelectric MaterialLocal Optimal Polarization of Piezoelectric Material
Local Optimal Polarization of Piezoelectric Material
 
Self-Penalization in Topology Optimization
Self-Penalization in Topology OptimizationSelf-Penalization in Topology Optimization
Self-Penalization in Topology Optimization
 
Acoustic near field topology optimization of a piezoelectric loudspeaker
Acoustic near field topology optimization of a piezoelectric loudspeakerAcoustic near field topology optimization of a piezoelectric loudspeaker
Acoustic near field topology optimization of a piezoelectric loudspeaker
 
ECCM 2010 in Paris
ECCM 2010 in ParisECCM 2010 in Paris
ECCM 2010 in Paris
 
Acoustic near field topology optimization of a piezoelectric loudspeaker
Acoustic near field topology optimization of a piezoelectric loudspeakerAcoustic near field topology optimization of a piezoelectric loudspeaker
Acoustic near field topology optimization of a piezoelectric loudspeaker
 
Eccm 10
Eccm 10Eccm 10
Eccm 10
 

Recently uploaded

80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...Nguyen Thanh Tu Collection
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxDr. Sarita Anand
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17Celine George
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxUmeshTimilsina1
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxPooja Bhuva
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 

Recently uploaded (20)

80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 

Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

  • 1. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain F. Wein, M. Kaltenbacher, F. Schury, E. B¨nsch, G. Leugering a WCSMO-8 03. June 2009 Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 2. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Motivation Overview • Ersatz material/ “SIMP” optimization • Piezoelectric-mechanical laminate coupled with acoustics • Piezoelectric layer is design domain Topics • Acoustic optimization vs. structural approximation • Self-penalized piezoelectric optimization without . . . • penalization (e.g. RAMP) • volume constraint • regularization (filtering) Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 3. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Piezoelectric-Mechanical Laminate Bending due to inverse piezoelectric effect Piezoelectric layer: PZT-5A, 5 cm×5 cm, 50 µm thick, ideal electrodes Mechanicial layer: Aluminum, 5 cm×5 cm, 100 µm thick, no glue layer Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 4. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Coupling to Acoustic Domain • Discretization of Ωair via cair = 343 m/s = λac f • Dimension of Ωair determined by acoustic far field • Fine discretization of Ωpiezo and Ωplate • Non-matching grids Ωplate → Ωair-fine and Ωair-fine → Ωair-coarse Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 5. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Coupled Piezoelectric-Mechanical-Acoustic PDEs PDEs: ρm u − B T [cE ]Bu + [e]T φ ¨ = 0 in Ωpiezo B T [e]Bu − [ S ] φ = 0 in Ωpiezo ρm u − B T [c]Bu = 0 in Ωplate ¨ 1 ¨ ψ − ∆ψ = 0 in Ωair c2 1 ¨ ψ − A2 ψ = 0 in ΩPML c2 ∂ψ Interface conditions: n · u = − ˙ on Γiface × (0, T ) ∂n σn ˙ = −n ρf ψ on Γiface × (0, T ) Full 3D FEM formulation (quadratic / linear with softening) Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 6. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Solid Isotropic Material with Penalization • Sample reference: K¨gl, Silva; 2005 o • Design vector ρ (pseudo density ) • ρ = (ρ1 . . . ρne )T is piecewise constant within elements • ρe ∈ [ρmin : 1] from void (ρmin ) to full (1) material • Replace piezoelectric material constants: [cE ] = ρe [cE ], e ρm = ρe ρm , e [ee ] = ρe [e], [εS ] = ρe [εS ] e • Intermediate values are non-physical! • Small ρ → low stiffness • Large ρ → high piezoelectric coupling Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 7. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Linear Systems • Piezoelectric-mechanical-acoustic coupling ¯   Sψ ψ Cψ um 0  ¯ 0   0 CT Sum um Sum up (ρ)  ψ(ρ) 0  ψ um  um (ρ)  0   T  =   0  Sum up (ρ) Sup up (ρ) Kup φ (ρ)   up (ρ)   0   T φ(ρ) ¯ qφ 0 0 Kup φ (ρ) −Kφ φ (ρ) • Piezoelectric-mechanical laminate  Su m u m˜ Sum up (ρ) 0     um (ρ) 0 ˜T ˜ up up (ρ) Ku φ (ρ)   up (ρ)  =  0  ˜ Sum up (ρ) S p  0 ˜ T φ (ρ) −Kφφ (ρ) Kup ˜ φ(ρ) ¯ qφ • Harmonic excitation: S(ω) = K + jω(αK K + αM M) − ω 2 M ˜ • Short form: S u = f Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 8. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Sound Power • What one wants to optimize 1 ∗ Pac = Re{p vn } dΓ 2 Γopt Sound power Pac , pressure p, normal particle velocity vn • Acoustic impedance Z p(x) Z (x) = vn (x) • Z can bee assumed to be constant on Γopt • For plane waves • In the acoustic far field (some wavelengths) Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 9. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Optimizing for the Sound Power Use ∗ ¯ Re{p vn } dΓ with Z = p/vn and u = (ψ um up φ)T Γopt Optimization framework • J = uT L u∗ with L selecting from u ≈ Sigmund, Jensen; 2003 ∂J ∂S = 2 Re{λT u} where λ solves ST λ = −L u∗ ∂ρe ∂ρe Acoustic optimization assume Z constant on Γopt ˙ • Jac = ω 2 ψ T L ψ ∗ with vn = p/Z and p = ρf ψ • ≈ D¨hring, Jensen, Sigmund; 2008 u Structural optimization assume Z constant on Γiface • Jst = ω 2 um T L u∗ with p = vn Z and v = u m ˙ • ≈ Du, Olhoff; 2007 (approximation is discussed!) Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 10. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Eigenfrequency Analysis We want resonating structures, so consider eigenmodes (a) 1. mode (b) 2./3. m (c) 4. mode (d) 5. mode (e) 6. mode (f) 7./8. m (g) 9./10. m (h) 11. mode • Only (a) and (e) can be excited electrically • Acoustic short circuits for all patterns but (a) and (e) Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 11. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Structural Optimization • Objective function Jst = ω 2 um T L u∗ m • Several hundred mono-frequent optimizations Objective Function (m /s ) 2 2 5 10 4 10 103 2 10 1 10 Jst (max Jst) Jst (max Jac) 100 Jst (Sweep full plate) 10-1 0 500 1000 1500 2000 Target Frequency (Hz) • Robust shifting/ creation of resonances • KKT-condition often not reached Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 12. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Validate Acoustic Approximation • Validate Jac = ω 2 ψ T L ψ ∗ against Γ Re{p vn } dΓ ∗ opt • Use one mesh (23 cm height) Objective Function (Pa2) 7 0 Acoustic Power (W) 10 10 106 10-1 105 10-2 104 10-3 103 10-4 102 10-5 101 Jac (Sweep full plate) 10-6 100 Pac (Sweep full plate) 10-7 10-1 10-8 0 500 1000 1500 2000 Target Frequency (Hz) • Good approximation above 1000 Hz (0.64 wave length) • Two antiresonances (acoustic short circuits) • Approximation detects only one antiresonance! Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 13. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Acoustic Optimization • Objective function Jac = ω 2 ψ T L ψ ∗ Objective Function (Pa2) 7 0 Acoustic Power (W) 10 10 106 10-1 105 10 -2 104 10-3 3 10 -4 102 Jac (max Jac) 10 101 Pac (max Jst) 10-5 100 Jac (Sweep full plate) 10-6 10-1 10-7 0 500 1000 1500 2000 Target Frequency (Hz) • Jac avoids acoustic short circuits • Structural approximation unfeasible (above first mode) • Note Jac approximation unfeasible below 1000 Hz Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 14. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Grayness and Volumes • Remember No penalization, no volume constraint • Normalized grayness: g (ρ) = 4 Ω (1 − ρ) ρ dx, 0.3 1 g(Jst) Vol(Jst) g(Jac) 0.9 Vol(Jac) 0.25 0.8 0.2 0.7 0.15 0.6 0.5 0.1 0.4 0.05 0.3 0 0.2 0 500 1000 1500 2000 0 500 1000 1500 2000 Grayness over Target Frequenzy (Hz) Volume over Target Frequenzy (Hz) • Good avoidance of grayness • Optimal volumes 25% . . . 100% Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 15. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Selected Results (a) 565 Hz (b) 575 Hz (c) 875 Hz (d) 975 Hz (e) 985 Hz (f) 1405 Hz (g) 1585 Hz (h) 2160 Hz Legend: black = full material; white = void material Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 16. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Experimental Prototype (200 µm Piezoceramic) (a) Original (b) Sputter (c) Lasing (d) Temper (e) Polarize (f) Prototype Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 17. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Conclusions and Future Work Conclusions • Structural approximation does not handle acoustic short circuits • Piezoelectric-mechanical laminate allows optimization . . . • without penalization and regularization • without constraints (especially volume) Future Work • Use Taylor-Hood elements to compute p and v simultanuously • Find suitable structural approximation • Create more resonance patterns Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization
  • 18. Motivation Model SIMP Objective Functions Numeriacal Results Conclusions The End Thank you for listening and for questions! Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization