SlideShare a Scribd company logo
1 of 32
Download to read offline
1 
MEDICAL CYTOGENETICS 
edited by 
Hon Fong L. Mark 
Brown University School of Medicine 
Rhode Island Department of Health 
Providence, and 
KRAM Corporation 
Barrington, Rhode Island 
Summarized from chapters 2 and 3
2 
Contents 
INTRODUCTION ............................................................................................................................... 4 
NORMAL VARIATIONS ..................................................................................................................... 7 
SHAPES OF CHROMOSOMES ........................................................................................................... 7 
Other Chromosome Attributes.................................................................................................... 8 
CHROMOSOME BANDING AND IDENTIFICATION ............................................................................ 9 
Chromosome Regions and Band Designations ............................................................................ 9 
Karyotype Descriptions ............................................................................................................. 19 
NUMERICAL ABNORMALITIES OF CHROMOSOMES ...................................................................... 20 
A. Sex Chromosome Aneuploidies ............................................................................................ 20 
1. Constitutional Sex Chromosome Aneuploidies ................................................................. 20 
2. Acquired Sex Chromosome Aneuploidies ......................................................................... 20 
B. Autosome Aneuploidies ........................................................................................................ 21 
C. Mosaics and Chimeras ........................................................................................................... 21 
D. Uniparental Disomy (upd) ..................................................................................................... 22 
STRUCTURAL CHROMOSOME ABNORMALITIES ............................................................................ 23 
A. Additional Material, Origin Unknown ................................................................................... 23 
B. Deletion ................................................................................................................................. 24 
1. Terminal Deletions ............................................................................................................ 24 
2. interstitial Deletions .......................................................................................................... 24 
C. Derivative and Recombinant Chromosomes ......................................................................... 24 
1. Derivative Chromosomes .................................................................................................. 24 
2. Recombinant Chromosomes ............................................................................................. 25 
D. Insertions............................................................................................................................... 25 
1 Insertion Within a Chromosome ........................................................................................ 26 
2. Insertion Involving Two Chromosomes ............................................................................. 26 
E. Inversions ............................................................................................................................... 26 
1. Paracentric Inversion ......................................................................................................... 26 
2. Pericentric Inversion .......................................................................................................... 26 
F. Isochromosomes .................................................................................................................... 26 
1. lsodicentric Chromosomes ................................................................................................ 27 
G. Marker Chromosomes .......................................................................................................... 27
3 
H. Ring Chromosomes ............................................................................................................... 27 
I. Translocations ........................................................................................................................ 27 
1. Reciprocal Translocations .................................................................................................. 28 
2. Whole-Arm Translocations ................................................................................................ 29 
3. Robertsonian Translocations ............................................................................................. 29 
NEOPLASM, CLONES, AND CLONAL EVOLUTION........................................................................... 30 
A. Clones .................................................................................................................................... 30 
1. Mainline ............................................................................................................................. 31 
2. Stemline and Sideline ........................................................................................................ 31 
B. Clonal Evolution-Related Clones ........................................................................................... 31 
C. Unrelated Clones ................................................................................................................... 31
4 
INTRODUCTION 
The history of human cytogenetics began with the discovery of the correct diploid 
chromosome number (46) in man. 
Of the 46 chromosomes in a normal human somatic cell, 44 are autosomes and 2 are sex 
chromosomes (XX in a female and XY in a male). 
A. B. 
Figure 1: (a) The normal human female chromosome complement. (b) The normal 
human male chromosome complement. 
The normal human chromosome complement is shown in Fig. 1a (female) and Fig. 1b 
(male). This orderly display of an organism's chromosomes by shape, size (starting with 
the largest chromosome), and banding pattern is called a karyotype. Present karyotypes 
are GTG-banded karyotypes, derived from metaphases on slides that are treated with 
trypsin and stained with Giemsa, a Romanowsky stain, to produce a series of distinctive 
transverse bands spaced along the entire chromosome complement (the G-banding 
pattern). Banding is used to identify individual chromosomes unambiguously. It is 
especially critical for distinguishing chromosomes of similar sizes and shapes. The 
different kinds of banding and the various methods employed to induce banding are 
discussed later. 
Prior to the banding era, chromosomes from nonbanded (or solid-stained) metaphase 
cells were karyotyped based on size and position of the centromere. Such a nonbanded 
karyotype is shown in Fig. 2. During the prebanding era, other features, such as prominent 
satellites and secondary constrictions, were often utilized as well.
5 
Figure 2: Nonbanded male karyotype. 
With the advent of banding in the late 1960s and early 1970s, each chromosome in the human genome could be identified unambiguously. Based on the unique chromosome bands, cytogeneticists all over the world were able to identify abnormalities in the structure as well as the number of chromosomes. 
It has been observed that the uniform initial reaction of trainees, when they are handed the first metaphase for karyotyping, is that the task is nearly impossible to perform: “One chromosome looks just like another.’’ Proficiency in manual karyotyping needs diligence and practice. Table 1 gives a tested protocol for identifying each and every chromosome on a GTG-banded metaphase. 
With the availability of instantaneous automated karyotyping system it is usually easier to perform semimanual karyotyping via instructions of the technologists than to let the computer do the job entirely by itself and then to correct its many mistakes. 
Table1: Morphologic Characteristics of Individual Human Chromosomes 
Chromosome 
Group 
Morphologic characteristics 
1 
A 
The largest metacentric chromosome. 
2 
A 
The largest submetacentric chromosome. 
3 
A 
The second largest metacentric chromosome 
4 
B 
A large submetacentric chromosome. Its arm ratio is approximately 4: 1. It has a small dark band below the centromere. 
5 
C 
It is the same size and shape as chromosome 4. It has a large dark band in the middle of the long arm. 
6 
C 
The largest of the C group. It has a submedian centromere and a large light area in the middle of the short arm.
6 
7 
C 
A medium-sized submetacentric chromosome. It has two dark bands in the long arm and a dark band near the tip of the short arm. 
8 
C 
A medium-sized submetacentric chromosome. It is the least distinguishable of the C group. It has a dark band near the end of the long arm. 
9 
C 
It looks similar to chromosome 7, but is smaller and has less distinct bands. A secondary constriction can sometimes be seen near the centromere on the long arm of chromosome 9. 
10 
C 
It has three dark bands in the long arm. The band near the centromere is much darker than the other two. 
11 
C 
It has a large dark band in the middle of the long arm. 
12 
C 
It has a large dark band in the middle of the long arm. The short arm is noticeably shorter than the short arm of chromosome 11. 
13 
D 
An acrocentric chromosome with a dark lower half. 
14 
D 
An acrocentric chromosome. It has two dark bands: one near the centromere and the other near the end of the long arm. 
15 
D 
An acrocentric chromosome. It is the lightest stained of the D group. It has a small dark band in the middle of the long arm. 
16 
E 
The most metacentric of the E group Chromosomes. It is the same size as the D group. It has a dark band at the Centromere. 
17 
E 
It is the same size as chromosome 16, but is more submetacentric. It has a large light area in the long arm and a dark band at the end. 
18 
E 
It is slightly smaller than chromosome 17. It is mostly dark. It has an occasional noticeably dark band near the centromere. 
19 
F 
A small metacentric chromosome with a dark band at the centromere. 
20 
F 
A small metacentric chromosome that is grayish. 
21 
G 
A small acrocentric chromosome with a dark band 
22 
G 
A small acrocentric chromosome that is grayish. 
X 
C 
It is almost as large as chromosome 6. It has two distinguishing dark bands: one in the middle of the short arm and the other in the long arm. 
Y 
G 
Although usually the same size as chromosomes 21 and 22, it does not possess satellites and is morphologically distinct.
7 
NORMAL VARIATIONS 
Normal variations are called polymorphic variants, polymorphisms, or heteromorphic variants. Some of the uses of these cytogenetically distinguishable normal variants include the following: 
 Use as markers for population studies. 
 Determination of the origin of nondisjunction. 
 Paternity determination. 
 Detection of maternal contamination in amniotic fluid cultures. 
 Establishment of the origin of ovarian teratomas. 
 Determination of the zygosity of twins. 
 Determination of the origin of certain deleted or translocated chromosomes. 
 In follow-up studies in bone marrow transplantation (BMT), although the Y chromosome may be a better marker in sex-mismatched BMTs. 
Examples of polymorphisms include the large dark heterochromatic block below the centromere in the long arm of chromosome 1 that varies in size from individual to individual but is constant from cell to cell within an individual. Another human chromosomal polymorphism is the pericentric inversion of chromosome 9. 
SHAPES OF CHROMOSOMES 
The shapes of chromosomes are illustrated in Fig. 2. 
 Metacentric chromosomes have centromeres that lie near the centers of the chromosomes. 
 Submetacentric chromosomes contain centromeres in off-center locations on the chromosomes. The short arm of the chromosome is called p (for petit) arm, whereas the long arm is called the q arm (Fig. 4). 
 Acrocentric chromosomes have very short p arms. These chromosomes usually end in structures called satellites, which are connected to the main structure of the chromosome by stalks. 
 Telocentrics are chromosomes that lack short arms. These chromosomes do not exist in humans. 
Chromosomes are grouped by size and position of the centromere. For historic reasons, however, chromosome 21 is shorter than chromosome 22. The human Y chromosome is similar in size and shape to chromosomes 21 and 22, but it lacks satellites and has consistent, albeit subtle, characteristic features such as morphology of the long arm.
8 
Figure 3: Shapes of chromosomes. 
Figure 4: Chromosome landmarks. 
Other Chromosome Attributes 
The modal chromosome number is the number of chromosomes per cell most often 
encountered in the metaphases scored from a sample. The modal chromosome number 
in a normal human individual is the diploid number of 46. Due to artifacts of the 
technique, chromosomes are sometimes lost on the slide. This is termed random loss. An 
International System for Human Cytogenetic Nomenclature defines random loss as the 
loss of the same chromosome in no more than two metaphase cells. Loss of a particular 
chromosome is considered to be significant if it is encountered in three or more cells. 
The arm ratio, q/p, is the length of the long arm divided by the length of the short arm. 
The centromere index, expressed as a percentage, is the length of the short arm divided 
by the total length of the chromosome, p/(p + q). The relative length, expressed as a 
percentage, is the length of that individual chromosome divided by the total haploid 
lengths of all the chromosomes in the human genome. Alternative approaches to 
estimating relative lengths have been proposed in the literature.
9 
When chromosomes are stained with a chromatin stain, such as Giemsa or Wright’s stain, they do not produce bands. Nevertheless, they can be classified into 7 groups based on the size and centromere position. The letters A-G were assigned to the groups. 
Group A (1 -3) 
Large metacentric or near metacentric chromosomes distinguishable from one another by the size and the position of the centromere 
Group B (4-5) 
Largest of the submetacentric chromosomes 
Group C (6-12 and X) 
Medium-sized submetacentric chromosomes (most difficult to distinguish from one another) 
Group D (13-15) 
Larger acrocentric chromosomes with usually polymorphic satellites on the short arms 
Group E (16-18) 
Shorter metacentric or submetacentric chromosomes 
Group F (19-20) 
Smallest of the metacentric chromosomes 
Group G (21-22 and Y) 
Smaller acrocentric chromosomes usually with polymorphic satellites; Y chromosome can be distinguished from the rest of the G group chromosomes by its lack of satellites and usually darkly stained heterochromatic long arm 
CHROMOSOME BANDING AND IDENTIFICATION 
When chromosome preparations are treated with dilute solutions of proteolytic enzymes (trypsin, pepsin, etc.) or salt solutions, (2XSSC) and treated with a chromatin stain, such as Giemsa, there appeared alternating dark and lightly stained demarcations called bands which can be seen along the length of each chromosome. The banding patterns produced are unique to each chromosome pair, thus enabling the identification of individual chromosomes as well as their regions. Methods commonly used to produce these discriminative banding patterns include Giemsa or G-banding, quinacrine mustard or Q- banding, reverse or R-banding, and constitutive heterochromatin or C-banding, each with its own attributes. The most frequently used methods for routine cytogenetic analysis are the G- and Q-bands. R-banding and C-banding are occasionally used to delineate specific abnormalities. 
Chromosome Regions and Band Designations 
The recommendations of “Paris Conference (1971): Standardization in Human Cytogenetics’’ provided a diagrammatic representation of banding patterns, elucidating
10 
the typical band morphology for each chromosome, which came to be known as an ideogram. The Paris Conference (1971) introduced a numbering system helpful in designating specific bands and regions while describing a structural abnormality. A partial list of recommended symbols and abbreviations appears in the following table. 
Selected List of Symbols and Abbreviations Used in Karyotype Designations" 
Abbreviation 
Explanation 
add 
Additional material, origin unknown 
( or ) 
Arrow from or to 
[ ]square brackets 
Number of cells in each clone 
cen 
Centromere 
chi 
Chimera 
single colon (:) 
Break 
double colon (::) 
Break and reunion 
comma (,) 
Separates chromosome number from sex chromosome and also separates chromosome abnormalities 
del 
Deletion 
de novo 
A chromosome abnormality which has not been inherited 
der 
Derivative chromosome 
dic 
Dicentric 
dmin 
Double minute 
dup 
Duplication 
fiS 
Fission 
fra 
Fragile site 
h 
Heterochromatin 
i 
Isochromosome 
inv 
Inversion 
ins 
Insertion 
mar 
Marker chromosome 
mat 
Maternal origin 
minus sign (-) 
Designates loss 
mos 
Mosaic 
multiplication sign (X) 
Multiple copies 
P 
Short arm 
Pat 
Paternal origin 
Ph 
Philadelphia chromosome 
plus sign (+) 
Gain
11 
q 
Long arm 
question mark (?) 
Questionable identification 
r 
Ring chromosome 
rcp 
Reciprocal 
rec 
Recombinant chromosome 
rob 
Robertsonian translocation 
s 
Satellite 
/ slant line 
Separates cell lines and clones 
semicolon (;) 
Separates altered chromosomes and breakpoints in structural rearrangements involving more than one chromosome 
stk 
Satellite stalk 
t 
Translocation 
UPd 
Uniparental disomy 
The most recent ideogram of human chromosomes depicting the regions and bands at three different resolutions as revealed by the G-banded method is shown in Fig. 2. 
The centromere cen divides a chromosome into a short p arm and a long q arm. Each chromosome arm is divided into regions. This division is based on certain landmarks present on each chromosome. 
By definition, a landmark is a consistent and distinct morphologic area of a chromosome that aids in the identification of a chromosome. 
A region is an area that lies between two landmarks. The regions are numbered in increasing order starting from the centromere and moving toward the telomere on both arms. The two regions immediately adjacent to the centromere are designated as 1, the next distal as 2, and so on. The regions are divided into bands and the bands into subbands. A band is that part of a chromosome which is distinctly different from the adjacent area by virtue of being lighter or darker in staining intensity. Sequential numbering of chromosome arms and bands helps to make the designation of specific bands easy. For example, the terminal band on the long arm of chromosome 2 can be written as 2q37, for chromosome 2, long arm, region 3, band 7. 
For descriptive purposes, the centromere is divided arbitrarily into two parts. The region between the middle of the centromere and the first band on the short arm (cen p11 or p11.1) is designated p10. Similarly, the region between the middle of the centromere and the first band on the long arm (cen  q11 or q11.1) is designated q10. The designations p10 and q10 allow us to describe isochromosomes, whole-arm translocations, and Robertsonian translocations more accurately.
12
13
14
15
16
17
18
19 
Figure 2 Ideograms of G-banding patterns for normal human chromosomes at three 
different resolutions. The left, center, and right at 450, 550, and 850 band levels, 
respectively. (Reproduced with permission from S. Karger, ISCN 1995). 
Karyotype Descriptions 
The nomenclature for a karyotype follows certain basic rules. When designating a 
karyotype, the first item specified is the total number of chromosomes, including the sex 
chromosomes present in that cell, followed by a comma (,) and the sex chromosomes, in 
that order. Thus a normal female karyotype is written as 46,XX and a normal male
20 
karyotype as 46,XY. The format is a continuous string of characters, without a space between characters. 
A chromosome abnormality, when present, follows the sex chromosome designation along with an abbreviation or symbol denoting the abnormality (see Table 3). With a series of hypothetical cases, we will further illustrate the use of ISCN (1995) in the following pages. 
NUMERICAL ABNORMALITIES OF CHROMOSOMES 
All numerical abnormalities (aneuploidies) in a karyotype are presented in increasing order of the chromosome number except for the sex chromosomes. Among sex chromosomes, X will precede Y. In describing aneuploidy involving more than one chromosome, the lower number chromosome will be placed first. As a general principle, aneuploidies are written by using the symbols plus (+) and minus (-). However, there are some subtle but distinct differences in the nomenclature for aneuploidies involving autosomes and sex chromosomes as well as for constitutional and acquired aneuploidies. The following examples will help clarify the differences. 
A. Sex Chromosome Aneuploidies 
Sex chromosome aneuploidies can be constitutional (congenital) or acquired. ISCN (1995) has provided special ways to distinguish between the two. Shown below are some examples of constitutional and acquired sex chromosome aneuploidies. 
1. Constitutional Sex Chromosome Aneuploidies 
45,X 
X monosomy as seen in Turner syndrome 
47,XXY 
Typical karyotype seen in Klinefelter syndrome 
47,XXX 
A female with three X chromosomes 
48,XXYY 
Variant of Klinefelter syndrome with two X and two Y chromosomes 
2. Acquired Sex Chromosome Aneuploidies 
Acquired sex chromosome aneuploidies are presented by using the symbols plus (+) or minus (-). When presenting a case with both constitutional and acquired sex chromosome anomalies, the letter c (for constitutional) is placed after the sex chromosome complement which was seen constitutionally. However, it is not necessary to use c if the constitutional sex chromosome complement is normal. The following examples show both scenarios. 
45,X,-X 
A normal female with two X chromosomes and with the loss of one of the X chromosomes in her tumor cells.
21 
47,XX,+X 
A normal female with two X chromosomes and gain of an extra X chromosome 
in her tumor cells. 
45,X,-Y 
A normal male with XY chromosomes and loss of the Y chromosome in his tumor cells. 
48,XY,+X,+Y 
A normal male with an acquired X and Y chromosomes in his tumor cells. 
48,XXYc,+X 
A patient with Klinefelter syndrome with an acquired X chromosome in his tumor cells. The small letter c is placed next to XXY to show that constitutional sex chromosome complement of the patient is XXY and not XXXY. 
46,Xc,+X 
A Turner syndrome patient (45,X) with gain of an X chromosome in her tumor cells 
B. Autosome Aneuploidies 
The autosome aneuploidies, both constitutional and acquired, are described by simply placing a + or - sign before the chromosome in question. When both constitutional and acquired aneuploidies are seen together, place letter c after the chromosome which is involved in constitutional aneuploidy. 
47,XY, + 18 
Male with trisomy 18 
48,XX,+ 18,+21 
Female with both trisomy 18 and trisomy 21 
45,XY,-21 
Male with monosomy 21 
46,XY, + 21c, -21 
Male trisomy 21 patient with loss of a chromosome 21 in his tumor cells 
48,XX, + 8, +21c 
Female trisomy 21 patient with gain of a chromosome 8 in her tumor cells 
C. Mosaics and Chimeras 
An individual with two or more cell types differing in chromosome number or structure is either a mosaic or a chimera. If the two cell types in a specific instance originated from a single zygote, the individual is a mosaic (mas). If the cell types originated from two or more zygotes, the individual is a chimera (chi). When designating mosaic or chimeric karyotypes, a slant line (/) is used to separate the cell types. The actual number of cells detected in each clone is given within square brackets [ ]. Usages such as percentage and ratios should be avoided in the karyotype, but may be used in the text. 
When two or more cell lines are present and the cell lines are unrelated, the largest clone is recorded first, the next largest second, and so on. When two or more related abnormal
22 
cell lines are seen, they are written in order of increasing complexity. In all situations, the normal cell line is always given last. 
mos 45,X[4]/46,XX[16] 
A mosaic with two cell lines. An analysis of 20 cells showed that this individual has 4 cells with 45,X and 16 cells with 46,XX karyotypes. 
mos 45,X[5]/47,XYY[5]/46,XY[10] 
A mosaic with three cell lines including normal. Note that the normal cell line is given last. 
mos 47,XX,+13 [15]/46,XX[5] 
A mosaic with trisomy 13 and normal cell lines. In a chimera where the two cell lines are normal 46,XX or 46,XY and they are represented in equal proportion, any one of them may be listed first. If one cell line is larger than the other, the larger clone is listed first. 
chi 46,XX[10]/46,XY[10] 
A chimera with female and male cells in equal number. 
chi 47,XX, + 2 1 [15]/46,XY [5] 
A chimera with female and male cell lines. The female cell line shows trisomy 21, while the male cell line is normal. 
chi 69,XXX[20]/46,XY[5] 
A chimera with triploid-diploid cell lines. The triploid line is female, while the diploid line is male. 
D. Uniparental Disomy (upd) 
In upd, which is also a numerical abnormality, both members of a specific chromosome pair are inherited from the same parent. Examples include some patients with Angelman and Prader-Willi syndromes. 
46,XY,upd( 15)pat 
Male karyotype with uniparental disomy for paternally derived chromosome 15. 
46,XY,upd(22)pat[10]/47,XY,+22[6] 
Mosaic male karyotype with one cell line with upd for a paternally derived 22 
and the other with trisomy 22. Here, both cell lines are abnormal and therefore 
the largest is recorded first. 
46,XX,upd pat 
Paternal upd for all 23 pairs of chromosomes, as may be seen in complete 
hydatidiform moles.
23 
46,XY,upd pat 
A complete hydatidiform mole with XY sex chromosomes (very rare). All 46 chromosomes are paternally derived. 
46,XX,upd mat 
Maternal upd as may be seen in ovarian teratoma. All 46 chromosomes are maternally derived. 
STRUCTURAL CHROMOSOME ABNORMALITIES 
As stated previously, all abnormalities are presented in increasing order of chromosome number. However, when the X and Y chromosomes are involved in structural rearrangements they are listed first, with X: always before Y. When designating an abnormality which is limited to a single chromosome, the abbreviation of the abnormality is given and then the number of the chromosome is written within parentheses, such as, de1(2), ins(4), dup(5), and r(X:). If two or more chromosomes are involved in a rearrangement, such as in a translocation, a semicolon (;) separates each 
chromosome. Some examples are t(3;4), t(2;3;4), or t(15;17). The chromosome arm and the breakpoint for the chromosomes involved are separated by a semicolon within a second set of parentheses. The chromosome number that is entered first is usually the one with the smallest number, unless a sex chromosome is involved. In such an event the sex chromosome is always designated first, e.g., t(X:;l) or t(Y,15). If in the same cell a specific chromosome is involved in both a numerical and a structural rearrangement, the numerical abnormality is designated first, e.g., +13,der(13;14). The chromosome nomenclature may be written in two different ways, namely, the short form and the long form. The long form allows better understanding of the karyotype by way of suggesting the chromosome region present in a karyotype and designating the bands where the break: and the reunion occur. In rare situations, particularly in structural rearrangements, the long form may be the only way to show where and how the rearrangement occurred. However, most practicing clinical cytogeneticists use the short form to report their results since it is concise and brief. Cytogenetic reports must contain description of the rearrangements in words, particularly in reporting abnormal 
karyotypes. This is an essential element of the laboratory report because the consumers of the report, most often, are not scientists. Following are a few examples of using short and long forms of nomenclature. 
A. Additional Material, Origin Unknown 
When additional chromosome material is attached to a chromosome, usually its origin is not identifiable through conventional banding methods. This is especially true if the
24 
abnormality is subtle and originates de novo. The abbreviation add is then used to record the rearrangement: 
46,XX,add( 17)(p13) 
Short form 
46,XX,add(17)(?::p13qter) 
Long form 
Additional material of unknown origin is attached to chromosome 17 band 17p13. 
Here the type of rearrangement that resulted in the abnormality is also unknown. 
46,XX,add(9)(q22) 
Short form 
46,XX,add(9)(pterq22::?) 
Long form 
Additional material of unknown origin attached to band 9q22. It is assumed that 
the chromosome region 9q22+qter is deleted and replaced by the added material. 
B. Deletion 
A deletion is an aberration in which a part of a chromosome is lost. Deletions can be either terminal or interstitial. 
1. Terminal Deletions 
46,XY7dell() (q32) 
Short form 
46,XY,del( l)(pter+q32:) 
Long form 
A karyotype with terminal deletion of chromosome 1. A single colon (:) indicates a break at lq32 and deletion of the region distal to it. The remaining chromosome consisting of regions lpter to lq32 is present in the cell. (The terminal regions of the short and long arms of a chromosome are designated by pter and qter, respectively). 
2. interstitial Deletions 
46,XY,del(1)(p2lp32) 
Short form 
46,XY,del( 1)(pterp21 ::p32qter) 
Long form 
A break and reunion represented by a double colon (::) occurred at bands lp32 and lp21. The segment between the two breakpoints is deleted. 
C. Derivative and Recombinant Chromosomes 
1. Derivative Chromosomes 
A structurally rearranged chromosome generated by events involving two or more chromosomes or due to multiple events within a single chromosome is a derivative chromosome. Thus, each unbalanced product of a translocation event is a derivative chromosome and is designated by the abbreviation der. The identity of the Centromere in a derivative chromosome determines its chromosome number. For example, der(3) indicates that this derivative chromosome has the chromosome 3 centromere. 
46,XY,der(3)t(3;6)(p21;q23)
25 
The derivative chromosome 3 in this example resulted from an adjacent 1 segregation of a balanced translocation between the short arm of a chromosome 3 at band p21 and the long arm of a chromosome 6 at band q23. The modal number of 46 chromosomes in this example indicates that there are two normal chromosomes 6. The der(3) replaces one normal chromosome 3. This unbalanced karyotype shows loss (monosomy) of region 3p21+pter and gain (trisomy) of 6q23+qter. 
45,XY,der(3)t(3;6)(p21;q23),-6 
The der(3) is same as in the above example and replaces one of the normal chromosome 3. However, there is only one normal chromosome 6 in the cell, the result of a 3: 1 segregation. Note that the chromosome number in a cell is critical in understanding the nomenclature. Also note that the -6 is placed at the end of the karyotype. This unbalanced karyotype represents monosomy for the 3p21 to the pter region of chromosome 3 and monosomy for the 6pter to the 6q23 region of chromosome 6. 
47,XY7+der(3)t(3;6)(p21;q23)mat 
The der(3) is the same as in the first example. As a result of 3:1 segregation, the mother contributed a normal 3 and the derivative 3. The father contributed a normal 3 as well. The patient is therefore trisomic for both 3p21+qter and 6q23+qter. 
2. Recombinant Chromosomes 
A recombinant chromosome is also a structurally rearranged chromosome. It arises from meiotic crossing over between two homologous chromosomes in a heterozygote: one a structurally rearranged chromosome and the other a normal homolog. Recombinant chromosomes commonly arise due to crossing over within the limits of the inversion in an inversion heterozygote. 
46,XY,inv(3)(p21q32) 
A pericentric inversion of a chromosome 3 is designated above. During meiosis, crossing over within the inverted segment could result in two recombinant chromosomes. 
46,XY,rec(3)dup(3p)inv(3)(p2lq32) 
Duplication from 3pter to 3p21 and deletion from 3q32 to 3qter. 
46,XY,rec(3)dup(3q)inv(3)(p2lq23) 
Duplication of 3q23 to qter and deletion from 3p21 to 3pter. 
D. Insertions 
An insertion is a structural rearrangement wherein a part of a chromosome is inserted into a new place on a chromosome. Insertions can be within a chromosome or between two chromosomes, and can be direct or inverted.
26 
1 Insertion Within a Chromosome 
46,XX,ins(3)(p21q27q32) 
This represents a direct insertion within a chromosome. The long arm segments between band 3q27 and 3q32 have been inserted into the short arm of the same chromosome at band 3p21. 
2. Insertion Involving Two Chromosomes 
46,XX,ins(4;9)(q31;ql2q13) 
The long arm segments between bands 9q12 and 9q13 have been inserted into the long arm of chromosome 4 at band q31. The recipient chromosome is always specified first, regardless of the chromosome number. 
E. Inversions 
A chromosomal aberration in which a portion (segment) of a chromosome is reversed in orientation. Inversions are of two types. Paracentric inversions involve only one arm of a chromosome, while pericentric inversions involve both arms of a chromosome. 
1. Paracentric Inversion 
46,XY,inv(3)(q21q27) 
A break and a reunion occurred at bands 3q21 and 3q27 (long arm) of a chromosome 3. The interlying segment was reattached with its bands in an inverted sequence. 
2. Pericentric Inversion 
46,XY,inv(2)(p21q31) 
A break and a reunion occurred at bands 2p21 in the short arm and 2q31 in the long arm of a chromosome 2. The interlying segment was reattached with its bands in an inverted sequence. 
F. Isochromosomes 
An abnormal chromosome with duplication of one of the arms (as a result of a misdivision of the centromere) resulting in a metacentric chromosome with identical gene sequences on both arms is referred to as an isochromosome. In the karyotype the isochromosome is abbreviated as i. When the nature of the centromere is not known (monocentric or dicentric), the breakpoint in an isochromosome is assigned to the arbitrary centromeric bands p 10 and q10 depending upon whether the isochromosome consists of the short arm or the long arm. The use of p10 and q10 will be further demonstrated under Robertsonian translocations and whole arm translocations.
27 
46,XX,i(18)(p10) 
An isochromosome for the short arm of a chromosome 18. The breakpoint is assigned to p 10. 
46,XX,i(18)(q10) 
An isochromosome for the long m of a chromosome 18. The breakpoint is assigned to q10. 
1. lsodicentric Chromosomes 
Unlike the isochromosome, the isodicentric chromosome contains two copies of the same centromeres. One of the two centromeres is usually inactive. Designated by idic, the breakpoints in isodicentric chromosomes are usually on the band adjacent to the centromere on the opposite arm. 
46,XX,idic( 18)(ql1.2) 
An isodicentric chromosome for the entire short arm of chromosome 18 as well as for the long m region between the centromere and the band 18q11.2. 
G. Marker Chromosomes 
Marker chromosomes mar are structurally abnormal chromosomes of which no part can be identified. If any part of such a marker is identifiable it is no longer a marker but a derivative chromosome. The presence of a mar in a karyotype is always recorded by a plus (+) sign. 
47,XY,+mar 
A male karyotype with a marker chromosome. 
48,XY, + 2mar 
A male karyotype with two marker chromosomes. 
48,XY,t(5;12)(q13;pl2),+21,+mar 
A male karyotype with a t(5;12), an extra chromosome 21 and a marker chromosome. 
H. Ring Chromosomes 
A structurally abnormal chromosome as a result of two breaks, one on the short arm and one on the long arm. The broken ends are attached to form a ring configuration. The net result is deletions of the terminal ends of both arms. 
46,X,r(X) 
A female karyotype with only one normal X chromosome and a ring X chromosome with no information on breakpoints. 
46,Xr(X)(p22q24) 
A female karyotype with one noma1 X chromosome and a ring X chromosome with breakage and reunion at bands Xp22 and Sq24. 
I. Translocations 
The interchange or transfer of chromosomal segments between two chromosomes 
is defined as a translocation.
28 
1. Reciprocal Translocations 
If the translocation involves a mutual exchange of segments between two chromosomes, it is a reciprocal translocation. To describe a reciprocal translocation the abbreviation rcp or the letter t can be used. The latter is more often used. In translocations involving two chromosomes, the autosome with the lowest number is specified first. If an X or Y chromosome is involved in the translocation, the X or Y is specified first, in preference to the autosomes. If the translocation involves three or more chromosomes, the same rule applies. However, in such rearrangements the first chromosome will be the one with the lowest number (or sex chromosome), the second chrornosome specified will be the one that received the segment from the first, and so on. 
46,XX,t(7; 10)(q22;q24) 
Breakage and reunion occurred at bands 7q22 and lOq24. The segments distal to these bands were interchanged. The translocation event has not altered the total DNA content of this cell. Therefore, the translocation is cytogenetically balanced. 
46,X7t(X;1)(p21;q32) 
Breakage and reunion occurred at bands Xp21 and lq32. The segments distal to these bands were interchanged. The translocation is balanced. As per the general rules, the X chromosome is specified first. 
46,X7t(Y;15)(q11.23;q21.2) 
Breakage and reunion occurred at subbands Yql 1.23 and 15q21.2. The segments distal to these subbands were interchanged. This translocation is cytogenetically balanced. Here again, the sex chromosome is specified first. 
46,XY,t(9;22)(q34;q11.2) 
Breakage and reunion occurred at bands 9q34 and 22q11.2. The segments distal to these bands have been interchanged. This represents the typical translocation resulting in the Philadelphia (Ph) chromosome. 
46,XX,t(1;7;4)(q32;p15;q21) 
This is an example of a translocation involving three chromosomes. The segment on chromosome 1 distal to lq32 has been translocated onto chromosome 7 at band 7 p15, the segment on chromosome 7 distal to 7p15 has been translocated onto band 4q21, and the segment on chromosome 4 distal to 4q21 has been translocated onto chromosome 1 at lq32. The translocation is cytogenetically balanced. 
The general principles also apply to designating translocations involving more than three chromosomes.
29 
2. Whole-Arm Translocations 
Whole-arm translocation is also a type of reciprocal translocation in which the entire arms of two nonacrocentric chromosomes are interchanged. Such rearrangements are described by assigning the breakpoints to the arbitrary centromeric region designated as p10 and q10. The breakpoint p10 is assigned to the chromosome with the lower number of the two chromosomes involved or the sex chromosome. Consequently, the second chromosome will have a breakpoint at q10. This assignment is particularly useful in describing whole-arm translocations in which the nature of the centromere is not known. 
46,XX,t(3;8)(p10;q10) 
A balanced whole-arm translocation between chromosome 3 and chromosome 8. In this example the short arm of chromosome 3 and the long arm of chromosome 8 have been fused. Reciprocally, the long arm of chromosome 3 has fused with the short arm of chromosome 8. However, it need not be written in the karyotype. The modal number 46 is also indicative of the presence of the reciprocal product. Which abnormal chromosome carries the centromere of 3 or 8 is not known. The karyotype is apparently balanced. 
46,XX,t(3;8)(p10;p10) 
Balanced whole-arm translocation in which the short arms of chromosomes 3 and 8 and the long arms of chromosome 3 and 8 have been fused. 
45,X,der(X;3)(p10;q10) 
A derivative chromosome consisting of the short arm of X and the long arm of 3. The reciprocal product consisting of the long arm of X and the short arm of 3 is missing. Note: the total chromosome number is 45, suggesting the loss of the reciprocal product. The net result is monosomy for the entire long arm of X and the entire short arm of 3. 
47,XX,+der(X;3)(p10;q10) 
This karyotype has an extra derivative chromosome consisting of the short arm of X and the long arm of 3 (same as in the previous example). Also present are two normal X chromosomes and two normal chromosomes 3. The net result is trisomy for the entire short arm of X and the entire long arm of 3. 
3. Robertsonian Translocations 
Robertsonian translocations originate through centric fusion of the long arms of acrocentric chromosomes consisting of pairs 13, 14, 15, 21, and 22. Since Robertsonian translocations are also whole-arm translocations, they can be described adequately using the same nomenclature approach as for whole arm translocations. In a Robertsonian translocation, the short arms of the chromosomes involved are lost. In the translocation
30 
heterozygote the loss of short arms is not known to be causally related to an abnormal phenotype. However, in order to maintain uniformity in the nomenclature, a Robertsonian translocation product is considered to be a “derivative chromosome” and therefore the symbol der is used. For historical reasons, the abbreviation rob may also be used. 
45,XX,der(13;14)(q10;q10) 
A balanced Robertsonian translocation occurred between the long arm of a chromosome 13 and the long arm of a 14. As a result, the chromosome number was reduced to 45. The origin of the centromere nature is unknown. Breakage and reunion have occurred at bands 13q10 and 14q10. This derivative chromosome has replaced one chromosome 13 and one chromosome 14. There is no need to indicate the missing chromosomes because the chromosome number is reduced to 45. The karyotype now contains one normal 13, one normal 14, and the der(13;14). The short arms of the 13 and 14 are lost, which is not associated with an adverse clinical outcome. 
46,XX,+13,der(13;14)(q10;q10) 
A derivative chromosome consisting of the long arms of a 13 and a 14, same as in the above example. However, in this karyotype there are two normal 13 and one normal 14. The additional 13 is shown by the designation + 13. In this example a 13 is involved in both numerical and structural abnormalities. In such instances the numerical abnormality is designated before the structural abnormality. 
NEOPLASM, CLONES, AND CLONAL EVOLUTION 
All principles dictating the nomenclature are identical to both constitutional and acquired changes. However, some unusual situations and circumstances apply uniquely to acquired chromosome changes. We will define some of the terminology used in the description of acquired changes. We will also give some examples of complex chromosome rearrangements not usually seen in constitutional karyotypes. 
A. Clones 
A clone is defined as a cell population derived from a single progenitor. In acquired chromosome changes, a clone is defined as two cells with the same structural aberration. In numerical aberrations, a trisomic clone must have at least two cells with the same extra chromosome; for a monosomy clone, a minimum of three cells must show the loss of the
31 
same chromosome. A clone is not necessarily homogeneous, since subclones may develop during evolution. 
1. Mainline 
The mainline is the most frequent chromosome complement of a tumor cell population. It is a quantitative term and does not indicate the sequence of origin, such as primary versus secondary. 
46,XX,t(9;22)(q34;ql1.2)[3]/47,XX,+8,t(9;22)(q34;ql1.2)[17] 
In the above karyotype, the clone with 47 chromosomes is the mainline, even though it is likely that the basic or the primary clone was the one with 46 chromosomes. 
2. Stemline and Sideline 
The stemline ( SE ) is the most basic clone of a tumor cell population. All additional subclones are termed sidelines (sdl). 
46,XX,t(9;22)(q34;ql1.2)[3]/47,XX,+8,t(9;22)(q34;ql1.2)[17]/48,XX,+8, 
t(9;22)(q34;ql1.2),+ 19[12] 
In the above example, the clone with 46 chromosomes is the stemline and the clones with 47 and 48 chromosomes are the sidelines. The clone with 47 Human Cytogenetic Nomenclature chromosomes is the mainline since the largest number of cells show that 
karyotype. 
B. Clonal Evolution-Related Clones 
Cytogenetically related clones are presented in the order of increasing complexity as far as possible, regardless of the size of the clone. This means that the stemline is presented first, followed by the subclones in the order of increasing complexity. 
46,XX,t(8;21)(q22;q22)[12]/45,X-X,t(8;21)(q22;q22)[19]/46,X,-X,+8,t(8;21)(q22;q22)[5] 
In tumors with related clones such as the one above, the term idem may be used followed by the additional changes. The idem can replace only the stemline, which is usually given first. 
Example: 46,XX,t(8;21)(q22;q22)[12]/45,-X,idem[19]/46,- X,+8,idern[5] 
C. Unrelated Clones 
Clones with completely unrelated aberrations are presented according to their size, the largest first, then the second largest, and so on. The normal diploid clone is always presented last. 
46,XX,t(8;21)(q22;q22)[10]/47,XX,+8[6]/45,XX,i(8)(q10)[4]
32 
If a tumor contains both related and unrelated clones, the related clones are written first in the order of increasing complexity, followed by the unrelated clones in order of decreasing size. 
Numerous other more complex structural karyotypic changes may be encountered. These cases are rather rare and are not addressed here. However, one can easily extrapolate from the basic principles eluded to earlier and throughout this chapter and arrive at the proper nomenclature.

More Related Content

What's hot

Cleavage and its patterns
Cleavage and its patternsCleavage and its patterns
Cleavage and its patternsSaumya Sharma
 
Regeneration, Types of Regeneration,Invertebrates&Vertebrates sp. ,Mechanism,...
Regeneration, Types of Regeneration,Invertebrates&Vertebrates sp. ,Mechanism,...Regeneration, Types of Regeneration,Invertebrates&Vertebrates sp. ,Mechanism,...
Regeneration, Types of Regeneration,Invertebrates&Vertebrates sp. ,Mechanism,...SoniaBajaj10
 
Drosophila lecture
Drosophila lectureDrosophila lecture
Drosophila lecture--
 
Early development of invertebrates
Early development of invertebratesEarly development of invertebrates
Early development of invertebratesMerlyn Denesia
 
Basic concepts in developmental biology
Basic concepts in developmental biologyBasic concepts in developmental biology
Basic concepts in developmental biologydrammarmehdi
 
Cell determination and differentiation
Cell determination and differentiationCell determination and differentiation
Cell determination and differentiationvishnupriya456
 
Comparative Anatomy of Respiratory System of Vertebrates
Comparative Anatomy of Respiratory System of VertebratesComparative Anatomy of Respiratory System of Vertebrates
Comparative Anatomy of Respiratory System of VertebratesRameshPandi4
 
Comparative anatomy of heart structure
Comparative anatomy of heart structureComparative anatomy of heart structure
Comparative anatomy of heart structureGunashreeKarunakhara
 
Cell junctions
Cell junctionsCell junctions
Cell junctionsaljeirou
 
Metamorphosis-amphibians, hormonal control
Metamorphosis-amphibians, hormonal controlMetamorphosis-amphibians, hormonal control
Metamorphosis-amphibians, hormonal controlakash mahadev
 

What's hot (20)

Aquarium fishes
Aquarium fishesAquarium fishes
Aquarium fishes
 
Cleavage and its patterns
Cleavage and its patternsCleavage and its patterns
Cleavage and its patterns
 
FATE Map
FATE MapFATE Map
FATE Map
 
Regeneration, Types of Regeneration,Invertebrates&Vertebrates sp. ,Mechanism,...
Regeneration, Types of Regeneration,Invertebrates&Vertebrates sp. ,Mechanism,...Regeneration, Types of Regeneration,Invertebrates&Vertebrates sp. ,Mechanism,...
Regeneration, Types of Regeneration,Invertebrates&Vertebrates sp. ,Mechanism,...
 
Protochordates
Protochordates Protochordates
Protochordates
 
Respiratory system
Respiratory systemRespiratory system
Respiratory system
 
Drosophila lecture
Drosophila lectureDrosophila lecture
Drosophila lecture
 
Evolution of Urinogenital Ducts
Evolution of Urinogenital DuctsEvolution of Urinogenital Ducts
Evolution of Urinogenital Ducts
 
Early development of invertebrates
Early development of invertebratesEarly development of invertebrates
Early development of invertebrates
 
Presentation on Lampbrush Chromosome
Presentation on Lampbrush ChromosomePresentation on Lampbrush Chromosome
Presentation on Lampbrush Chromosome
 
Swim bladder
Swim bladderSwim bladder
Swim bladder
 
Basic concepts in developmental biology
Basic concepts in developmental biologyBasic concepts in developmental biology
Basic concepts in developmental biology
 
Cell determination and differentiation
Cell determination and differentiationCell determination and differentiation
Cell determination and differentiation
 
Comparative Anatomy of Respiratory System of Vertebrates
Comparative Anatomy of Respiratory System of VertebratesComparative Anatomy of Respiratory System of Vertebrates
Comparative Anatomy of Respiratory System of Vertebrates
 
Comparative anatomy of heart structure
Comparative anatomy of heart structureComparative anatomy of heart structure
Comparative anatomy of heart structure
 
Cell junctions
Cell junctionsCell junctions
Cell junctions
 
Nitrogenous waste, enogenous chemical
Nitrogenous waste, enogenous chemicalNitrogenous waste, enogenous chemical
Nitrogenous waste, enogenous chemical
 
Metamorphosis-amphibians, hormonal control
Metamorphosis-amphibians, hormonal controlMetamorphosis-amphibians, hormonal control
Metamorphosis-amphibians, hormonal control
 
Aortic arches
Aortic archesAortic arches
Aortic arches
 
Germ cell migration.
Germ cell migration. Germ cell migration.
Germ cell migration.
 

Similar to Human cytogenetic وراثة عملي

Integrin Signalling And Cancer Front Pgs
Integrin Signalling And Cancer   Front PgsIntegrin Signalling And Cancer   Front Pgs
Integrin Signalling And Cancer Front Pgsefreiter
 
Practical handbook of microbiology
Practical handbook of microbiologyPractical handbook of microbiology
Practical handbook of microbiologyPatricia Costa
 
Classification of squamous cell cervical cytology
Classification of squamous cell cervical cytologyClassification of squamous cell cervical cytology
Classification of squamous cell cervical cytologykarthigailakshmi
 
Colette_Parker_Final_Copy
Colette_Parker_Final_CopyColette_Parker_Final_Copy
Colette_Parker_Final_CopyColette Thorold
 
Apoptosis manual roche
Apoptosis manual rocheApoptosis manual roche
Apoptosis manual rocheMaha Lakshmi
 
Fast Skeletonization of Blood Vessels
Fast Skeletonization of Blood VesselsFast Skeletonization of Blood Vessels
Fast Skeletonization of Blood VesselsAaron Croasmun
 
Atlas of oral disease a guide for daily practice 2016
Atlas of oral disease a guide for daily practice    2016Atlas of oral disease a guide for daily practice    2016
Atlas of oral disease a guide for daily practice 2016Soe Kyaw
 
Protdock - Aatu Kaapro
Protdock - Aatu KaaproProtdock - Aatu Kaapro
Protdock - Aatu KaaproSwapnesh Singh
 
Quantifying Extinctions
Quantifying ExtinctionsQuantifying Extinctions
Quantifying ExtinctionsBen Rowe
 
Case Study Task: Diagnose the Patient
Case Study Task: Diagnose the PatientCase Study Task: Diagnose the Patient
Case Study Task: Diagnose the PatientStephen Taylor
 
Virology practical report
Virology practical report Virology practical report
Virology practical report Samuel Kariuki
 
Mathur A Biochimie Review Paper 2016
Mathur A Biochimie Review Paper 2016Mathur A Biochimie Review Paper 2016
Mathur A Biochimie Review Paper 2016Aditi Mathur
 
Transport membrane
Transport membraneTransport membrane
Transport membraneDuaShaban
 
Advances and technical standards in neurosurgery
Advances and technical standards in neurosurgeryAdvances and technical standards in neurosurgery
Advances and technical standards in neurosurgeryZakfarEvendy
 

Similar to Human cytogenetic وراثة عملي (20)

Integrin Signalling And Cancer Front Pgs
Integrin Signalling And Cancer   Front PgsIntegrin Signalling And Cancer   Front Pgs
Integrin Signalling And Cancer Front Pgs
 
Practical handbook of microbiology
Practical handbook of microbiologyPractical handbook of microbiology
Practical handbook of microbiology
 
Classification of squamous cell cervical cytology
Classification of squamous cell cervical cytologyClassification of squamous cell cervical cytology
Classification of squamous cell cervical cytology
 
Colette_Parker_Final_Copy
Colette_Parker_Final_CopyColette_Parker_Final_Copy
Colette_Parker_Final_Copy
 
Dissertation
Dissertation Dissertation
Dissertation
 
Passarge toc
Passarge tocPassarge toc
Passarge toc
 
Apoptosis manual roche
Apoptosis manual rocheApoptosis manual roche
Apoptosis manual roche
 
Fast Skeletonization of Blood Vessels
Fast Skeletonization of Blood VesselsFast Skeletonization of Blood Vessels
Fast Skeletonization of Blood Vessels
 
Atlas of oral disease a guide for daily practice 2016
Atlas of oral disease a guide for daily practice    2016Atlas of oral disease a guide for daily practice    2016
Atlas of oral disease a guide for daily practice 2016
 
Protdock - Aatu Kaapro
Protdock - Aatu KaaproProtdock - Aatu Kaapro
Protdock - Aatu Kaapro
 
dissertation
dissertationdissertation
dissertation
 
Quantifying Extinctions
Quantifying ExtinctionsQuantifying Extinctions
Quantifying Extinctions
 
Case Study Task: Diagnose the Patient
Case Study Task: Diagnose the PatientCase Study Task: Diagnose the Patient
Case Study Task: Diagnose the Patient
 
Virology practical report
Virology practical report Virology practical report
Virology practical report
 
Inglis PhD Thesis
Inglis PhD ThesisInglis PhD Thesis
Inglis PhD Thesis
 
Mathur A Biochimie Review Paper 2016
Mathur A Biochimie Review Paper 2016Mathur A Biochimie Review Paper 2016
Mathur A Biochimie Review Paper 2016
 
misra et al,2014
misra et al,2014misra et al,2014
misra et al,2014
 
Transport membrane
Transport membraneTransport membrane
Transport membrane
 
Advances and technical standards in neurosurgery
Advances and technical standards in neurosurgeryAdvances and technical standards in neurosurgery
Advances and technical standards in neurosurgery
 
thesis_lmd
thesis_lmdthesis_lmd
thesis_lmd
 

More from في رحاب الله

Medicall genetics lab manual وراثة عملي
Medicall genetics lab manual وراثة عملي  Medicall genetics lab manual وراثة عملي
Medicall genetics lab manual وراثة عملي في رحاب الله
 
Karyotyping 1st day short protocol وراثة عملي
Karyotyping 1st day short protocol وراثة عملي Karyotyping 1st day short protocol وراثة عملي
Karyotyping 1st day short protocol وراثة عملي في رحاب الله
 
Pseudomonas and nonfermenters (biochemical)بكتريا عملي
Pseudomonas and nonfermenters (biochemical)بكتريا عملي Pseudomonas and nonfermenters (biochemical)بكتريا عملي
Pseudomonas and nonfermenters (biochemical)بكتريا عملي في رحاب الله
 
Enterobacteriacea ii biochemical reaction 2بكتريا عملي
Enterobacteriacea ii   biochemical reaction 2بكتريا عملي Enterobacteriacea ii   biochemical reaction 2بكتريا عملي
Enterobacteriacea ii biochemical reaction 2بكتريا عملي في رحاب الله
 
Enterobacteriacea i biochemical reaction بكتريا عملي
Enterobacteriacea i   biochemical reaction بكتريا عملي Enterobacteriacea i   biochemical reaction بكتريا عملي
Enterobacteriacea i biochemical reaction بكتريا عملي في رحاب الله
 
Bacterial culture media بكتريا عملي
Bacterial culture media بكتريا عملي Bacterial culture media بكتريا عملي
Bacterial culture media بكتريا عملي في رحاب الله
 
Api test.........بكتريا عملي
Api test.........بكتريا عملي Api test.........بكتريا عملي
Api test.........بكتريا عملي في رحاب الله
 
Antibiotic susceptibility testing بكتريا عملي
Antibiotic susceptibility testing بكتريا عملي Antibiotic susceptibility testing بكتريا عملي
Antibiotic susceptibility testing بكتريا عملي في رحاب الله
 

More from في رحاب الله (19)

الاعشاب البرية
الاعشاب البريةالاعشاب البرية
الاعشاب البرية
 
الاعشا دواء لكل داء
الاعشا دواء لكل داءالاعشا دواء لكل داء
الاعشا دواء لكل داء
 
الاسراء والمعراج
الاسراء والمعراجالاسراء والمعراج
الاسراء والمعراج
 
اعصفي يا رياح
اعصفي يا رياحاعصفي يا رياح
اعصفي يا رياح
 
ارشادات منزلية
ارشادات منزليةارشادات منزلية
ارشادات منزلية
 
ابو النواس
ابو النواسابو النواس
ابو النواس
 
Medicall genetics lab manual
Medicall genetics lab manualMedicall genetics lab manual
Medicall genetics lab manual
 
Medicall genetics lab manual وراثة عملي
Medicall genetics lab manual وراثة عملي  Medicall genetics lab manual وراثة عملي
Medicall genetics lab manual وراثة عملي
 
Karyotyping 1st day short protocol وراثة عملي
Karyotyping 1st day short protocol وراثة عملي Karyotyping 1st day short protocol وراثة عملي
Karyotyping 1st day short protocol وراثة عملي
 
Streptococcusبكتريا عملي
Streptococcusبكتريا عملي Streptococcusبكتريا عملي
Streptococcusبكتريا عملي
 
Staphylococci22بكتريا عملي
Staphylococci22بكتريا عملي Staphylococci22بكتريا عملي
Staphylococci22بكتريا عملي
 
Slides examبكتريا عملي
Slides examبكتريا عملي Slides examبكتريا عملي
Slides examبكتريا عملي
 
Pseudomonas and nonfermenters (biochemical)بكتريا عملي
Pseudomonas and nonfermenters (biochemical)بكتريا عملي Pseudomonas and nonfermenters (biochemical)بكتريا عملي
Pseudomonas and nonfermenters (biochemical)بكتريا عملي
 
بكتريا عملي
بكتريا عملي بكتريا عملي
بكتريا عملي
 
Enterobacteriacea ii biochemical reaction 2بكتريا عملي
Enterobacteriacea ii   biochemical reaction 2بكتريا عملي Enterobacteriacea ii   biochemical reaction 2بكتريا عملي
Enterobacteriacea ii biochemical reaction 2بكتريا عملي
 
Enterobacteriacea i biochemical reaction بكتريا عملي
Enterobacteriacea i   biochemical reaction بكتريا عملي Enterobacteriacea i   biochemical reaction بكتريا عملي
Enterobacteriacea i biochemical reaction بكتريا عملي
 
Bacterial culture media بكتريا عملي
Bacterial culture media بكتريا عملي Bacterial culture media بكتريا عملي
Bacterial culture media بكتريا عملي
 
Api test.........بكتريا عملي
Api test.........بكتريا عملي Api test.........بكتريا عملي
Api test.........بكتريا عملي
 
Antibiotic susceptibility testing بكتريا عملي
Antibiotic susceptibility testing بكتريا عملي Antibiotic susceptibility testing بكتريا عملي
Antibiotic susceptibility testing بكتريا عملي
 

Recently uploaded

❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...Sheetaleventcompany
 
Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...
Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...
Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...Angel
 
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...dishamehta3332
 
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...Sheetaleventcompany
 
💚Chandigarh Call Girls 💯Riya 📲🔝8868886958🔝Call Girls In Chandigarh No💰Advance...
💚Chandigarh Call Girls 💯Riya 📲🔝8868886958🔝Call Girls In Chandigarh No💰Advance...💚Chandigarh Call Girls 💯Riya 📲🔝8868886958🔝Call Girls In Chandigarh No💰Advance...
💚Chandigarh Call Girls 💯Riya 📲🔝8868886958🔝Call Girls In Chandigarh No💰Advance...Sheetaleventcompany
 
Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...
Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...
Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...GENUINE ESCORT AGENCY
 
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...Sheetaleventcompany
 
👉 Amritsar Call Girls 👉📞 8725944379 👉📞 Just📲 Call Ruhi Call Girl Near Me Amri...
👉 Amritsar Call Girls 👉📞 8725944379 👉📞 Just📲 Call Ruhi Call Girl Near Me Amri...👉 Amritsar Call Girls 👉📞 8725944379 👉📞 Just📲 Call Ruhi Call Girl Near Me Amri...
👉 Amritsar Call Girls 👉📞 8725944379 👉📞 Just📲 Call Ruhi Call Girl Near Me Amri...Sheetaleventcompany
 
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋mahima pandey
 
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan CytotecJual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotecjualobat34
 
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...Sheetaleventcompany
 
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...Oleg Kshivets
 
Electrocardiogram (ECG) physiological basis .pdf
Electrocardiogram (ECG) physiological basis .pdfElectrocardiogram (ECG) physiological basis .pdf
Electrocardiogram (ECG) physiological basis .pdfMedicoseAcademics
 
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service AvailableDipal Arora
 
Most Beautiful Call Girl in Chennai 7427069034 Contact on WhatsApp
Most Beautiful Call Girl in Chennai 7427069034 Contact on WhatsAppMost Beautiful Call Girl in Chennai 7427069034 Contact on WhatsApp
Most Beautiful Call Girl in Chennai 7427069034 Contact on WhatsAppjimmihoslasi
 
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...Sheetaleventcompany
 
💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...
💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...
💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...gragneelam30
 
Kolkata Call Girls Naktala 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
Kolkata Call Girls Naktala  💯Call Us 🔝 8005736733 🔝 💃  Top Class Call Girl Se...Kolkata Call Girls Naktala  💯Call Us 🔝 8005736733 🔝 💃  Top Class Call Girl Se...
Kolkata Call Girls Naktala 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...Namrata Singh
 
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...Sheetaleventcompany
 
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...Cara Menggugurkan Kandungan 087776558899
 

Recently uploaded (20)

❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
 
Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...
Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...
Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...
 
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
 
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
 
💚Chandigarh Call Girls 💯Riya 📲🔝8868886958🔝Call Girls In Chandigarh No💰Advance...
💚Chandigarh Call Girls 💯Riya 📲🔝8868886958🔝Call Girls In Chandigarh No💰Advance...💚Chandigarh Call Girls 💯Riya 📲🔝8868886958🔝Call Girls In Chandigarh No💰Advance...
💚Chandigarh Call Girls 💯Riya 📲🔝8868886958🔝Call Girls In Chandigarh No💰Advance...
 
Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...
Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...
Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...
 
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
 
👉 Amritsar Call Girls 👉📞 8725944379 👉📞 Just📲 Call Ruhi Call Girl Near Me Amri...
👉 Amritsar Call Girls 👉📞 8725944379 👉📞 Just📲 Call Ruhi Call Girl Near Me Amri...👉 Amritsar Call Girls 👉📞 8725944379 👉📞 Just📲 Call Ruhi Call Girl Near Me Amri...
👉 Amritsar Call Girls 👉📞 8725944379 👉📞 Just📲 Call Ruhi Call Girl Near Me Amri...
 
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
 
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan CytotecJual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
 
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
 
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
 
Electrocardiogram (ECG) physiological basis .pdf
Electrocardiogram (ECG) physiological basis .pdfElectrocardiogram (ECG) physiological basis .pdf
Electrocardiogram (ECG) physiological basis .pdf
 
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
 
Most Beautiful Call Girl in Chennai 7427069034 Contact on WhatsApp
Most Beautiful Call Girl in Chennai 7427069034 Contact on WhatsAppMost Beautiful Call Girl in Chennai 7427069034 Contact on WhatsApp
Most Beautiful Call Girl in Chennai 7427069034 Contact on WhatsApp
 
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
 
💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...
💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...
💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...
 
Kolkata Call Girls Naktala 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
Kolkata Call Girls Naktala  💯Call Us 🔝 8005736733 🔝 💃  Top Class Call Girl Se...Kolkata Call Girls Naktala  💯Call Us 🔝 8005736733 🔝 💃  Top Class Call Girl Se...
Kolkata Call Girls Naktala 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
 
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
 
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
 

Human cytogenetic وراثة عملي

  • 1. 1 MEDICAL CYTOGENETICS edited by Hon Fong L. Mark Brown University School of Medicine Rhode Island Department of Health Providence, and KRAM Corporation Barrington, Rhode Island Summarized from chapters 2 and 3
  • 2. 2 Contents INTRODUCTION ............................................................................................................................... 4 NORMAL VARIATIONS ..................................................................................................................... 7 SHAPES OF CHROMOSOMES ........................................................................................................... 7 Other Chromosome Attributes.................................................................................................... 8 CHROMOSOME BANDING AND IDENTIFICATION ............................................................................ 9 Chromosome Regions and Band Designations ............................................................................ 9 Karyotype Descriptions ............................................................................................................. 19 NUMERICAL ABNORMALITIES OF CHROMOSOMES ...................................................................... 20 A. Sex Chromosome Aneuploidies ............................................................................................ 20 1. Constitutional Sex Chromosome Aneuploidies ................................................................. 20 2. Acquired Sex Chromosome Aneuploidies ......................................................................... 20 B. Autosome Aneuploidies ........................................................................................................ 21 C. Mosaics and Chimeras ........................................................................................................... 21 D. Uniparental Disomy (upd) ..................................................................................................... 22 STRUCTURAL CHROMOSOME ABNORMALITIES ............................................................................ 23 A. Additional Material, Origin Unknown ................................................................................... 23 B. Deletion ................................................................................................................................. 24 1. Terminal Deletions ............................................................................................................ 24 2. interstitial Deletions .......................................................................................................... 24 C. Derivative and Recombinant Chromosomes ......................................................................... 24 1. Derivative Chromosomes .................................................................................................. 24 2. Recombinant Chromosomes ............................................................................................. 25 D. Insertions............................................................................................................................... 25 1 Insertion Within a Chromosome ........................................................................................ 26 2. Insertion Involving Two Chromosomes ............................................................................. 26 E. Inversions ............................................................................................................................... 26 1. Paracentric Inversion ......................................................................................................... 26 2. Pericentric Inversion .......................................................................................................... 26 F. Isochromosomes .................................................................................................................... 26 1. lsodicentric Chromosomes ................................................................................................ 27 G. Marker Chromosomes .......................................................................................................... 27
  • 3. 3 H. Ring Chromosomes ............................................................................................................... 27 I. Translocations ........................................................................................................................ 27 1. Reciprocal Translocations .................................................................................................. 28 2. Whole-Arm Translocations ................................................................................................ 29 3. Robertsonian Translocations ............................................................................................. 29 NEOPLASM, CLONES, AND CLONAL EVOLUTION........................................................................... 30 A. Clones .................................................................................................................................... 30 1. Mainline ............................................................................................................................. 31 2. Stemline and Sideline ........................................................................................................ 31 B. Clonal Evolution-Related Clones ........................................................................................... 31 C. Unrelated Clones ................................................................................................................... 31
  • 4. 4 INTRODUCTION The history of human cytogenetics began with the discovery of the correct diploid chromosome number (46) in man. Of the 46 chromosomes in a normal human somatic cell, 44 are autosomes and 2 are sex chromosomes (XX in a female and XY in a male). A. B. Figure 1: (a) The normal human female chromosome complement. (b) The normal human male chromosome complement. The normal human chromosome complement is shown in Fig. 1a (female) and Fig. 1b (male). This orderly display of an organism's chromosomes by shape, size (starting with the largest chromosome), and banding pattern is called a karyotype. Present karyotypes are GTG-banded karyotypes, derived from metaphases on slides that are treated with trypsin and stained with Giemsa, a Romanowsky stain, to produce a series of distinctive transverse bands spaced along the entire chromosome complement (the G-banding pattern). Banding is used to identify individual chromosomes unambiguously. It is especially critical for distinguishing chromosomes of similar sizes and shapes. The different kinds of banding and the various methods employed to induce banding are discussed later. Prior to the banding era, chromosomes from nonbanded (or solid-stained) metaphase cells were karyotyped based on size and position of the centromere. Such a nonbanded karyotype is shown in Fig. 2. During the prebanding era, other features, such as prominent satellites and secondary constrictions, were often utilized as well.
  • 5. 5 Figure 2: Nonbanded male karyotype. With the advent of banding in the late 1960s and early 1970s, each chromosome in the human genome could be identified unambiguously. Based on the unique chromosome bands, cytogeneticists all over the world were able to identify abnormalities in the structure as well as the number of chromosomes. It has been observed that the uniform initial reaction of trainees, when they are handed the first metaphase for karyotyping, is that the task is nearly impossible to perform: “One chromosome looks just like another.’’ Proficiency in manual karyotyping needs diligence and practice. Table 1 gives a tested protocol for identifying each and every chromosome on a GTG-banded metaphase. With the availability of instantaneous automated karyotyping system it is usually easier to perform semimanual karyotyping via instructions of the technologists than to let the computer do the job entirely by itself and then to correct its many mistakes. Table1: Morphologic Characteristics of Individual Human Chromosomes Chromosome Group Morphologic characteristics 1 A The largest metacentric chromosome. 2 A The largest submetacentric chromosome. 3 A The second largest metacentric chromosome 4 B A large submetacentric chromosome. Its arm ratio is approximately 4: 1. It has a small dark band below the centromere. 5 C It is the same size and shape as chromosome 4. It has a large dark band in the middle of the long arm. 6 C The largest of the C group. It has a submedian centromere and a large light area in the middle of the short arm.
  • 6. 6 7 C A medium-sized submetacentric chromosome. It has two dark bands in the long arm and a dark band near the tip of the short arm. 8 C A medium-sized submetacentric chromosome. It is the least distinguishable of the C group. It has a dark band near the end of the long arm. 9 C It looks similar to chromosome 7, but is smaller and has less distinct bands. A secondary constriction can sometimes be seen near the centromere on the long arm of chromosome 9. 10 C It has three dark bands in the long arm. The band near the centromere is much darker than the other two. 11 C It has a large dark band in the middle of the long arm. 12 C It has a large dark band in the middle of the long arm. The short arm is noticeably shorter than the short arm of chromosome 11. 13 D An acrocentric chromosome with a dark lower half. 14 D An acrocentric chromosome. It has two dark bands: one near the centromere and the other near the end of the long arm. 15 D An acrocentric chromosome. It is the lightest stained of the D group. It has a small dark band in the middle of the long arm. 16 E The most metacentric of the E group Chromosomes. It is the same size as the D group. It has a dark band at the Centromere. 17 E It is the same size as chromosome 16, but is more submetacentric. It has a large light area in the long arm and a dark band at the end. 18 E It is slightly smaller than chromosome 17. It is mostly dark. It has an occasional noticeably dark band near the centromere. 19 F A small metacentric chromosome with a dark band at the centromere. 20 F A small metacentric chromosome that is grayish. 21 G A small acrocentric chromosome with a dark band 22 G A small acrocentric chromosome that is grayish. X C It is almost as large as chromosome 6. It has two distinguishing dark bands: one in the middle of the short arm and the other in the long arm. Y G Although usually the same size as chromosomes 21 and 22, it does not possess satellites and is morphologically distinct.
  • 7. 7 NORMAL VARIATIONS Normal variations are called polymorphic variants, polymorphisms, or heteromorphic variants. Some of the uses of these cytogenetically distinguishable normal variants include the following:  Use as markers for population studies.  Determination of the origin of nondisjunction.  Paternity determination.  Detection of maternal contamination in amniotic fluid cultures.  Establishment of the origin of ovarian teratomas.  Determination of the zygosity of twins.  Determination of the origin of certain deleted or translocated chromosomes.  In follow-up studies in bone marrow transplantation (BMT), although the Y chromosome may be a better marker in sex-mismatched BMTs. Examples of polymorphisms include the large dark heterochromatic block below the centromere in the long arm of chromosome 1 that varies in size from individual to individual but is constant from cell to cell within an individual. Another human chromosomal polymorphism is the pericentric inversion of chromosome 9. SHAPES OF CHROMOSOMES The shapes of chromosomes are illustrated in Fig. 2.  Metacentric chromosomes have centromeres that lie near the centers of the chromosomes.  Submetacentric chromosomes contain centromeres in off-center locations on the chromosomes. The short arm of the chromosome is called p (for petit) arm, whereas the long arm is called the q arm (Fig. 4).  Acrocentric chromosomes have very short p arms. These chromosomes usually end in structures called satellites, which are connected to the main structure of the chromosome by stalks.  Telocentrics are chromosomes that lack short arms. These chromosomes do not exist in humans. Chromosomes are grouped by size and position of the centromere. For historic reasons, however, chromosome 21 is shorter than chromosome 22. The human Y chromosome is similar in size and shape to chromosomes 21 and 22, but it lacks satellites and has consistent, albeit subtle, characteristic features such as morphology of the long arm.
  • 8. 8 Figure 3: Shapes of chromosomes. Figure 4: Chromosome landmarks. Other Chromosome Attributes The modal chromosome number is the number of chromosomes per cell most often encountered in the metaphases scored from a sample. The modal chromosome number in a normal human individual is the diploid number of 46. Due to artifacts of the technique, chromosomes are sometimes lost on the slide. This is termed random loss. An International System for Human Cytogenetic Nomenclature defines random loss as the loss of the same chromosome in no more than two metaphase cells. Loss of a particular chromosome is considered to be significant if it is encountered in three or more cells. The arm ratio, q/p, is the length of the long arm divided by the length of the short arm. The centromere index, expressed as a percentage, is the length of the short arm divided by the total length of the chromosome, p/(p + q). The relative length, expressed as a percentage, is the length of that individual chromosome divided by the total haploid lengths of all the chromosomes in the human genome. Alternative approaches to estimating relative lengths have been proposed in the literature.
  • 9. 9 When chromosomes are stained with a chromatin stain, such as Giemsa or Wright’s stain, they do not produce bands. Nevertheless, they can be classified into 7 groups based on the size and centromere position. The letters A-G were assigned to the groups. Group A (1 -3) Large metacentric or near metacentric chromosomes distinguishable from one another by the size and the position of the centromere Group B (4-5) Largest of the submetacentric chromosomes Group C (6-12 and X) Medium-sized submetacentric chromosomes (most difficult to distinguish from one another) Group D (13-15) Larger acrocentric chromosomes with usually polymorphic satellites on the short arms Group E (16-18) Shorter metacentric or submetacentric chromosomes Group F (19-20) Smallest of the metacentric chromosomes Group G (21-22 and Y) Smaller acrocentric chromosomes usually with polymorphic satellites; Y chromosome can be distinguished from the rest of the G group chromosomes by its lack of satellites and usually darkly stained heterochromatic long arm CHROMOSOME BANDING AND IDENTIFICATION When chromosome preparations are treated with dilute solutions of proteolytic enzymes (trypsin, pepsin, etc.) or salt solutions, (2XSSC) and treated with a chromatin stain, such as Giemsa, there appeared alternating dark and lightly stained demarcations called bands which can be seen along the length of each chromosome. The banding patterns produced are unique to each chromosome pair, thus enabling the identification of individual chromosomes as well as their regions. Methods commonly used to produce these discriminative banding patterns include Giemsa or G-banding, quinacrine mustard or Q- banding, reverse or R-banding, and constitutive heterochromatin or C-banding, each with its own attributes. The most frequently used methods for routine cytogenetic analysis are the G- and Q-bands. R-banding and C-banding are occasionally used to delineate specific abnormalities. Chromosome Regions and Band Designations The recommendations of “Paris Conference (1971): Standardization in Human Cytogenetics’’ provided a diagrammatic representation of banding patterns, elucidating
  • 10. 10 the typical band morphology for each chromosome, which came to be known as an ideogram. The Paris Conference (1971) introduced a numbering system helpful in designating specific bands and regions while describing a structural abnormality. A partial list of recommended symbols and abbreviations appears in the following table. Selected List of Symbols and Abbreviations Used in Karyotype Designations" Abbreviation Explanation add Additional material, origin unknown ( or ) Arrow from or to [ ]square brackets Number of cells in each clone cen Centromere chi Chimera single colon (:) Break double colon (::) Break and reunion comma (,) Separates chromosome number from sex chromosome and also separates chromosome abnormalities del Deletion de novo A chromosome abnormality which has not been inherited der Derivative chromosome dic Dicentric dmin Double minute dup Duplication fiS Fission fra Fragile site h Heterochromatin i Isochromosome inv Inversion ins Insertion mar Marker chromosome mat Maternal origin minus sign (-) Designates loss mos Mosaic multiplication sign (X) Multiple copies P Short arm Pat Paternal origin Ph Philadelphia chromosome plus sign (+) Gain
  • 11. 11 q Long arm question mark (?) Questionable identification r Ring chromosome rcp Reciprocal rec Recombinant chromosome rob Robertsonian translocation s Satellite / slant line Separates cell lines and clones semicolon (;) Separates altered chromosomes and breakpoints in structural rearrangements involving more than one chromosome stk Satellite stalk t Translocation UPd Uniparental disomy The most recent ideogram of human chromosomes depicting the regions and bands at three different resolutions as revealed by the G-banded method is shown in Fig. 2. The centromere cen divides a chromosome into a short p arm and a long q arm. Each chromosome arm is divided into regions. This division is based on certain landmarks present on each chromosome. By definition, a landmark is a consistent and distinct morphologic area of a chromosome that aids in the identification of a chromosome. A region is an area that lies between two landmarks. The regions are numbered in increasing order starting from the centromere and moving toward the telomere on both arms. The two regions immediately adjacent to the centromere are designated as 1, the next distal as 2, and so on. The regions are divided into bands and the bands into subbands. A band is that part of a chromosome which is distinctly different from the adjacent area by virtue of being lighter or darker in staining intensity. Sequential numbering of chromosome arms and bands helps to make the designation of specific bands easy. For example, the terminal band on the long arm of chromosome 2 can be written as 2q37, for chromosome 2, long arm, region 3, band 7. For descriptive purposes, the centromere is divided arbitrarily into two parts. The region between the middle of the centromere and the first band on the short arm (cen p11 or p11.1) is designated p10. Similarly, the region between the middle of the centromere and the first band on the long arm (cen  q11 or q11.1) is designated q10. The designations p10 and q10 allow us to describe isochromosomes, whole-arm translocations, and Robertsonian translocations more accurately.
  • 12. 12
  • 13. 13
  • 14. 14
  • 15. 15
  • 16. 16
  • 17. 17
  • 18. 18
  • 19. 19 Figure 2 Ideograms of G-banding patterns for normal human chromosomes at three different resolutions. The left, center, and right at 450, 550, and 850 band levels, respectively. (Reproduced with permission from S. Karger, ISCN 1995). Karyotype Descriptions The nomenclature for a karyotype follows certain basic rules. When designating a karyotype, the first item specified is the total number of chromosomes, including the sex chromosomes present in that cell, followed by a comma (,) and the sex chromosomes, in that order. Thus a normal female karyotype is written as 46,XX and a normal male
  • 20. 20 karyotype as 46,XY. The format is a continuous string of characters, without a space between characters. A chromosome abnormality, when present, follows the sex chromosome designation along with an abbreviation or symbol denoting the abnormality (see Table 3). With a series of hypothetical cases, we will further illustrate the use of ISCN (1995) in the following pages. NUMERICAL ABNORMALITIES OF CHROMOSOMES All numerical abnormalities (aneuploidies) in a karyotype are presented in increasing order of the chromosome number except for the sex chromosomes. Among sex chromosomes, X will precede Y. In describing aneuploidy involving more than one chromosome, the lower number chromosome will be placed first. As a general principle, aneuploidies are written by using the symbols plus (+) and minus (-). However, there are some subtle but distinct differences in the nomenclature for aneuploidies involving autosomes and sex chromosomes as well as for constitutional and acquired aneuploidies. The following examples will help clarify the differences. A. Sex Chromosome Aneuploidies Sex chromosome aneuploidies can be constitutional (congenital) or acquired. ISCN (1995) has provided special ways to distinguish between the two. Shown below are some examples of constitutional and acquired sex chromosome aneuploidies. 1. Constitutional Sex Chromosome Aneuploidies 45,X X monosomy as seen in Turner syndrome 47,XXY Typical karyotype seen in Klinefelter syndrome 47,XXX A female with three X chromosomes 48,XXYY Variant of Klinefelter syndrome with two X and two Y chromosomes 2. Acquired Sex Chromosome Aneuploidies Acquired sex chromosome aneuploidies are presented by using the symbols plus (+) or minus (-). When presenting a case with both constitutional and acquired sex chromosome anomalies, the letter c (for constitutional) is placed after the sex chromosome complement which was seen constitutionally. However, it is not necessary to use c if the constitutional sex chromosome complement is normal. The following examples show both scenarios. 45,X,-X A normal female with two X chromosomes and with the loss of one of the X chromosomes in her tumor cells.
  • 21. 21 47,XX,+X A normal female with two X chromosomes and gain of an extra X chromosome in her tumor cells. 45,X,-Y A normal male with XY chromosomes and loss of the Y chromosome in his tumor cells. 48,XY,+X,+Y A normal male with an acquired X and Y chromosomes in his tumor cells. 48,XXYc,+X A patient with Klinefelter syndrome with an acquired X chromosome in his tumor cells. The small letter c is placed next to XXY to show that constitutional sex chromosome complement of the patient is XXY and not XXXY. 46,Xc,+X A Turner syndrome patient (45,X) with gain of an X chromosome in her tumor cells B. Autosome Aneuploidies The autosome aneuploidies, both constitutional and acquired, are described by simply placing a + or - sign before the chromosome in question. When both constitutional and acquired aneuploidies are seen together, place letter c after the chromosome which is involved in constitutional aneuploidy. 47,XY, + 18 Male with trisomy 18 48,XX,+ 18,+21 Female with both trisomy 18 and trisomy 21 45,XY,-21 Male with monosomy 21 46,XY, + 21c, -21 Male trisomy 21 patient with loss of a chromosome 21 in his tumor cells 48,XX, + 8, +21c Female trisomy 21 patient with gain of a chromosome 8 in her tumor cells C. Mosaics and Chimeras An individual with two or more cell types differing in chromosome number or structure is either a mosaic or a chimera. If the two cell types in a specific instance originated from a single zygote, the individual is a mosaic (mas). If the cell types originated from two or more zygotes, the individual is a chimera (chi). When designating mosaic or chimeric karyotypes, a slant line (/) is used to separate the cell types. The actual number of cells detected in each clone is given within square brackets [ ]. Usages such as percentage and ratios should be avoided in the karyotype, but may be used in the text. When two or more cell lines are present and the cell lines are unrelated, the largest clone is recorded first, the next largest second, and so on. When two or more related abnormal
  • 22. 22 cell lines are seen, they are written in order of increasing complexity. In all situations, the normal cell line is always given last. mos 45,X[4]/46,XX[16] A mosaic with two cell lines. An analysis of 20 cells showed that this individual has 4 cells with 45,X and 16 cells with 46,XX karyotypes. mos 45,X[5]/47,XYY[5]/46,XY[10] A mosaic with three cell lines including normal. Note that the normal cell line is given last. mos 47,XX,+13 [15]/46,XX[5] A mosaic with trisomy 13 and normal cell lines. In a chimera where the two cell lines are normal 46,XX or 46,XY and they are represented in equal proportion, any one of them may be listed first. If one cell line is larger than the other, the larger clone is listed first. chi 46,XX[10]/46,XY[10] A chimera with female and male cells in equal number. chi 47,XX, + 2 1 [15]/46,XY [5] A chimera with female and male cell lines. The female cell line shows trisomy 21, while the male cell line is normal. chi 69,XXX[20]/46,XY[5] A chimera with triploid-diploid cell lines. The triploid line is female, while the diploid line is male. D. Uniparental Disomy (upd) In upd, which is also a numerical abnormality, both members of a specific chromosome pair are inherited from the same parent. Examples include some patients with Angelman and Prader-Willi syndromes. 46,XY,upd( 15)pat Male karyotype with uniparental disomy for paternally derived chromosome 15. 46,XY,upd(22)pat[10]/47,XY,+22[6] Mosaic male karyotype with one cell line with upd for a paternally derived 22 and the other with trisomy 22. Here, both cell lines are abnormal and therefore the largest is recorded first. 46,XX,upd pat Paternal upd for all 23 pairs of chromosomes, as may be seen in complete hydatidiform moles.
  • 23. 23 46,XY,upd pat A complete hydatidiform mole with XY sex chromosomes (very rare). All 46 chromosomes are paternally derived. 46,XX,upd mat Maternal upd as may be seen in ovarian teratoma. All 46 chromosomes are maternally derived. STRUCTURAL CHROMOSOME ABNORMALITIES As stated previously, all abnormalities are presented in increasing order of chromosome number. However, when the X and Y chromosomes are involved in structural rearrangements they are listed first, with X: always before Y. When designating an abnormality which is limited to a single chromosome, the abbreviation of the abnormality is given and then the number of the chromosome is written within parentheses, such as, de1(2), ins(4), dup(5), and r(X:). If two or more chromosomes are involved in a rearrangement, such as in a translocation, a semicolon (;) separates each chromosome. Some examples are t(3;4), t(2;3;4), or t(15;17). The chromosome arm and the breakpoint for the chromosomes involved are separated by a semicolon within a second set of parentheses. The chromosome number that is entered first is usually the one with the smallest number, unless a sex chromosome is involved. In such an event the sex chromosome is always designated first, e.g., t(X:;l) or t(Y,15). If in the same cell a specific chromosome is involved in both a numerical and a structural rearrangement, the numerical abnormality is designated first, e.g., +13,der(13;14). The chromosome nomenclature may be written in two different ways, namely, the short form and the long form. The long form allows better understanding of the karyotype by way of suggesting the chromosome region present in a karyotype and designating the bands where the break: and the reunion occur. In rare situations, particularly in structural rearrangements, the long form may be the only way to show where and how the rearrangement occurred. However, most practicing clinical cytogeneticists use the short form to report their results since it is concise and brief. Cytogenetic reports must contain description of the rearrangements in words, particularly in reporting abnormal karyotypes. This is an essential element of the laboratory report because the consumers of the report, most often, are not scientists. Following are a few examples of using short and long forms of nomenclature. A. Additional Material, Origin Unknown When additional chromosome material is attached to a chromosome, usually its origin is not identifiable through conventional banding methods. This is especially true if the
  • 24. 24 abnormality is subtle and originates de novo. The abbreviation add is then used to record the rearrangement: 46,XX,add( 17)(p13) Short form 46,XX,add(17)(?::p13qter) Long form Additional material of unknown origin is attached to chromosome 17 band 17p13. Here the type of rearrangement that resulted in the abnormality is also unknown. 46,XX,add(9)(q22) Short form 46,XX,add(9)(pterq22::?) Long form Additional material of unknown origin attached to band 9q22. It is assumed that the chromosome region 9q22+qter is deleted and replaced by the added material. B. Deletion A deletion is an aberration in which a part of a chromosome is lost. Deletions can be either terminal or interstitial. 1. Terminal Deletions 46,XY7dell() (q32) Short form 46,XY,del( l)(pter+q32:) Long form A karyotype with terminal deletion of chromosome 1. A single colon (:) indicates a break at lq32 and deletion of the region distal to it. The remaining chromosome consisting of regions lpter to lq32 is present in the cell. (The terminal regions of the short and long arms of a chromosome are designated by pter and qter, respectively). 2. interstitial Deletions 46,XY,del(1)(p2lp32) Short form 46,XY,del( 1)(pterp21 ::p32qter) Long form A break and reunion represented by a double colon (::) occurred at bands lp32 and lp21. The segment between the two breakpoints is deleted. C. Derivative and Recombinant Chromosomes 1. Derivative Chromosomes A structurally rearranged chromosome generated by events involving two or more chromosomes or due to multiple events within a single chromosome is a derivative chromosome. Thus, each unbalanced product of a translocation event is a derivative chromosome and is designated by the abbreviation der. The identity of the Centromere in a derivative chromosome determines its chromosome number. For example, der(3) indicates that this derivative chromosome has the chromosome 3 centromere. 46,XY,der(3)t(3;6)(p21;q23)
  • 25. 25 The derivative chromosome 3 in this example resulted from an adjacent 1 segregation of a balanced translocation between the short arm of a chromosome 3 at band p21 and the long arm of a chromosome 6 at band q23. The modal number of 46 chromosomes in this example indicates that there are two normal chromosomes 6. The der(3) replaces one normal chromosome 3. This unbalanced karyotype shows loss (monosomy) of region 3p21+pter and gain (trisomy) of 6q23+qter. 45,XY,der(3)t(3;6)(p21;q23),-6 The der(3) is same as in the above example and replaces one of the normal chromosome 3. However, there is only one normal chromosome 6 in the cell, the result of a 3: 1 segregation. Note that the chromosome number in a cell is critical in understanding the nomenclature. Also note that the -6 is placed at the end of the karyotype. This unbalanced karyotype represents monosomy for the 3p21 to the pter region of chromosome 3 and monosomy for the 6pter to the 6q23 region of chromosome 6. 47,XY7+der(3)t(3;6)(p21;q23)mat The der(3) is the same as in the first example. As a result of 3:1 segregation, the mother contributed a normal 3 and the derivative 3. The father contributed a normal 3 as well. The patient is therefore trisomic for both 3p21+qter and 6q23+qter. 2. Recombinant Chromosomes A recombinant chromosome is also a structurally rearranged chromosome. It arises from meiotic crossing over between two homologous chromosomes in a heterozygote: one a structurally rearranged chromosome and the other a normal homolog. Recombinant chromosomes commonly arise due to crossing over within the limits of the inversion in an inversion heterozygote. 46,XY,inv(3)(p21q32) A pericentric inversion of a chromosome 3 is designated above. During meiosis, crossing over within the inverted segment could result in two recombinant chromosomes. 46,XY,rec(3)dup(3p)inv(3)(p2lq32) Duplication from 3pter to 3p21 and deletion from 3q32 to 3qter. 46,XY,rec(3)dup(3q)inv(3)(p2lq23) Duplication of 3q23 to qter and deletion from 3p21 to 3pter. D. Insertions An insertion is a structural rearrangement wherein a part of a chromosome is inserted into a new place on a chromosome. Insertions can be within a chromosome or between two chromosomes, and can be direct or inverted.
  • 26. 26 1 Insertion Within a Chromosome 46,XX,ins(3)(p21q27q32) This represents a direct insertion within a chromosome. The long arm segments between band 3q27 and 3q32 have been inserted into the short arm of the same chromosome at band 3p21. 2. Insertion Involving Two Chromosomes 46,XX,ins(4;9)(q31;ql2q13) The long arm segments between bands 9q12 and 9q13 have been inserted into the long arm of chromosome 4 at band q31. The recipient chromosome is always specified first, regardless of the chromosome number. E. Inversions A chromosomal aberration in which a portion (segment) of a chromosome is reversed in orientation. Inversions are of two types. Paracentric inversions involve only one arm of a chromosome, while pericentric inversions involve both arms of a chromosome. 1. Paracentric Inversion 46,XY,inv(3)(q21q27) A break and a reunion occurred at bands 3q21 and 3q27 (long arm) of a chromosome 3. The interlying segment was reattached with its bands in an inverted sequence. 2. Pericentric Inversion 46,XY,inv(2)(p21q31) A break and a reunion occurred at bands 2p21 in the short arm and 2q31 in the long arm of a chromosome 2. The interlying segment was reattached with its bands in an inverted sequence. F. Isochromosomes An abnormal chromosome with duplication of one of the arms (as a result of a misdivision of the centromere) resulting in a metacentric chromosome with identical gene sequences on both arms is referred to as an isochromosome. In the karyotype the isochromosome is abbreviated as i. When the nature of the centromere is not known (monocentric or dicentric), the breakpoint in an isochromosome is assigned to the arbitrary centromeric bands p 10 and q10 depending upon whether the isochromosome consists of the short arm or the long arm. The use of p10 and q10 will be further demonstrated under Robertsonian translocations and whole arm translocations.
  • 27. 27 46,XX,i(18)(p10) An isochromosome for the short arm of a chromosome 18. The breakpoint is assigned to p 10. 46,XX,i(18)(q10) An isochromosome for the long m of a chromosome 18. The breakpoint is assigned to q10. 1. lsodicentric Chromosomes Unlike the isochromosome, the isodicentric chromosome contains two copies of the same centromeres. One of the two centromeres is usually inactive. Designated by idic, the breakpoints in isodicentric chromosomes are usually on the band adjacent to the centromere on the opposite arm. 46,XX,idic( 18)(ql1.2) An isodicentric chromosome for the entire short arm of chromosome 18 as well as for the long m region between the centromere and the band 18q11.2. G. Marker Chromosomes Marker chromosomes mar are structurally abnormal chromosomes of which no part can be identified. If any part of such a marker is identifiable it is no longer a marker but a derivative chromosome. The presence of a mar in a karyotype is always recorded by a plus (+) sign. 47,XY,+mar A male karyotype with a marker chromosome. 48,XY, + 2mar A male karyotype with two marker chromosomes. 48,XY,t(5;12)(q13;pl2),+21,+mar A male karyotype with a t(5;12), an extra chromosome 21 and a marker chromosome. H. Ring Chromosomes A structurally abnormal chromosome as a result of two breaks, one on the short arm and one on the long arm. The broken ends are attached to form a ring configuration. The net result is deletions of the terminal ends of both arms. 46,X,r(X) A female karyotype with only one normal X chromosome and a ring X chromosome with no information on breakpoints. 46,Xr(X)(p22q24) A female karyotype with one noma1 X chromosome and a ring X chromosome with breakage and reunion at bands Xp22 and Sq24. I. Translocations The interchange or transfer of chromosomal segments between two chromosomes is defined as a translocation.
  • 28. 28 1. Reciprocal Translocations If the translocation involves a mutual exchange of segments between two chromosomes, it is a reciprocal translocation. To describe a reciprocal translocation the abbreviation rcp or the letter t can be used. The latter is more often used. In translocations involving two chromosomes, the autosome with the lowest number is specified first. If an X or Y chromosome is involved in the translocation, the X or Y is specified first, in preference to the autosomes. If the translocation involves three or more chromosomes, the same rule applies. However, in such rearrangements the first chromosome will be the one with the lowest number (or sex chromosome), the second chrornosome specified will be the one that received the segment from the first, and so on. 46,XX,t(7; 10)(q22;q24) Breakage and reunion occurred at bands 7q22 and lOq24. The segments distal to these bands were interchanged. The translocation event has not altered the total DNA content of this cell. Therefore, the translocation is cytogenetically balanced. 46,X7t(X;1)(p21;q32) Breakage and reunion occurred at bands Xp21 and lq32. The segments distal to these bands were interchanged. The translocation is balanced. As per the general rules, the X chromosome is specified first. 46,X7t(Y;15)(q11.23;q21.2) Breakage and reunion occurred at subbands Yql 1.23 and 15q21.2. The segments distal to these subbands were interchanged. This translocation is cytogenetically balanced. Here again, the sex chromosome is specified first. 46,XY,t(9;22)(q34;q11.2) Breakage and reunion occurred at bands 9q34 and 22q11.2. The segments distal to these bands have been interchanged. This represents the typical translocation resulting in the Philadelphia (Ph) chromosome. 46,XX,t(1;7;4)(q32;p15;q21) This is an example of a translocation involving three chromosomes. The segment on chromosome 1 distal to lq32 has been translocated onto chromosome 7 at band 7 p15, the segment on chromosome 7 distal to 7p15 has been translocated onto band 4q21, and the segment on chromosome 4 distal to 4q21 has been translocated onto chromosome 1 at lq32. The translocation is cytogenetically balanced. The general principles also apply to designating translocations involving more than three chromosomes.
  • 29. 29 2. Whole-Arm Translocations Whole-arm translocation is also a type of reciprocal translocation in which the entire arms of two nonacrocentric chromosomes are interchanged. Such rearrangements are described by assigning the breakpoints to the arbitrary centromeric region designated as p10 and q10. The breakpoint p10 is assigned to the chromosome with the lower number of the two chromosomes involved or the sex chromosome. Consequently, the second chromosome will have a breakpoint at q10. This assignment is particularly useful in describing whole-arm translocations in which the nature of the centromere is not known. 46,XX,t(3;8)(p10;q10) A balanced whole-arm translocation between chromosome 3 and chromosome 8. In this example the short arm of chromosome 3 and the long arm of chromosome 8 have been fused. Reciprocally, the long arm of chromosome 3 has fused with the short arm of chromosome 8. However, it need not be written in the karyotype. The modal number 46 is also indicative of the presence of the reciprocal product. Which abnormal chromosome carries the centromere of 3 or 8 is not known. The karyotype is apparently balanced. 46,XX,t(3;8)(p10;p10) Balanced whole-arm translocation in which the short arms of chromosomes 3 and 8 and the long arms of chromosome 3 and 8 have been fused. 45,X,der(X;3)(p10;q10) A derivative chromosome consisting of the short arm of X and the long arm of 3. The reciprocal product consisting of the long arm of X and the short arm of 3 is missing. Note: the total chromosome number is 45, suggesting the loss of the reciprocal product. The net result is monosomy for the entire long arm of X and the entire short arm of 3. 47,XX,+der(X;3)(p10;q10) This karyotype has an extra derivative chromosome consisting of the short arm of X and the long arm of 3 (same as in the previous example). Also present are two normal X chromosomes and two normal chromosomes 3. The net result is trisomy for the entire short arm of X and the entire long arm of 3. 3. Robertsonian Translocations Robertsonian translocations originate through centric fusion of the long arms of acrocentric chromosomes consisting of pairs 13, 14, 15, 21, and 22. Since Robertsonian translocations are also whole-arm translocations, they can be described adequately using the same nomenclature approach as for whole arm translocations. In a Robertsonian translocation, the short arms of the chromosomes involved are lost. In the translocation
  • 30. 30 heterozygote the loss of short arms is not known to be causally related to an abnormal phenotype. However, in order to maintain uniformity in the nomenclature, a Robertsonian translocation product is considered to be a “derivative chromosome” and therefore the symbol der is used. For historical reasons, the abbreviation rob may also be used. 45,XX,der(13;14)(q10;q10) A balanced Robertsonian translocation occurred between the long arm of a chromosome 13 and the long arm of a 14. As a result, the chromosome number was reduced to 45. The origin of the centromere nature is unknown. Breakage and reunion have occurred at bands 13q10 and 14q10. This derivative chromosome has replaced one chromosome 13 and one chromosome 14. There is no need to indicate the missing chromosomes because the chromosome number is reduced to 45. The karyotype now contains one normal 13, one normal 14, and the der(13;14). The short arms of the 13 and 14 are lost, which is not associated with an adverse clinical outcome. 46,XX,+13,der(13;14)(q10;q10) A derivative chromosome consisting of the long arms of a 13 and a 14, same as in the above example. However, in this karyotype there are two normal 13 and one normal 14. The additional 13 is shown by the designation + 13. In this example a 13 is involved in both numerical and structural abnormalities. In such instances the numerical abnormality is designated before the structural abnormality. NEOPLASM, CLONES, AND CLONAL EVOLUTION All principles dictating the nomenclature are identical to both constitutional and acquired changes. However, some unusual situations and circumstances apply uniquely to acquired chromosome changes. We will define some of the terminology used in the description of acquired changes. We will also give some examples of complex chromosome rearrangements not usually seen in constitutional karyotypes. A. Clones A clone is defined as a cell population derived from a single progenitor. In acquired chromosome changes, a clone is defined as two cells with the same structural aberration. In numerical aberrations, a trisomic clone must have at least two cells with the same extra chromosome; for a monosomy clone, a minimum of three cells must show the loss of the
  • 31. 31 same chromosome. A clone is not necessarily homogeneous, since subclones may develop during evolution. 1. Mainline The mainline is the most frequent chromosome complement of a tumor cell population. It is a quantitative term and does not indicate the sequence of origin, such as primary versus secondary. 46,XX,t(9;22)(q34;ql1.2)[3]/47,XX,+8,t(9;22)(q34;ql1.2)[17] In the above karyotype, the clone with 47 chromosomes is the mainline, even though it is likely that the basic or the primary clone was the one with 46 chromosomes. 2. Stemline and Sideline The stemline ( SE ) is the most basic clone of a tumor cell population. All additional subclones are termed sidelines (sdl). 46,XX,t(9;22)(q34;ql1.2)[3]/47,XX,+8,t(9;22)(q34;ql1.2)[17]/48,XX,+8, t(9;22)(q34;ql1.2),+ 19[12] In the above example, the clone with 46 chromosomes is the stemline and the clones with 47 and 48 chromosomes are the sidelines. The clone with 47 Human Cytogenetic Nomenclature chromosomes is the mainline since the largest number of cells show that karyotype. B. Clonal Evolution-Related Clones Cytogenetically related clones are presented in the order of increasing complexity as far as possible, regardless of the size of the clone. This means that the stemline is presented first, followed by the subclones in the order of increasing complexity. 46,XX,t(8;21)(q22;q22)[12]/45,X-X,t(8;21)(q22;q22)[19]/46,X,-X,+8,t(8;21)(q22;q22)[5] In tumors with related clones such as the one above, the term idem may be used followed by the additional changes. The idem can replace only the stemline, which is usually given first. Example: 46,XX,t(8;21)(q22;q22)[12]/45,-X,idem[19]/46,- X,+8,idern[5] C. Unrelated Clones Clones with completely unrelated aberrations are presented according to their size, the largest first, then the second largest, and so on. The normal diploid clone is always presented last. 46,XX,t(8;21)(q22;q22)[10]/47,XX,+8[6]/45,XX,i(8)(q10)[4]
  • 32. 32 If a tumor contains both related and unrelated clones, the related clones are written first in the order of increasing complexity, followed by the unrelated clones in order of decreasing size. Numerous other more complex structural karyotypic changes may be encountered. These cases are rather rare and are not addressed here. However, one can easily extrapolate from the basic principles eluded to earlier and throughout this chapter and arrive at the proper nomenclature.