Data Challenges
–
IP & Innovation
Bart Van Looy
Faculty of Business and Economics, INCENTIM & ECOOM
KU Leuven (BE)
IGS, Un...
Data Challenges
• Many
• Hence, a selection
o Unit of analysis, part 1 (Actors)
o Unit of analysis, part 2 (IP strategy)
o...
Unit of Analysis
• Actor (applicant, assignee,…)
• Firms, but also universities, individuals (entrepreneurs),
governmental...
Name variety
• Applying for IP is still a ‘service activity’, hence heterogeneity: name
variants (legal forms, country ext...
Name Variety
Data Set Nrb of Person_ID Nbr of Distinct Original Name Cnt of Person_ID per Original Name Nbr of distinct hr...
Impact (only) for names treated on level 2
Item
HRM_L2 in Patstat
Overall HRM_L1 in Patstat overall Original name in Patst...
HRM_L2
Count of
PERSON_ID
Sum of patent count on
hrm_l2
Max patent count among all original
name variations
Improvement on...
HRM_L2
Count of
PERSON_ID
Sum of patent count on
hrm_l2
Max patent count among all
original name variations
Improvement on...
UNIVERSITEIT UTRECHT 83 704 107 597 557.94%
UNIVERSITEIT VAN AMSTERDAM 61 374 72 302 419.44%
UNIVERSITY COLLEGE CARDIFF 10...
From name harmonizing to consolidation?
• Harmonizing (especially the part which implies expert judgment)
benefits from in...
MITSUBISHI AGRICULTURAL MACHINERY 8 6215 5360 855 15.95%
MITSUBISHI CHEMICALS CORPORATION 144 27943 10454 17489 167.29%
MI...
What to expect from financial databases?
• Rather good coverage for larger, stock listed companies.
• Do notice that such ...
Ctry # companies
AT 224.480 6.385 2,84% 167.413 74,58% 77.880 34,69% 140.733 62,69%
BE 609.412 129.201 21,20% 257.647 42,2...
Country
Applications
assignable to
corporate
applicants per
country
Applications assignable to matched
corporate applicant...
Compendium of underlying
methodologies available online:
http://epp.eurostat.ec.europa.eu/portal/page/portal/product_
deta...
• IP strategy <> patenting behavior
• IP strategy implies a combination of deliberate (and accidental)
behaviors, implying...
Indicators
• Mere counts to an ever larger extent considered as
insufficient (value distribution of IP highly skewed).
• I...
Inventions shaping technological trajectories: do existing patent indicators provide a comprehensive
picture?
Sam Arts,a,b...
Quality of IP
(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES BT BT BT BT BT BT BT BT
Model Logit Logit Logit Logit Logit Logit
Ex ante
Logit
...
Recall Pr( + | BT )
0.00% 22.95% 2.46% 0.00% 0.00% 0.00% 25.41% 24.59%
Specificity Pr( - |
NBT )
100.00% 99.98% 100.00% 10...
Indicators reflecting Open Innovation?
• Co-inventors & Co-owners
o Co-inventors: name harmonizing & disambiguation (notic...
Co-Patents: Occurrence over time
Epo Patent Documents (1978 onwards) –
2.089.217 Patent Documents
Co-patents: 5,99% of Pat...
Science unfolding in technology: a cross-
country analysis of scientific citations in patents
Julie Callaert*, Jan-Bart Ve...
Row LabelsAT AU BE BG BR CA CH CN CY CZ DE DK ES FI FR GB GR HU IE IL IN IS IT JP KR LI NL NO NZ PL PT RU SE SI TW US ZA
A...
Thank you.
? ? ?
Contact: Bart.vanlooy@kuleuven.be
Upcoming SlideShare
Loading in...5
×

Bart Van Looy a Quantitative approach to IP Management Research

1,040

Published on

Bart Von Looy comments the papers presented in the Special Issue and suggests ideas for quantitative research on IP Management and Strategy

Published in: Business, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,040
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Bart Van Looy a Quantitative approach to IP Management Research

  1. 1. Data Challenges – IP & Innovation Bart Van Looy Faculty of Business and Economics, INCENTIM & ECOOM KU Leuven (BE) IGS, University of Twente (NL) Academy of Management 2013
  2. 2. Data Challenges • Many • Hence, a selection o Unit of analysis, part 1 (Actors) o Unit of analysis, part 2 (IP strategy) o Choice/relevance/availability of indicator(s)
  3. 3. Unit of Analysis • Actor (applicant, assignee,…) • Firms, but also universities, individuals (entrepreneurs), governmental agencies…. • Two issues: o Name variety o Consolidation (implying financial databases)
  4. 4. Name variety • Applying for IP is still a ‘service activity’, hence heterogeneity: name variants (legal forms, country extensions, errors, name changes,….) • Non trivial issue (see next slides) • Current initiatives to handle this problem include NBER, OECD & EUROSTAT/KU Leuven (see especially the extensions made available for PATSTAT) (+ commercial offerings, e.g. Derwent) • Automated procedures prefered, however, not always sufficient (introducing the need for expert judgment)
  5. 5. Name Variety Data Set Nrb of Person_ID Nbr of Distinct Original Name Cnt of Person_ID per Original Name Nbr of distinct hrm_l1 Cnt of Person_ID per HRM_L1 Nbr of distinct hrm_l2 Cnt of Person_ID per HRM_L2 All Patstat 14432562 11972108 1.20551552 9675780 1.49161742 9662148 1.493721893 EPO 550255 410506 1.340431078 376472 1.461609363 374929 1.467624537 USPTO 3020001 2562930 1.178339245 2283418 1.322579134 2279028 1.325126765 1.20551552
  6. 6. Impact (only) for names treated on level 2 Item HRM_L2 in Patstat Overall HRM_L1 in Patstat overall Original name in Patstat overall Nbr of distinct Names 1998 15630 85139 Avg Nbr of matched person_ids per name 124.20 15.88 2.91 Avg Nbr of matched patents per name 10952.81 1400.11 257.04 Avg additional Nbr of assigned patents per name 6100.25 613.72 70.61 Avg share of additional patents per name 196.84% 65.41% 24.78% HRM_L2 in EPO HRM_L1 in EPO Original name in EPO HRM_L2 in USPTO HRM_L1 in USPTO Original name in USPTO 1841 3384 6467 1906 6296 26421 18.92 10.29 5.39 47.53 14.39 3.43 703.62 382.79 200.30 1727.02 522.83 124.59 391.89 196.29 90.00 888.61 235.56 45.79 188.75% 121.43% 68.84% 186.80% 90.00% 36.60%
  7. 7. HRM_L2 Count of PERSON_ID Sum of patent count on hrm_l2 Max patent count among all original name variations Improvement on patent count Improvment on share on patent count 3COM CORPORATION (COMPUTERS COMMUNICATION COMPATIBILITY CORPORATION) 82 2291 909 1382 152.04% 3M COMPANY (MINNESOTA MINING AND MANUFACTURING COMPANY) 594 60591 12309 48282 392.25% 3M INNOVATIVE PROPERTIES COMPANY (MINNESOTA MINING AND MANUFACTURING INNOVATIVE PROPERTIES COMPANY) 175 44499 17958 26541 147.79% A & S UMWELTTECHNOLOGIE 5 13 7 6 85.71% AALBORG UNIVERSITET 20 133 85 48 56.47% AARHUS UNIVERSITET 32 364 175 189 108.00% ABB (ASEA BROWN BOVERI) 534 19199 2617 16582 633.63% ABB TECHNOLOGY (ASEA BROWN BOVERI TECHNOLOGY) 111 4962 1822 3140 172.34% ABBOTT 428 29381 9558 19823 207.40% ABERDEEN UNIVERSITY 75 697 143 554 387.41% ACCENTURE 85 769 225 544 241.78% ACCENTURE GLOBAL SERVICES 80 3157 821 2336 284.53% ACE DENKEN 38 3664 2656 1008 37.95% ACUSHNET COMPANY 72 2962 1099 1863 169.52% ADIDAS INTERNATIONAL MARKETING 25 399 119 280 235.29% ADIR 116 5138 1506 3632 241.17% ADVANCED CARDIOVASCULAR SYSTEMS 109 3039 710 2329 328.03% ADVANCED RESEARCH AND TECHNOLOGY INSTITUTE 44 414 72 342 475.00% ADVANTEST CORPORATION 137 11766 4294 7472 174.01% AEG (ALLGEMEINE ELEKTRICITAETS-GESELLSCHAFT) 130 19890 15188 4702 30.96%
  8. 8. HRM_L2 Count of PERSON_ID Sum of patent count on hrm_l2 Max patent count among all original name variations Improvement on patent count Improvment on share on patent count STMICROELECTRONICS 1243 32127 1803 30324 1681.86% KORBER 278 4945 316 4629 1464.87% G.D 454 8125 566 7559 1335.51% AGFA-GEVAERT 530 34156 2650 31506 1188.91% SCHOTTEL 119 536 43 493 1146.51% MCDERMOTT 121 655 54 601 1112.96% STATE OF OREGON, ACTING BY AND THROUGH THE OREGON STATE BOARD OF HIGHER 50 182 16 166 1037.50% HADASIT MEDICAL RESEARCH SERVICES AND DEVELOPMENT 128 1093 104 989 950.96% CHINESE ACADEMY OF SCIENCES 214 7918 774 7144 923.00% DR. KARL THOMAE GMBH 426 8323 835 7488 896.77% VOITH 433 8668 872 7796 894.04% FERRERO 200 1963 203 1760 867.00% CARL-ZEISS-STIFTUNG 216 3405 356 3049 856.46% W. R. GRACE & COMPANY 756 20820 2183 18637 853.73% BOC 387 12049 1265 10784 852.49% KAVO DENTAL 122 2830 299 2531 846.49% SNAMPROGETTI 216 9686 1024 8662 845.90% RHONE-POULENC 328 13799 1502 12297 818.71% RAYCHEM CORPORATION 462 12051 1327 10724 808.14% FARMITALIA CARLO ERBA 286 5942 658 5284 803.04% NABISCO 127 2434 272 2162 794.85% CRF (CENTRO RICERCHE FIAT) 193 4428 508 3920 771.65% RHONE-POULENC RORER 691 22366 2567 19799 771.29% SYNTEX 343 8236 949 7287 767.86% SKF 418 12025 1390 10635 765.11% YOSHIDA KOGYO 325 22196 2584 19612 758.98% HARVARD UNIVERSITY 894 20220 2357 17863 757.87% FOCKE & COMPANY 169 4039 472 3567 755.72% JUNKERS & CO. 138 3528 415 3113 750.12%
  9. 9. UNIVERSITEIT UTRECHT 83 704 107 597 557.94% UNIVERSITEIT VAN AMSTERDAM 61 374 72 302 419.44% UNIVERSITY COLLEGE CARDIFF 103 1146 304 842 276.97% UNIVERSITY COLLEGE CORK - NATIONAL UNIVERSITY OF IRELAND, CORK 100 506 65 441 678.46% UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OFIRELAND, DUBLIN 53 312 62 250 403.23% UNIVERSITY COLLEGE OF SWANSEA 12 28 9 19 211.11% UNIVERSITY COLLEGE OF WALES ABERYSTWYTH 18 36 7 29 414.29% UNIVERSITY OF ADELAIDE 20 137 43 94 218.60% UNIVERSITY OF AKRON 51 1054 332 722 217.47% UNIVERSITY OF ALABAMA 43 286 61 225 368.85% UNIVERSITY OF ALBERTA 109 1308 590 718 121.69% UNIVERSITY OF ARIZONA 108 815 207 608 293.72% UNIVERSITY OF ARKANSAS 71 1095 231 864 374.03% UNIVERSITY OF BATH 54 422 121 301 248.76% UNIVERSITY OF BIRMINGHAM 53 577 213 364 170.89% UNIVERSITY OF BRADFORD 35 319 130 189 145.38% UNIVERSITY OF BRISTOL 54 1112 386 726 188.08% UNIVERSITY OF BRITISH COLUMBIA 161 3101 1200 1901 158.42% UNIVERSITY OF CALIFORNIA 909 31664 9874 21790 220.68% UNIVERSITY OF CENTRAL FLORIDA 67 947 352 595 169.03% UNIVERSITY OF CHICAGO 62 1551 387 1164 300.78% UNIVERSITY OF CINCINNATI 80 1005 328 677 206.40% UNIVERSITY OF COLORADO 164 1538 320 1218 380.63% UNIVERSITY OF CONNECTICUT 83 1301 318 983 309.12% UNIVERSITY OF DAYTON 24 367 85 282 331.76%
  10. 10. From name harmonizing to consolidation? • Harmonizing (especially the part which implies expert judgment) benefits from information on the ownership status of involved entities. • Moreover, subsidiaries exist with names displaying no name similarity at all: o Tibotec (-Virco) o Janssen Pharmaceuticals o Johnson & Johnson • Again, a non trivial issue – large, R&D intensive firms - + 30% (patents) – See Leten et al. (2007) - Belderbos et al. (2010).
  11. 11. MITSUBISHI AGRICULTURAL MACHINERY 8 6215 5360 855 15.95% MITSUBISHI CHEMICALS CORPORATION 144 27943 10454 17489 167.29% MITSUBISHI ELECTRIC BUILDING TECHNO SERVICE COMPANY 14 2691 2606 85 3.26% MITSUBISHI ELECTRIC CORPORATION 683 343881 221369 122512 55.34% MITSUBISHI ELECTRIC HOME APPLIANCE COMPANY 27 3028 2712 316 11.65% MITSUBISHI GAS CHEMICAL COMPANY 222 15658 5896 9762 165.57% MITSUBISHI HEAVY INDUSTRIES 418 111413 74572 36841 49.40% MITSUBISHI MATERIALS CORPORATION 160 24450 18467 5983 32.40% MITSUBISHI METAL CORPORATION 38 3534 3287 247 7.51% MITSUBISHI MOTORS CORPORATION 184 21968 14769 7199 48.74% MITSUBISHI PAPER MILLS 74 11399 9782 1617 16.53% MITSUBISHI PENCIL COMPANY 161 5157 3034 2123 69.97% MITSUBISHI PLASTICS 96 8124 4629 3495 75.50% MITSUBISHI RAYON COMPANY 242 24610 13279 11331 85.33% CIBA (GESELLSCHAFT FUER CHEMISCHE INDUSTRIE IN BASEL) 166 34669 7966 26703 335.21% CIBA SPECIALTY CHEMICALS HOLDING 163 13853 5499 8354 151.92% CIBA-GEIGY 603 79670 15456 64214 415.46%
  12. 12. What to expect from financial databases? • Rather good coverage for larger, stock listed companies. • Do notice that such an exercise needs to be performed on an annual base (M&A’s + divestures). • Situation troublesome for Small and Medium sized Enterprises (better strategy to obtain financial accounts directly?) • Example: Feasibility study for Eurostat – Defining the contribution of SME’s in terms of technology development.
  13. 13. Ctry # companies AT 224.480 6.385 2,84% 167.413 74,58% 77.880 34,69% 140.733 62,69% BE 609.412 129.201 21,20% 257.647 42,28% 545.187 89,46% 41.646 6,83% BG 494.532 59.231 11,98% 488.209 98,72% 60.490 12,23% 336.347 68,01% CY 41.289 907 2,20% 1.878 4,55% 1.005 2,43% 36.963 89,52% CZ 482.679 469.799 97,33% 294.733 61,06% 184.120 38,15% 198.742 41,17% DE 1.456.074 419.446 28,81% 437.928 30,08% 1.101.434 75,64% 1.170.990 80,42% DK 252.930 42.447 16,78% 76.887 30,40% 252.918 100,00% 144.339 57,07% EE 108.986 94.667 86,86% 52.709 48,36% 108.936 99,95% 84.675 77,69% ES 1.273.351 1.140.063 89,53% 843.380 66,23% 1.273.351 100,00% 355.419 27,91% FI 170.484 160.798 94,32% 47.776 28,02% 170.484 100,00% 24.134 14,16% FR 1.291.883 1.291.875 100,00% 878.954 68,04% 1.291.882 100,00% 269.729 20,88% GB 3.076.136 447.311 14,54% 132.348 4,30% 2.998.120 97,46% 1.918.280 62,36% GR 28.401 28.401 100,00% 23.600 83,10% 28.401 100,00% 21.289 74,96% HU 377.912 316.267 83,69% 135.538 35,86% 375.792 99,44% 12.683 3,36% IE 211.372 25.951 12,28% 21.836 10,33% 199.798 94,52% 16.627 7,87% IT 1.198.684 1.188.353 99,14% 352.781 29,43% 1.198.684 100,00% 856.313 71,44% LT 117.370 26.789 22,82% 110.033 93,75% 3.712 3,16% 9.636 8,21% LU 19.240 5.199 27,02% 4.040 21,00% 16.028 83,31% 15.838 82,32% LV 110.292 85.711 77,71% 102.382 92,83% 7.938 7,20% 5.406 4,90% MT 15.259 15.259 100,00% 392 2,57% 15.259 100,00% 4.907 32,16% NL 895.494 31.108 3,47% 643.147 71,82% 822.005 91,79% 272.414 30,42% PL 960.971 117.796 12,26% 902.969 93,96% 121.316 12,62% 589.289 61,32% PT 434.526 365.782 84,18% 343.776 79,12% 428.069 98,51% 319.629 73,56% RO 571.289 568.039 99,43% 566.221 99,11% 571.038 99,96% 493.193 86,33% SE 866.641 829.664 95,73% 848.854 97,95% 319.732 36,89% 67.869 7,83% SI 76.089 2.512 3,30% 10.558 13,88% 2.574 3,38% 15.661 20,58% SK 230.781 165.399 71,67% 197.956 85,78% 58.557 25,37% 17.996 7,80% Total 15.596.557 8.034.360 51,51% 7.943.945 50,93% 12.234.710 78,44% 7.440.747 47,71% Companies reporting operational revenues Companies reporting staff count Companies reporting total assets Companies reporting dependence status
  14. 14. Country Applications assignable to corporate applicants per country Applications assignable to matched corporate applicants per ctry† Non-dependent(<50% owned) SMEs* Large companies* SMEs controlled by large business groups* SMEs controlled by small business groups* SMEs missing ownership information* Companies missing financial and ownership information* AT 25.009 18.523 74,07% 1.627 8,78% 11.083 59,83% 1.335 7,21% 5 0,03% 4.515 24,38% 1 0,01% BE 25.934 23.094 89,05% 2.332 10,10% 15.521 67,21% 1.899 8,22% 67 0,29% 3.387 14,67% 1 0,00% BG 187 73 39,04% 6 8,22% 37 50,68% 4 5,48% - 0,00% 26 35,62% - 0,00% CY 932 323 34,66% 7 2,17% 10 3,10% 24 7,43% 2 0,62% 80 24,77% 200 61,92% CZ 1.422 954 67,09% 113 11,84% 367 38,47% 56 5,87% 7 0,73% 422 44,23% - 0,00% DE 527.445 448.703 85,07% 15.981 3,56% 298.604 66,55% 41.514 9,25% 948 0,21% 94.201 20,99% 218 0,05% DK 29.176 24.330 83,39% 3.208 13,19% 15.261 62,73% 1.107 4,55% 843 3,46% 3.950 16,24% 32 0,13% EE 209 125 59,81% 55 44,00% 8 6,40% 5 4,00% - 0,00% 65 52,00% - 0,00% ES 16.777 11.396 67,93% 1.009 8,85% 4.840 42,47% 946 8,30% 197 1,73% 4.475 39,27% - 0,00% FI 50.681 44.635 88,07% 1.175 2,63% 37.039 82,98% 896 2,01% 459 1,03% 5.163 11,57% 40 0,09% FR 176.664 142.696 80,77% 5.148 3,61% 111.199 77,93% 7.809 5,47% 386 0,27% 18.525 12,98% 45 0,03% GB 128.184 121.723 94,96% 13.374 10,99% 57.684 47,39% 14.837 12,19% 6.149 5,05% 30.197 24,81% 1.358 1,12% GR 661 195 29,50% 41 21,03% 29 14,87% 7 3,59% - 0,00% 114 58,46% 5 2,56% HU 1.606 615 38,29% 15 2,44% 310 50,41% 1 0,16% - 0,00% 296 48,13% 2 0,33% IE 8.745 6.565 75,07% 171 2,60% 1.540 23,46% 1.037 15,80% 166 2,53% 3.528 53,74% 129 1,96% IT 75.864 59.745 78,75% 9.973 16,69% 30.883 51,69% 3.297 5,52% 768 1,29% 15.162 25,38% 5 0,01% LT 27 13 48,15% 2 15,38% - 0,00% 2 15,38% - 0,00% 9 69,23% - 0,00% LU 5.387 3.102 57,58% 115 3,71% 1.300 41,91% 77 2,48% 2 0,06% 1.611 51,93% - 0,00% LV 222 37 16,67% 7 18,92% 9 24,32% 3 8,11% - 0,00% 18 48,65% - 0,00% MT 426 363 85,21% 29 7,99% 56 15,43% 3 0,83% 7 1,93% 268 73,83% - 0,00% NL 131.526 120.758 91,81% 1.000 0,83% 96.045 79,54% 6.626 5,49% 1.705 1,41% 15.309 12,68% 358 0,30% PL 1.163 796 68,44% 210 26,38% 288 36,18% 93 11,68% 3 0,38% 202 25,38% - 0,00% PT 1.015 729 71,82% 211 28,94% 231 31,69% 70 9,60% 12 1,65% 212 29,08% - 0,00% RO 95 34 35,79% 1 2,94% 5 14,71% 2 5,88% - 0,00% 26 76,47% - 0,00% SE 84.433 52.941 62,70% 2.289 4,32% 34.843 65,81% 3.125 5,90% 2.854 5,39% 9.890 18,68% 32 0,06% SI 1.426 671 47,05% 37 5,51% 116 17,29% 10 1,49% - 0,00% 97 14,46% 416 62,00% SK 288 222 77,08% 25 11,26% 59 26,58% 18 8,11% - 0,00% 123 55,41% - 0,00% Total 1.273.254 1.064.606 83,61% 58.151 5,46% 706.262 66,34% 84.791 7,96% 14.580 1,37% 211.840 19,90% 2.842 0,27%
  15. 15. Compendium of underlying methodologies available online: http://epp.eurostat.ec.europa.eu/portal/page/portal/product_ details/publication?p_product_code=KS-RA-11-008 EEE-PPAT table (Resulting enhancements) available online: www.ecoom.be/EEE-PPAT
  16. 16. • IP strategy <> patenting behavior • IP strategy implies a combination of deliberate (and accidental) behaviors, implying secrecy, ‘open source’ strategies, the creation of ‘freedom to operate’ (publication behavior!) and the establishment of IPR. • IPR <> Utility Patents, but also includes Designs/Design Patents, Trademarks, Copyrights,… • While for USPTO, design patents and trademarks have been available for a longer time, recent developments in EU (OHIM) offer interesting perspectives. • Again, a non trivial issue (e.g. Apple versus Samsung). • Additional complexities/challenges: integration/disambiguation + text mining. Unit of Analysis, Part 2
  17. 17. Indicators • Mere counts to an ever larger extent considered as insufficient (value distribution of IP highly skewed). • Impact/citations as a way out? Yes & No. • Display correlation with economic value (however weak in terms of R²) • Notice also issues in terms of the unit of analysis (document, family; cites/self-cites) • Beyond citations: indicators that reflect the nature of the invention?
  18. 18. Inventions shaping technological trajectories: do existing patent indicators provide a comprehensive picture? Sam Arts,a,b Francesco Paolo Appio,c Bart Van Looy,a,d,e a Managerial Economics, Strategy and Innovation Faculty of Business and Economics, KU Leuven b FWO, Brussels c Scuola Superiore Sant’Anna Istituto di Management d Expertisecentrum O&O Monitoring (ECOOM) and Research Division INCENTIM, KU Leuven e School of Management and Governance, University of Twente
  19. 19. Quality of IP
  20. 20. (1) (2) (3) (4) (5) (6) (7) (8) VARIABLES BT BT BT BT BT BT BT BT Model Logit Logit Logit Logit Logit Logit Ex ante Logit Ex post Logit outlier FC 1SD 2.1788*** 1.7515*** 1.7598*** [0.375] [0.370] [0.371] outlier FC 2SD 1.7081*** 1.5563*** 1.5491*** [0.359] [0.362] [0.361] outlier FC 5SD 0.9558*** 0.8302** 0.8339** [0.370] [0.364] [0.372] outlier FC 10SD 3.6892*** 3.5345*** 3.5716*** [0.461] [0.458] [0.471] First Subclass Combi Dummy 0.4561** 0.4531** 0.2251 [0.220] [0.211] [0.259] First Subclass Combi Count Re-Use 0.0004** 0.0003*** 0.0003*** [0.000] [0.000] [0.000] D&B dissimilarity 0.6188** 0.4843** 0.2160 [0.243] [0.216] [0.337] D&B uniqueness -0.6838*** -0.8888*** -0.2029 [0.252] [0.237] [0.319] D&B adoption 1.3450*** 0.5778** 0.6334* [0.300] [0.253] [0.355] D&B composite 0.0990 0.1313 [0.425] [0.559] Generality 10.7871*** 7.2033*** 7.7490*** [1.000] [1.177] [1.261] Originality -0.4447 -0.0723 -1.0977*** [0.349] [0.382] [0.423] Count assignees 0.0181 0.0929 0.0172 0.0353 0.0165 0.0320 0.0846 0.0997 [0.141] [0.136] [0.138] [0.132] [0.150] [0.137] [0.137] [0.136] Count inventors -0.0103 -0.0482 -0.0077 -0.0092 -0.0140 -0.0112 -0.0576 -0.0468 [0.045] [0.057] [0.046] [0.045] [0.045] [0.046] [0.059] [0.058] Count PRS 0.0009 0.0054 0.0010 -0.0052 -0.0011 -0.0013 0.0039 0.0063 [0.003] [0.004] [0.003] [0.004] [0.003] [0.004] [0.005] [0.004] Count NPRS 0.0046*** 0.0019* 0.0045*** 0.0041*** 0.0042*** 0.0045*** 0.0013 0.0014 [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] Count claims 0.0099*** 0.0083*** 0.0101*** 0.0099*** 0.0090*** 0.0099*** 0.0088*** 0.0092*** [0.002] [0.003] [0.002] [0.002] [0.002] [0.002] [0.003] [0.003] Count tech. classes -2.4708** -3.3732** -2.5014** -2.3964** -2.6907*** -2.4373** -3.3615*** -3.5808*** [1.000] [1.341] [1.027] [1.006] [1.020] [1.010] [1.254] [1.386] Count tech. subclasses 0.0454** 0.0170 0.0059 0.0437** 0.0409** 0.0324 0.0018 -0.0032 [0.020] [0.025] [0.025] [0.020] [0.020] [0.021] [0.024] [0.024] Patent age -0.1142*** -0.1110*** -0.0864*** -0.1167*** -0.1025*** -0.1125*** -0.0958*** -0.0841*** [0.016] [0.020] [0.015] [0.016] [0.016] [0.016] [0.021] [0.023] Technology dummies Yes Yes Yes Yes Yes Yes Yes Yes Log Pseudolikelihood -796.08 -525.67 -774.40 -771.60 -732.18 -783.82 -495.08 -489.51 Pseudo R2 0.1255 0.4225 0.1493 0.1512 0.1957 0.1377 0.4562 0.4615 Exp.Pr. >=0.5 as cut off Recall Pr( + | BT ) 0.00% 22.95% 2.46% 0.00% 0.00% 0.00% 25.41% 24.59% Specificity Pr( - | NBT ) 100.00% 99.98% 100.00% 100.00% 100.00% 100.00% 99.99% 99.98% PrecisionPr( BT | + ) . 70.00% 50.00% . . . 73.81% 69.77% Neg. pred. value Pr( NBT | - ) 99.84% 99.88% 99.85% 99.84% 99.84% 99.84% 99.88% 99.88% False + for NBT Pr( + | NBT ) 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.01% 0.02% False - for BT Pr( - | BT ) 100.00% 77.05% 97.54% 100.00% 100.00% 100.00% 74.59% 75.41% False + for BT Pr( NBT | + ) . 30.00% 50.00% . . . 26.19% 30.23% False - for NBT Pr( BT | - ) 0.16% 0.12% 0.15% 0.16% 0.16% 0.16% 0.12% 0.12% Correctly classified 99.84% 99.86% 99.84% 99.84% 99.84% 99.84% 99.87% 99.86%
  21. 21. Recall Pr( + | BT ) 0.00% 22.95% 2.46% 0.00% 0.00% 0.00% 25.41% 24.59% Specificity Pr( - | NBT ) 100.00% 99.98% 100.00% 100.00% 100.00% 100.00% 99.99% 99.98% PrecisionPr( BT | + ) . 70.00% 50.00% . . . 73.81% 69.77% Neg. pred. value Pr( NBT | - ) 99.84% 99.88% 99.85% 99.84% 99.84% 99.84% 99.88% 99.88% False + for NBT Pr( + | NBT ) 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.01% 0.02% False - for BT Pr( - | BT ) 100.00% 77.05% 97.54% 100.00% 100.00% 100.00% 74.59% 75.41% False + for BT Pr( NBT | + ) . 30.00% 50.00% . . . 26.19% 30.23% False - for NBT Pr( BT | - ) 0.16% 0.12% 0.15% 0.16% 0.16% 0.16% 0.12% 0.12% Correctly classified 99.84% 99.86% 99.84% 99.84% 99.84% 99.84% 99.87% 99.86%
  22. 22. Indicators reflecting Open Innovation? • Co-inventors & Co-owners o Co-inventors: name harmonizing & disambiguation (notice also the relevancy of using personnel directories – what about confidentiality?) o Co-ownership: consolidation issues crucial to consider + exact meaning/role within the innovation strategy of the firm? (see Belderbos et al. 2013) • Transfer of ownership/markets for technology: the recent disclosure of databases concerning the legal status of IP (e.g. PRS database- EPO) holds promises for the future (but methodological challenges as well during the coming period) • The role/presence/contribution of science; co-patents, co-inventorship and the presence of science in NPL/NPR’s (see Callaert et al. 2012, 2013; Veugelers et al. 2013).
  23. 23. Co-Patents: Occurrence over time Epo Patent Documents (1978 onwards) – 2.089.217 Patent Documents Co-patents: 5,99% of Patent volume - 125.096 Patent documents) 0,00% 2,50% 5,00% 7,50% 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Percentageofco-patents Priority year
  24. 24. Science unfolding in technology: a cross- country analysis of scientific citations in patents Julie Callaert*, Jan-Bart Vervenne*, Bart Van Looy* # Julie.Callaert@kuleuven.be; Jan-Bart.Vervenne@kuleuven.be; Bart.Vanlooy@kuleuven.be This work was supported by the European Commission, DG Research.
  25. 25. Row LabelsAT AU BE BG BR CA CH CN CY CZ DE DK ES FI FR GB GR HU IE IL IN IS IT JP KR LI NL NO NZ PL PT RU SE SI TW US ZA AT 6,83 0,98 0,80 0,50 0,72 0,82 2,21 0,80 1,72 0,96 1,15 0,92 1,12 1,05 0,77 0,99 0,91 1,76 0,86 0,44 0,50 1,04 1,15 0,72 0,46 0,92 0,71 1,31 0,64 1,20 0,99 0,99 1,94 0,47 0,90 0,97 AU 1,18 5,07 0,74 1,40 1,51 0,89 0,93 0,97 1,08 0,82 0,91 1,04 0,85 1,06 0,90 1,03 0,70 0,97 1,11 0,80 0,86 0,97 0,88 0,79 0,54 0,97 1,15 2,08 1,02 0,75 0,92 1,07 0,27 0,50 0,89 1,09 BE 0,97 1,00 3,62 0,91 1,33 0,94 0,99 1,04 1,80 0,96 0,93 0,91 1,24 0,82 1,27 1,20 0,95 1,38 0,79 0,74 0,73 0,27 1,12 0,75 0,60 1,34 0,88 0,83 1,10 0,92 0,98 0,94 0,23 0,51 0,84 1,48 BG 0,84 0,77 3,28 0,78 0,81 1,41 3,24 1,10 2,00 1,42 1,48 1,11 5,02 1,09 1,74 0,82 0,41 2,19 2,91 1,59 1,01 0,59 BR 0,71 0,81 0,99 27,84 0,66 0,69 0,79 0,84 0,28 0,80 1,46 0,94 2,38 2,12 0,23 0,36 1,47 0,89 0,35 0,58 0,62 1,71 0,67 1,45 1,00 0,28 0,84 3,05 CA 0,97 1,12 1,07 0,89 1,15 2,57 0,90 0,95 0,41 0,62 0,89 1,05 1,15 0,85 0,98 1,01 0,71 0,68 0,65 0,91 0,84 0,37 0,95 0,76 0,77 1,01 1,10 0,91 0,69 0,59 1,43 0,95 0,77 0,88 0,90 1,87 CH 1,41 1,09 0,84 0,99 0,87 0,90 2,41 0,90 0,36 1,14 1,07 1,09 1,04 0,94 0,95 1,10 0,77 1,00 1,14 1,04 0,87 0,87 1,15 0,80 0,61 0,89 0,92 0,81 1,17 0,93 0,68 0,82 1,06 0,95 0,73 0,92 1,41 CN 0,99 0,85 1,07 0,91 0,93 0,81 0,58 4,24 1,29 0,77 0,76 0,61 0,61 0,86 1,06 1,02 0,37 0,79 0,76 1,21 1,90 1,02 0,96 1,01 0,51 1,23 1,20 0,39 0,17 0,54 0,52 0,79 1,41 1,13 1,07 CY 0,67 0,83 0,51 0,24 3,73 1,55 1,18 1,25 1,46 1,16 0,69 6,63 1,93 1,49 0,88 0,73 0,37 2,17 2,81 3,02 1,19 1,17 0,79 CZ 0,70 0,64 0,39 1,32 0,49 0,46 2,77 32,79 0,83 1,59 0,56 0,56 1,58 0,46 2,14 0,42 1,16 0,35 0,46 2,68 2,88 0,83 0,85 6,71 1,12 0,97 18,21 DE 1,35 0,91 0,94 1,09 0,66 0,81 0,93 1,02 1,01 1,25 1,89 0,94 1,00 0,79 1,00 1,01 0,72 1,06 0,89 0,62 0,98 0,91 0,92 0,86 0,71 1,14 1,02 0,66 0,83 1,01 1,06 1,06 0,87 0,87 0,66 0,94 0,94 DK 1,18 0,88 1,33 1,23 0,71 0,91 0,98 0,73 1,47 0,96 7,18 1,12 1,30 0,99 1,07 0,65 0,94 1,53 0,58 1,11 1,53 0,94 0,73 0,77 1,29 1,18 0,94 1,40 1,82 0,49 1,34 0,64 0,57 0,77 1,82 ES 0,95 0,84 0,78 0,57 1,26 0,64 0,81 1,20 0,90 0,72 0,70 6,73 1,02 1,18 1,08 0,99 0,85 0,61 0,86 2,32 1,19 1,54 0,72 0,83 1,22 0,63 1,25 1,33 1,16 0,52 0,77 0,49 0,72 0,75 1,56 FI 0,83 0,78 0,95 0,47 0,88 1,00 0,70 0,99 1,62 0,58 0,86 0,68 0,71 9,58 0,66 0,82 2,10 2,49 1,06 0,60 0,75 2,44 0,81 0,59 1,06 0,83 1,11 0,87 0,48 0,35 0,85 1,35 0,98 1,09 1,10 FR 0,71 0,92 1,10 1,33 0,90 0,84 0,79 1,16 0,63 0,87 0,88 0,80 1,12 0,92 2,33 0,96 1,29 0,92 0,85 0,74 1,15 0,57 1,14 0,83 0,87 1,56 0,82 1,65 0,98 1,02 1,14 0,76 0,72 0,51 0,87 0,96 0,82 GB 0,89 0,96 0,95 0,75 0,89 0,90 0,97 0,81 1,39 0,94 0,87 1,09 0,75 1,00 1,88 0,94 0,98 0,97 0,67 1,01 0,61 1,04 0,81 0,73 0,96 0,85 1,19 0,98 1,01 0,92 0,86 1,01 0,72 0,95 1,68 GR 0,81 0,37 0,91 4,58 1,70 0,53 0,92 0,54 0,65 0,92 0,64 0,98 32,93 4,89 2,47 2,66 0,36 2,42 0,53 1,93 7,76 0,77 HU 1,15 0,63 0,91 1,30 0,48 1,35 0,79 1,11 1,18 1,37 0,82 0,92 0,52 21,53 1,10 0,91 1,87 1,65 0,78 0,80 0,83 1,21 0,82 0,65 1,10 4,98 IE 1,57 0,48 1,89 0,64 0,87 0,97 0,98 1,11 1,58 0,90 0,88 1,05 1,32 0,77 1,15 0,78 1,57 12,18 0,76 1,65 2,68 1,20 0,62 0,87 0,72 1,72 0,42 1,44 0,72 1,31 1,08 0,79 0,91 0,50 IL 0,92 0,99 1,13 0,16 0,91 1,06 0,89 0,72 3,36 0,80 0,90 0,87 1,13 0,54 0,89 0,96 1,22 1,01 0,56 4,37 1,41 1,01 1,22 0,92 0,95 0,89 0,71 1,06 0,72 0,30 1,18 0,97 0,70 0,93 0,93 2,65 IN 0,93 0,72 1,08 1,28 1,20 0,87 0,81 1,34 2,60 0,70 1,26 1,34 0,81 0,90 1,18 0,33 0,70 0,83 0,69 8,28 4,69 0,91 0,88 1,17 0,78 0,56 1,06 1,11 0,72 0,52 0,74 2,22 0,81 0,87 5,40 IS 0,99 0,91 1,12 4,39 0,69 1,10 0,67 3,09 0,81 2,23 1,35 1,58 0,83 1,14 2,24 2,39 0,95 0,13 0,40 201,37 1,36 0,50 0,30 0,85 2,08 0,48 0,38 0,71 1,61 0,90 0,86 IT 0,70 0,76 0,89 1,05 0,66 0,85 0,90 0,91 0,95 0,83 0,62 1,10 0,78 0,95 0,97 1,04 0,90 1,16 0,85 1,32 1,25 3,84 0,88 0,83 0,96 1,25 0,82 1,06 1,22 0,85 0,75 0,65 0,62 0,89 2,04 JP 0,60 0,65 0,64 0,78 0,71 0,73 0,79 1,07 0,35 0,78 0,88 0,64 0,79 0,64 0,84 0,80 0,84 0,58 1,05 0,59 0,78 0,63 0,68 2,27 1,20 0,21 0,76 0,56 0,48 0,87 0,92 0,92 0,63 0,63 1,03 1,04 0,68 KR 0,46 0,61 0,65 0,48 0,38 0,75 0,77 1,53 0,67 0,88 0,94 0,62 0,66 1,08 0,72 0,73 0,72 0,71 0,83 0,70 0,74 0,40 0,68 1,20 5,22 0,86 1,11 0,48 0,46 0,57 0,92 0,69 0,91 1,56 1,05 0,53 LI 0,71 0,65 1,86 0,72 1,00 1,87 1,15 0,95 0,80 0,47 1,08 0,73 3,20 1,69 0,78 16,34 1,13 1,24 0,24 88,79 0,78 1,65 0,97 0,96 1,50 1,05 NL 0,99 0,79 1,00 0,44 0,82 0,75 0,92 0,85 1,52 1,06 1,00 0,65 0,92 1,16 1,04 0,97 1,02 0,76 0,99 0,69 0,88 0,69 0,80 0,89 1,02 0,31 2,87 0,88 0,90 0,95 1,49 0,69 0,69 0,47 0,73 1,03 1,18 NO 0,52 1,02 0,67 2,29 1,17 1,17 0,54 0,99 1,41 0,88 1,29 1,12 1,18 0,82 1,30 0,58 0,47 0,74 0,61 0,95 14,32 1,00 0,67 0,46 1,10 15,29 0,25 1,38 1,28 0,61 1,17 3,47 0,78 0,85 1,34 NZ 0,96 2,07 0,93 1,20 1,19 0,70 0,47 2,23 0,75 1,94 1,12 1,39 0,91 0,94 0,29 0,19 1,21 0,67 0,77 0,97 0,75 0,44 1,06 0,89 29,57 0,85 1,05 0,30 1,11 1,22 0,35 0,75 0,27 PL 0,76 1,04 0,21 0,70 0,61 1,71 2,94 1,10 0,91 0,64 0,75 0,82 0,56 2,56 1,14 0,38 0,79 1,08 1,88 0,37 25,24 1,55 0,46 0,30 1,03 1,63 PT 0,99 0,81 0,68 0,84 0,82 1,02 0,86 0,87 1,84 3,22 1,50 0,96 0,86 0,71 2,19 8,31 1,61 0,67 0,54 0,59 1,26 2,62 0,69 34,07 0,86 1,02 3,45 0,29 0,76 1,56 RU 0,45 0,41 0,76 0,84 0,63 0,58 2,02 1,75 1,12 1,02 0,89 0,71 1,08 1,07 0,88 1,82 0,80 0,79 1,79 0,74 0,78 1,09 15,97 0,36 0,87 SE 1,03 0,91 1,08 0,55 0,62 0,82 0,92 0,88 1,06 0,86 1,05 1,22 1,22 0,96 1,14 0,78 0,87 0,98 0,60 1,02 0,57 1,01 0,76 0,69 0,52 0,79 0,88 1,50 0,93 0,61 0,73 3,84 0,55 0,78 0,96 0,82 SI 2,53 0,19 0,47 0,79 0,39 0,55 0,50 0,48 0,42 1,17 0,73 1,27 2,00 4,69 19,38 1,13 0,97 1,26 0,73 1,02 0,80 5,18 1,70 100,51 0,33 1,08 5,45 TW 0,56 0,50 1,39 0,34 0,47 0,54 0,30 1,44 0,12 0,95 0,30 0,88 0,34 0,54 0,78 0,77 0,37 0,37 1,06 3,02 1,44 1,22 2,32 0,62 0,54 0,08 0,41 0,38 0,33 0,38 5,71 1,11 0,13 US 1,00 1,05 1,03 1,10 1,13 1,07 1,02 0,98 1,28 0,98 0,94 1,01 0,97 1,03 0,98 0,98 1,08 1,08 1,00 1,18 0,98 0,84 1,01 0,85 0,98 1,34 0,99 1,06 1,01 1,04 1,02 1,06 1,06 1,14 1,09 1,03 0,86 ZA 0,73 0,84 0,41 4,05 2,07 0,94 0,12 0,62 1,43 1,26 1,76 1,66 0,72 1,42 2,21 1,75 1,86 1,42 1,00 0,91 0,72 0,64 0,87 0,74 0,78 33,24 CITED SCIENTIFIC DOCUMENTSCITINGCORPORATEPATENTS
  26. 26. Thank you. ? ? ? Contact: Bart.vanlooy@kuleuven.be

×