トランスのスパイスモデル(PART3)
Upcoming SlideShare
Loading in...5
×
 

トランスのスパイスモデル(PART3)

on

  • 3,176 views

トランスのスパイスモデル(PART3),PDF Version

トランスのスパイスモデル(PART3),PDF Version

Statistics

Views

Total Views
3,176
Views on SlideShare
2,618
Embed Views
558

Actions

Likes
0
Downloads
10
Comments
0

5 Embeds 558

http://beetech-icyk.blogspot.jp 370
http://beetech-icyk.blogspot.com 129
http://d.hatena.ne.jp 34
http://beetech.dgblog.dreamgate.gr.jp 23
http://beetech-icyk.blogspot.kr 2

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

トランスのスパイスモデル(PART3) トランスのスパイスモデル(PART3) Presentation Transcript

  • スパイスモデル解説 トランスモデル編(Part 3) 2012年2月3日(金曜日) 株式会社ビー・テクノロジー http://www.beetech.info/ Copyright (C) Bee Technologies Inc. 2012 1
  • ビー・テクノロジーのサービス内容について 「デバイスモデリングサービス」から必要なスパイスモデ 解析に専念したいので専用の ルを入手する(58種類のデバイスモデリングが可能) 回路シミュレーションの テンプレートを提供して欲しいスパイスモデルの配信サイト →カスタム・デザインキット・サービス「スパイス・パーク」から入手する(3,777モデル) 実際の設計で使用できる詳細の すでに自分が使用する テンプレートが欲しい 型名が決まっている →デザインキット(14種類)自分でパラメータを設定し 概念設計のテンプレートが欲しいスパイスモデルを作成したい →コンセプトキット(6種類)→シンプルモデル(8種類) 回路図は作成済み 回路シミュレーションの 必要なスパイスモデルを入手したい テンプレートを入手したい 回路設計者 問題を解決したい。相談したい。 技術を向上させたい。学習したい。 コンサルティング・サービス デバイスモデリング教材 ワークショップ (13種類) セミナー(オンサイト含む) Copyright (C) Bee Technologies Inc. 2012 2
  • Part 1及びPart 2の資料掲載先について http://ow.ly/8uBzn http://ow.ly/8uBuD Copyright (C) Bee Technologies Inc. 2012 3
  • [復習]トランスのスパイスモデルの種類巻数モデル TX1 +コアモデル巻数モデル TN33_20_11_2P90 L1_TURNS = 100 L2_TURNS = 100 Copyright (C) Bee Technologies Inc. 2012 4
  • [復習]トランスのスパイスモデルの種類(1)周波数特性モデルコイルの等価回路の考え方(周波数を考慮する) L1 C1 L1 R1 L1 R1 L1 R1 -3 0 3 6 910 10 10 10 10 (Hz) Inductor model Impedance vs. Frequency 注意:動作周波数により、3素子モデルではなく、5素子モデル、ラダー・モデル が採用される事もあります。 Copyright (C) Bee Technologies Inc. 2012 5
  • [復習]トランスのスパイスモデルの種類(1)周波数特性モデル K K1 K_Linear COUPLING = 1 1 2 L1 L2 10uH 10uH 2 1 インダクタンス+結合係数 周波数モデル+結合係数 結合係数とは、1次巻き線で発生した磁 K K1 束が2次巻き線に結合する割合です。デ K_Linear フォルト値は、結合係数=1です。 COUPLING = 1 実際には、0.99-0.9999を使用します。 Copyright (C) Bee Technologies Inc. 2012 6
  • トランスのスパイスモデルの種類(1)周波数特性モデル事例:周波数モデル+結合係数 Copyright (C) Bee Technologies Inc. 2012 7
  • [復習]トランスのスパイスモデルの種類(1)周波数特性モデル事例:周波数モデル+結合係数 Agilent 34420A Agilent 4294A インピーダンスの測定:Agilent 4294A 直列抵抗成分の測定:Agilent 34420A Copyright (C) Bee Technologies Inc. 2012 8
  • [復習]トランスのスパイスモデルの種類(2)周波数特性モデル+コアモデル(PSpice) Copyright (C) Bee Technologies Inc. 2012 9
  • コアのスパイスモデル(LTspiceとPSpice) Copyright (C) Bee Technologies Inc. 2012 10
  • [PSpice検証&LTspice検証]Saturable Core: NC-2HSpecification Dynamic Magnetization CurvesMaterial: NC-2HManganese Zinc Ferrite Cores with • BS = 500(mT) • Br = 140(mT) • HC = 15.9(A/m)Conditions: • F = 10(KHz) • TC = 23(C) The data is provided in the datasheet Copyright (C) Bee Technologies Inc. 2012 11
  • [PSpice検証&LTspice検証]PSpice MAGNETIC CORE MODEL: NC-2HEvaluation Circuit Simulation Result 600m K K1 500m NC-2 H V1 COUPLING= 0.9999 L1 = L1 400m 1 0V L1 I1 R1 20 300m IOFF = 0 10 FREQ = 1 IA MPL = 2A 2 200m 0 100m 0 0 0.2K 0.4K 0.6K 0.8K 1.0K B(K1)/10000 H(K1)/0.01256 Copyright (C) Bee Technologies Inc. 2012 12
  • [PSpice検証&LTspice検証]LTSpice IV MAGNETIC CORE MODEL: NC-2HEvaluation Circuit Simulation Result Copyright (C) Bee Technologies Inc. 2012 13
  • [PSpice検証&LTspice検証] LTSpice IV 1:1 Saturabletransformer model (Example)- Simulation Circuit and Setting Copyright (C) Bee Technologies Inc. 2012 14
  • [PSpice検証&LTspice検証]LTSpice IV 1:1 Saturable transformer model (Example)- Simulation Result Input voltage Input Current Output voltage Output Current Copyright (C) Bee Technologies Inc. 2012 15
  • [PSpice検証&LTspice検証]PSpice 1:1 Saturable transformer model (Example)- Simulation Circuit and Setting PARAMETERS: PARAMETERS: Vin = 50V N = 0.1 Freq = 10k Lp = 1 K K2 K K3 NC-2H K_Linear COUPLING= 0.9999 COUPLING = 1 R1 Prim L1 = L1 L1 = Lp Sec 0.1 IN L2 = Ls OUT V1 = {-Vin} V1 V2 = {Vin} 0V Ri 0V 1 1 TD = 0 0.1 TR = 0 Lp Ls TF = 0 1 1H {N*N*Lp} RO PW = {0.5/Freq} 10 PER = {1/Freq} L1 20 2 2 2 0 0 Copyright (C) Bee Technologies Inc. 2012 16
  • [PSpice検証&LTspice検証]PSpice 1:1 Saturable transformer model (Example)- Simulation Result at R1=0.1 100s -499.8A1 2 0s -499.9A -100s -500.0A -200s SEL>> -300s -500.1A 1 V(IN) 2 I(Lp) 10V 3.0A 1 2 0V 2.0A -10V 1.0A -20V 0A >> -30V -1.0A 0s 0.2ms 0.4ms 0.6ms 0.8ms 1.0ms 1.2ms 1.4ms 1.6ms 1.8ms 2.0ms 2.2ms 2.4ms 1 V(OUT) 2 I(Sec) Time Copyright (C) Bee Technologies Inc. 2012 17
  • [PSpice検証&LTspice検証]PSpice 1:1 Saturable transformer model (Example)- Simulation Result at R1=1 100s -49.90A1 2 0s -100s -50.00A -200s SEL>> -300s -50.05A 1 V(IN) 2 I(Lp) 10V 3.0A 1 2 0V 2.0A -10V 1.0A -20V 0A >> -30V -1.0A 0s 0.2ms 0.4ms 0.6ms 0.8ms 1.0ms 1.2ms 1.4ms 1.6ms 1.8ms 2.0ms 2.2ms 2.4ms 1 V(OUT) 2 I(Sec) Copyright (C) Bee Technologies Inc. 2012 Time 18
  • [PSpice検証&LTspice検証] PSpice 1:1 Saturabletransformer model (Example)- Simulation Result at R1=10 100s -4.90A1 2 0s -100s -5.00A -200s SEL>> -300s -5.05A 1 V(IN) 2 I(Lp) 10V 3.0A 1 2 0V 2.0A -10V 1.0A -20V 0A >> -30V -1.0A 0s 0.2ms 0.4ms 0.6ms 0.8ms 1.0ms 1.2ms 1.4ms 1.6ms 1.8ms 2.0ms 2.2ms 2.4ms 1 V(OUT) 2 I(Sec) Time Copyright (C) Bee Technologies Inc. 2012 19
  • シンプルモデル:トランスモデルのコンセプト Copyright (C) Bee Technologies Inc. 2012 20
  • Saturable transformer modelSimplified SPICE Behavioral Model Bee Technologies Inc. Copyright (C) Bee Technologies Inc. 2012 21
  • Contents 1. Model Overview 2. Concept of the Model 3. Parameter Settings of Saturable Core 4. Saturable core SUBCKT using LTspiceIV <<-- Netlist is not open(If you buy this model , you can show netlist) 5. Saturable Core Parameter Setting (Example) 5.1 Curve fitting: RLOSS 5.2 Curve fitting: LM 5.3 Curve fitting: BEXP 6. Dynamic Magnetizing Curves Characteristics 7. Basic Ideal Transformers and Their Parameters 7.1 Parameter settings of 1:1 ideal transformer 7.2 Parameter settings of 2:1 ideal transformer 7.3 Parameter settings of 1:2 ideal transformer 8. Saturable transformer SUBCKT Using LTspiceIV <<-- Netlist is not open(If you buy this model , you can show netlist) 9. 1:1 Saturable transformer model (Example) 10. 1:1 Saturable transformer model (Example) (Phase reverse) 11. 2:1 Saturable transformer model (Example) 12. 1:2 Saturable transformer model (Example) 13. 1:2 Saturable transformer model (Example) (Center tap) 14. Application Circuit Example: Flyback converter Library Files and Symbol Files Location Library Files Index Simulation Index Copyright (C) Bee Technologies Inc. 2012 22
  • 1) Model Overview• This Saturable Transformer Simplified SPICE Behavioral Model is for users who require the model of the core loss and hysteresis as a part of their system.• The model focuses on the hysteresis loop behavior in their operation area, which user can shape the B-H curve. B (Teslas) 600mV Remanent Flux Saturation Flux Density Br Density BS 0V Saturation Field HS Coercive Field HC -600mV H (A-turns/m) -1.0KV 0V 1.0KV V(U1:B) Figure 1, Hysteresis Loop and Magnetic Properties. V(H) Copyright (C) Bee Technologies Inc. 2012 23
  • 2) Concept of the Model Saturable Core Ideal Transformer Simplified SPICE Behavioral Model Simplified SPICE Behavioral Model [Model parameters: BSAT, RLOSS, LM and BEXP] [Model parameters: N, RP, RS and LP]• The Saturable core is characterized by parameters: BSAT, RLOSS, LM and BEXP, which represent the Flux density vs. Magnetic field characteristics of the Saturable core.• The Ideal transformer is characterized by parameters: N, RP, RS and LP . Copyright (C) Bee Technologies Inc. 2012 24
  • 3) Parameter Settings of Saturable Core Model Parameters: BSAT  The saturation flux density (in teslas). – e.g. 100mT, 350mT, 500mTB-H Curve – Value = <BSAT>test points RLOSS  The resistor RLOSS represents a loss when a voltage is applied. – e.g. 0.5Ω, 1Ω, 100KΩ – Value = <RLOSS> LM  Magnetizing inductance of the core inductor (in henry). – e.g. 1uH, 5uH, 50uH – Value = <LM> Figure 2, Saturable core model (Default parameters). BEXP  The exponent in the expression for coupling factor KC. – e.g. 2, 4, 8 – Value = <BEXP>• From the Saturable Core specification, the model is characterized by setting parameter BSAT, then adjust the parameters RLOSS, LM and BEXP to shape the dynamic magnetic curve. Copyright (C) Bee Technologies Inc. 2012 25
  • 4) Saturable core SUBCKT using LTspiceIV Information of NetlistFigure 3, Saturable core subcircuit SPICE compatible,the key parameters are shown in bold. Copyright (C) Bee Technologies Inc. 2012 26
  • 5) Saturable Core Parameter Setting (Example) Specification Material: NC-2H Manganese Zinc Ferrite Cores with • BS = 500(mT) Input the • Br = 140(mT) parameter BSAT=500m • HC = 15.9(A/m) Conditions: • F = 10(KHz) • TC = 23(C)  The data is provided in the datasheet Figure 4, Dynamic Magnetization Curves. Copyright (C) Bee Technologies Inc. 2012 27
  • 5.1) Curve fitting: RLOSS B (Teslas) 0.5Ω --- 1Ω --- 100KΩ --- H (A-turns/m) Figure 5, The magnetizing line difference, RLOSS.• Condition: F=10KHz, Vin=80VP• Parametric sweep: RLOSS=0.5Ω, 1Ω, 100KΩ Copyright (C) Bee Technologies Inc. 2012 28
  • 5.2) Curve fitting: LM B (Teslas) 1uH --- 5uH --- 50uH --- H (A-turns/m) Figure 6, The magnetizing line difference, LM .• Condition: F=10KHz, Vin=80VP• Parametric sweep: LM=1uH, 5uH, 50uH Copyright (C) Bee Technologies Inc. 2012 29
  • 5.3) Curve fitting: BEXP B (Teslas) 2 --- 4 --- 8 --- H (A-turns/m) Figure 7, The magnetizing line difference, BEXP.• Condition: F=10KHz, Vin=80VP• Parametric sweep: BEXP=2, 4, 8 Copyright (C) Bee Technologies Inc. 2012 30
  • 6) Dynamic Magnetizing Curves Characteristics- Evaluation Circuit and SettingSine wave excitation Square wave excitationCondition: F=10KHz, Vin=80VP, TC=23°C.tran 0 200u 100u 10n.lib score.sub Copyright (C) Bee Technologies Inc. 2012 31
  • 6) Dynamic Magnetizing Curves Characteristics- Simulation Result Figure 8, Sine wave excitation Figure 9, Square wave excitation• The saturable core model is completed with both sine and square wave (above) excitation as shown in these LTspiceIV simulations. Copyright (C) Bee Technologies Inc. 2012 32
  • 7) Basic Ideal Transformers and Their Parameters • The relationship between the Voltage and IP IS current are defined as equations below. NS+ NP NS + N (7.1) NP N is the turns ratio of Ideal transformer (above).VP VS VS  VP  N (7.2)- - IP  IS  N (7.3) 1:N VP is the primary voltage. VS is the secondary voltage. Figure 10, Symbol of basic ideal transformer with IP is the primary current. The voltage to current relationships. IS is the secondary current. NP is the turns number of primary winding. NS is the turns number of secondary winding. Copyright (C) Bee Technologies Inc. 2012 33
  • 7.1) Parameter settings of 1:1 ideal transformer Model Parameters: LP  Inductance of primary winding (in henry). – e.g. 100uH, 250uH, 500uH – Value = <LP> N  is the turns ratio of Ideal transformer. – e.g. 0.1, 0.5, 1 Figure 11, 1:1 Ideal transformer (Default parameters). – Value = <N> RP  A series resistance of primary winding (in ohm). – e.g. 1mΩ, 10mΩ, 100mΩ – Value = <RP> RS  A series resistance of secondary winding (in ohm). – e.g. 1mΩ, 10mΩ, 100mΩ – Value = <RS> Figure 12, 1:1 Phase reverse ideal transformer (Default parameters). Copyright (C) Bee Technologies Inc. 2012 34
  • 7.2) Parameter settings of 2:1 ideal transformer Model Parameters: LP  Inductance of primary winding (in henry). – e.g. 100uH, 250uH, 500uH – Value = <LP> N  is the turns ratio of Ideal transformer. – e.g. 0.1, 0.5, 1 – Value = <N> RP1  A series resistance of primary winding 1 (in ohm). – e.g. 1mΩ, 10mΩ, 100mΩ – Value = <RP1> RP2  A series resistance of primary winding 2 (in ohm). Figure 13, 2:1 Ideal transformer (Default parameters). – e.g. 1mΩ, 10mΩ, 100mΩ – Value = <RP2> RS  A series resistance of secondary winding (in ohm). – e.g. 1mΩ, 10mΩ, 100mΩ – Value = <RS> Copyright (C) Bee Technologies Inc. 2012 35
  • 7.3) Parameter settings of 1:2 ideal transformer Model Parameters: LP  Inductance of primary winding (in henry). – e.g. 100uH, 250uH, 500uH – Value = <LP> N  is the turns ratio of Ideal transformer. – e.g. 0.1, 0.5, 1 Figure 14, 1:2 Ideal transformer (Default parameters). – Value = <N> RP  A series resistance of primary winding (in ohm). – e.g. 1mΩ, 10mΩ, 100mΩ – Value = <RP> RS1  A series resistance of secondary winding 1 (in ohm). – e.g. 1mΩ, 10mΩ, 100mΩ – Value = <RS1> RS2  A series resistance of secondary winding 2 (in ohm). – e.g. 1mΩ, 10mΩ, 100mΩ – Value = <RS2> Figure 15, 1:2 Center tap ideal transformer (Default parameters). Copyright (C) Bee Technologies Inc. 2012 36
  • 8) Saturable transformer SUBCKT Using LTspiceIV Information of Netlist Figure 16, Saturable transformer symbol, the key parameters are shown in bold. Figure 17, Saturable transformer equivalent circuit. Copyright (C) Bee Technologies Inc. 2012 37
  • 9) 1:1 Saturable transformer model (Example)- Simulation Circuit and Setting Secondary current Output Voltage Primary current Saturable transformer model 1 : {N}• Condition: F=10KHz, VIN=50VP, VOUT=5VP, ROUT=10Ω• .tran 0 2500u 0 50n• .lib tfmr1.sub Copyright (C) Bee Technologies Inc. 2012 38
  • 9) 1:1 Saturable transformer model (Example)- Simulation Result Input voltage Input Current Output voltage Output Current Figure 18, The Input–Output Characteristics of 1:1 Saturable transformer. Copyright (C) Bee Technologies Inc. 2012 39
  • 10) 1:1 Saturable transformer model (Example)- Simulation Circuit and Setting (Phase reverse) 1 : {N}• Condition: F=10KHz, VIN=50VP, VOUT=5VP, ROUT=10Ω• .tran 0 2500u 0 50n• .lib tfmr1_rev.sub Copyright (C) Bee Technologies Inc. 2012 40
  • 10) 1:1 Saturable transformer model (Example)- Simulation Result (Phase reverse) Input voltage Input Current Output voltage Output Current Figure 19, The Input–Output Characteristics of 1:1 Saturable transformer (Phase reverse). Copyright (C) Bee Technologies Inc. 2012 41
  • 11) 2:1 Saturable transformer model (Example)- Simulation Circuit and Setting 1 : {N}• Condition: F=10KHz, VIN=25VP, VOUT=5VP, ROUT=10Ω• .tran 0 2500u 0 50n• .lib tfmr2prim.sub Copyright (C) Bee Technologies Inc. 2012 42
  • 11) 2:1 Saturable transformer model (Example)- Simulation Result Input voltage 1 Input Current 1 Input voltage 2 Input Current 2 Output voltage Output Current Figure 20, The Input–Output Characteristics of 2:1 Saturable transformer. Copyright (C) Bee Technologies Inc. 2012 43
  • 12) 1:2 Saturable transformer model (Example)- Simulation Circuit and Setting 1 : {N}• Condition: F=10KHz, VIN=50VP, VOUT1=VOUT2=5VP, ROUT=10Ω• .tran 0 2500u 0 50n• .lib tfmr2.sub Copyright (C) Bee Technologies Inc. 2012 44
  • 12) 1:2 Saturable transformer model (Example)- Simulation Result Input voltage Input Current Output voltage 1 Output Current 1 Output voltage 2 Output Current 2 Figure 21, The Input–Output Characteristics of 1:2 Saturable transformer. Copyright (C) Bee Technologies Inc. 2012 45
  • 13) 1:2 Saturable transformer model (Example)- Simulation Circuit and Setting (Center tap) 1 : {N}• Condition: F=10KHz, VIN=50VP, VOUT1=VOUT2=5VP, ROUT=10Ω• .tran 0 2500u 0 50n• .lib tfmr2_ct.sub Copyright (C) Bee Technologies Inc. 2012 46
  • 13) 1:2 Saturable transformer model (Example)- Simulation Result (Center tap) Input voltage Input Current Output voltage 1 Output Current 1 Output voltage 2 Output Current 2 Figure 22, The Input–Output Characteristics of 1:2 Saturable transformer (Center tap). Copyright (C) Bee Technologies Inc. 2012 47
  • 14) Application Circuit Example: Flyback converter- Simulation Circuit and Setting 1 : {N}• Condition: F=40KHz, VIN=24V, VOUT=5V, RL=5Ω, CL=200uF, LP=500uH• .tran 0 10m 0 100n startup• .lib tfmr1_rev.sub Copyright (C) Bee Technologies Inc. 2012 48
  • 14) Application Circuit Example: Flyback converter- Simulation Result Secondary voltage of transformer Input voltage= 24Vdc Output voltage= 5Vdc Output ripple voltage VRIPPLE Secondary current of transformer Figure 23, Flyback converter with Saturable transformer model. Copyright (C) Bee Technologies Inc. 2012 49
  • Library Files and Symbol Files Location…¥Simulations Copy/ Paste into C:¥Program Files¥LTC¥LTspiceIV¥lib¥sub Copy/ Paste into C:¥Program Files¥LTC¥LTspiceIV¥lib¥sym1. Copy the library files (.lib) from the folder …¥Simulations ¥.lib¥, then paste into the folder C:¥Program Files¥LTC¥LTspiceIV¥lib¥sub2. Copy the symbol files(.asy) from the folder …¥Simulations ¥.asy¥, then paste into the folder C:¥Program Files¥LTC¥LTspiceIV¥lib¥sym Copyright (C) Bee Technologies Inc. 2012 50
  • Library Files Index Model Library Symbol 1. Saturable Core……....................................................... score.sub SCORE.asy 2. 1:1 Saturable transformer model………………….......... tfmr1.sub TFMR1.asy 3. 1:1 Saturable transformer model (Phase reverse)……. tfmr1_rev.sub TFMR1_REV.asy 4. 2:1 Saturable transformer model..…………….………… tfmr2prim.sub TFMR2PRIM.asy 5. 1:2 Saturable transformer model..…….………………… tfmr2.sub TFMR2.asy 6. 1:2 Saturable transformer model (Center tap)……....... tfmr2_ct.sub TFMR2_CT.asy Copyright (C) Bee Technologies Inc. 2012 51
  • Simulation Index Simulations Folder name 1. Curve fitting: RLOSS…………………………………………........ Curve fitting 2. Curve fitting: LM………………………………………………........ Curve fitting 3. Curve fitting: BEXP………………………………………………… Curve fitting 4. Dynamic Magnetizing Curves Characteristics…….................... Sat_Core 5. 1:1 Saturable transformer model (Example)…………………….. Sat_Trans1 6. 1:1 Saturable transformer model (Example) (Phase reverse)… Sat_Trans2 7. 2:1 Saturable transformer model (Example)..…………….…….. Sat_Trans3 8. 1:2 Saturable transformer model (Example)..…….…………….. Sat_Trans4 9. 1:2 Saturable transformer model (Example) (Center tap)……... Sat_Trans5 10. Application Circuit Example: Flyback converter……………….... Appl Copyright (C) Bee Technologies Inc. 2012 52
  • Bee Technologies Group【本社】 本ドキュメントは予告なき変更をする場合がございます。 ご了承下さい。また、本文中に登場する製品及びサービス株式会社ビー・テクノロジー の名称は全て関係各社または個人の各国における商標〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階 または登録商標です。本原稿に関するお問い合わせは、代表電話: 03-5401-3851 当社にご連絡下さい。設立日:2002年9月10日資本金:8,830万円【子会社】 お問合わせ先)Siam Bee Technologies Co.,Ltd. (タイランド) info@bee-tech.com Copyright (C) Bee Technologies Inc. 2012 53