Discovering Human Characteristic using Face Analysis

3,824 views

Published on

Discovering Human Characteristic using Face Analysis.

our g

Published in: Technology
1 Comment
1 Like
Statistics
Notes
  • why you upload it if you not permit to download it
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total views
3,824
On SlideShare
0
From Embeds
0
Number of Embeds
390
Actions
Shares
0
Downloads
0
Comments
1
Likes
1
Embeds 0
No embeds

No notes for slide

Discovering Human Characteristic using Face Analysis

  1. 1. Discovering Human Features<br />Using Face Analysis<br />Supervised By:<br />Dr.EL-SayedFouadRadwan<br />
  2. 2. Agenda<br />1) Introduction<br /><ul><li>Facial physiognomy.
  3. 3. System Purpose.
  4. 4. Where ?
  5. 5. Used Tools .</li></ul>2) Phases<br /><ul><li>Planning and gathering Information phase.
  6. 6. Design Application and database Design.
  7. 7. Implementation.
  8. 8. Testing.</li></ul>3) Future applicable extensions.<br />
  9. 9. introduction<br />
  10. 10. Introduction : Facial physiognomy.<br />Your face is the mirror of your personality. Statistical results has shown that there is a strong connection between facial features and personality traits. Since thousands of years people have been trying to study the relationship between facial features and personality traits.<br />
  11. 11. Introduction : System Purpose.<br /><ul><li>The purpose of this project is developing System that discovering human characteristics using face analysis.</li></li></ul><li>Introduction : Where ?<br />
  12. 12. Introduction : Project Life Cycle<br />Input image <br />Database<br />of Features<br />Store Statistical data<br />Face Detection<br />Features<br />Extraction<br />FFT<br />Human Face<br />Statistical data<br />Features<br />Discovering Human Characteristics<br />
  13. 13. Introduction : Used Tools.<br /><ul><li>Windows: The Base Operating System.
  14. 14. Java: Application Logic and Neural Network.
  15. 15. MySQL: Back end database (Statistical Data & characteristics) .
  16. 16. C#.net: Front end .
  17. 17. IDEs: Netbeans 6.9.1, Visual Studio 2010.
  18. 18. JNBridge Tool: java .NET interoperability tools that connect anything Java with anything Microsoft .NET</li></li></ul><li>Planning & Analysis<br />
  19. 19. Planning :<br />● We believe that the best way to get a good working application is to give enough time for planning and designing.<br />● In our planning phase, we passed through the <br />following….<br />
  20. 20. Analysis : Technical<br /><ul><li>H/W requirements:
  21. 21. Intel processor is recommended for better performance.
  22. 22. Minimum system requirements:
  23. 23. 1.6 GHz processor
  24. 24. 2. 256 MB RAM
  25. 25. 3. 150 MB free disk space
  26. 26. S/W requirements:
  27. 27. Windows Operating System.
  28. 28. MySQL Server.
  29. 29. Java Compiler.
  30. 30. .NET Framework.
  31. 31. Who use The System:
  32. 32. Psychiatrists.
  33. 33. Persons interested in Face Analysis.
  34. 34. Persons that study Face physiognomy.</li></li></ul><li>System Analysis:<br />The system should be divided into 4 modules:<br />Image Processing Module:<br />For Analyze face and extract features.<br />Database Module:<br />Database that stores face features.<br />Classification Module:<br />Uses neural network for classify and select characteristics<br />The View Module:<br />That Interact with user that select Input image and get face description.<br />
  35. 35. Application & Database Design<br />
  36. 36. Design:<br />As in the planning phase we have 4 modules:<br /><ul><li>Image Processing Module
  37. 37. Database Module
  38. 38. Classification Module
  39. 39. The View Module</li></li></ul><li>Image Processing Module:<br />Designing C# classes which function is:<br />User load Human image. The application take image<br />And detect face from image and then extract face features from image such as : <br />(front face - right eye – left eye – nose – mouth bottom – mouth top – CHIN , etc…).<br />
  40. 40. Database Module:<br />● Included two phases:<br /> 1- Designing the Database :<br /><ul><li>creating tables that mirrors the structure of the environment and the relations between these tables.
  41. 41. Normalizing tables.</li></ul>2- Designing Database Java classes:<br /><ul><li>Classes that stores facial Features as statistical data with its description according to facial physiognomy science.</li></li></ul><li>Classification Module:<br />Here use the system use neural network to classify the input feature with its characteristics<br />Database<br />Statistical Data<br />FFT<br />Classify<br />Statistical Data<br />(Pray || not)<br />Characteristics of front face<br />
  42. 42. View Module:<br />Develop easy and Simple user interface that load image<br />And automatic classify then the result will be the characteristic of face<br />
  43. 43. The Environment<br />
  44. 44. Environment: Windows<br />We use windows as base operating system for <br />Our project because of using of C#.net, and most of people use windows as native Operating System<br />
  45. 45. Environment: Java<br /><ul><li>Java is an Open Source Object Oriented Programming Language.
  46. 46. Platform independent
  47. 47. Secure
  48. 48. Simple
  49. 49. Multi-Threaded
  50. 50. Distributed
  51. 51. Has good libraries in neural network like (*****) that </li></ul>We used in our classification.<br />
  52. 52. Environment: C#.net<br /><ul><li>C# is an Closed Source Object Oriented Programming Language.
  53. 53. Platform dependent.
  54. 54. Has good libraries in Image Processing like</li></ul>(Aforg.Net – OpenCV- Luxand) that we use in Extract Face Features <br />
  55. 55. Environment: MySQL<br />• Relational database management system <br />(RDBMS)<br />• Providing multiuser access to a number of <br />databases<br />• Works on many different system platforms<br />
  56. 56. Implementation<br />
  57. 57. View : C#.net<br />Step 1: Load image to the Application.<br />
  58. 58. View : C#.net<br />Step 2: Detect Face Features.<br />
  59. 59. View : C#.net<br />Step 3: Describe Human Characteristics.<br />
  60. 60. Application Logic: java<br />Implementation of neural network that classify Features <br />
  61. 61. Future Extensions<br />
  62. 62. Future Planning:<br /><ul><li>Project developed as mobile Application.
  63. 63. Project developed as web Application.
  64. 64. Discovering Human characteristic using</li></ul>Handwriting Analysis.<br /><ul><li>Facial expression integration.
  65. 65. Face recognition Integration.</li></li></ul><li>Questions ??<br />
  66. 66. Thanks<br />Thanks<br />Team Members:<br />C# Developer: Hanan El-Hussiny.<br />PHP Developer: Mohamed IbrahemAtwa<br />Java Developer:RababTalaat.<br />Graphic designer:SafayaAbdEl-Wahab.<br />Java Developer:Ahmed Salah.<br />Team Leader: Mohamed Adel Shahpoup<br />Email: egydev.java@gmail.com<br />Mobile:0142784643.<br />MyBlog:http://www.javakick.wordpress.com<br />

×