SlideShare a Scribd company logo
1 of 49
Statistik Tidak Berparameter
Discrete Distributions
Objektif Pembelajaran
•   Untuk digunakan dalam pengujian hipotesis
    apabila tidak boleh membuat sebarang
    anggapan terhadap taburan yang kita ambil
•   Untuk mengetahui ujian untuk taburan bebas
    yang digunakan dalam keadaan tertentu
•   Untuk menggunakan dan menjelaskan enam
    jenis pengujian hipotesis tak berparameter
•   Ujian mengetahui kelemahan dan kelebihan
    ujian tak berparameter
Statistik Berparameter vs Tidak
              Berparameter
• Statistik Berparameter adalah teknik statistik
  berdasarkan kepada andaian berkaitan populasi
  dimana sampel data adalah dipungut.
   – Andaian dimana data yang dianalisis adalah
     dipilih secara rawak dari populasi yang
     bertaburan normal.
   – Memerlukan ukuran kuantitatif yang
     menghasilkan data bertaraf interval atau
     perkadaran.
Statistik Berparameter vs Tidak
             Berparameter
• Statistik Tidak Berparameter adalah
  berdasarkan andaian yang kurang populasi
  dan parameter.
  – Kadangkala dipanggil sebagai statistik
    “tidak mempunyai taburan”.
  – Berbagai-bagai jenis statistik tidak
    berparameter yang ada untuk digunakan
    dengan data bertaraf nominal atau ordinal.
Kebaikan Teknik Tidak Berparameter

  • Kadangkala tidak terdapat teknik berparameter
    alternatif untuk digunakan berbanding teknik tidak
    berparameter.
  • Beberapa ujian tidak berparameter boleh digunakan
    untuk menganalisis data nominal.
  • Beberapa ujian tidak berparameter boleh digunakan
    untuk menganalisis data ordinal.
  • Pengiraan statistik tidak berparameter kurang rumit
    berbanding kaedah berparameter, terutama untuk
    sampel yang kecil.
  • Pernyataan kebarangkalian yang diperolehi dari
    kebanyakan ujian tidak berparameter adalah
    kebarangkalian yang tepat.
Kelemahan Statistik Tidak
         Berparameter

• Ujian tidak berparameter boleh membazirkan data
  jika ujian berparaeter boleh digunakan untuk data
  tersebut.
• Ujian tidak berparameter biasanya tidak
  digunakan dengan meluas dan kurang dikenali
  berbanding ujian berparameter.
• Untuk sampel yang besar, pengiraan bagi
  kebanyakan ujian tidak berparameter boleh
  mengelirukan.
Ujian Larian




               7
Runs Test
• Test for randomness - is the order or sequence of
  observations in a sample random or not
• Each sample item possesses one of two possible
  characteristics
• Run - a succession of observations which possess
  the same characteristic
• Example with two runs: F, F, F, F, F, F, F, F, M,
  M, M, M, M, M, M
• Example with fifteen runs: F, M, F, M, F, M, F,
  M, F, M, F, M, F, M, F
Runs Test: Sample Size
         Consideration
• Sample size: n
• Number of sample member possessing
  the first characteristic: n1
• Number of sample members possessing
  the second characteristic: n2
• n = n1 + n2
• If both n1 and n2 are ≤ 20, the small
  sample runs test is appropriate.
Runs Test: Small Sample
H : The observations in Example
 0                      the sample are randomly generated.
H : The observations in the sample are not randomly generated.
 a

α = .05
n1 = 18
n2 = 8
If 7 ≤ R ≤ 17, do not reject H0
Otherwise, reject H0.

1   2   3 4 5    6 7 8 9 10 11 12
D CCCCC D CC D CCCC D C D CCC DDD CCC
R = 12
Since 7 ≤ R = 12 ≤ 17, do not reject H0
Runs Test: Large Sample
                              2n n
If either n or n is > 20, µ =      +1    1       2
        1
the sampling
             2
                            R   +   n n
                                     1           2

distribution of R is
approximately normal.
                                     2 n1 n2 (2 n1 n2 − n1 − n2 )
                        σ       =
                                     (n1+ n2)
                            R                        2
                                                         + (n1 + n2 − 1)


                                    R − µR
                        Z=
                                     σ       R
Runs Test: Large Sample
      0
                            Example
H : : The observations in the sample are randomly generated.
H The observations in the sample are randomly generated.
  0
H : : The observations in the sample are not randomly generated.
H The observations in the sample are not randomly generated.
  a
      a

α = .05
 α = .05
n1 = 40
 n = 40
n21= 10
 n2 = 10
If -1.96 ≤ Z ≤ 1.96, do not reject H0
 If -1.96 ≤ Z ≤ 1.96, do not reject H0
Otherwise, reject H0. .
 Otherwise, reject H0
                                                        1
                                                        1
  1
  1       2
          2       3 4 5 6
                  3 4 5 6        7
                                 7           8
                                             8    9
                                                  9     0
                                                        0    11
                                                             11
NNN
NNN       F NNNNNNN F NN FF NNNNNN
          F NNNNNNN F NN FF NNNNNN           F NNNN
                                             F NNNN     F NNNNN
                                                        F NNNNN
  12
  12           13
               13
FFFF NNNNNNNNNNNN
FFFF NNNNNNNNNNNN                   R = 13
                                    R = 13
Runs Test: Large Sample
          2n n      Example n n − n − n )
                        2 n n (2
µ     =      1       2
                         +1   σR=           1   2          1   2      1    2
    R
          n1 + n2                     (n1+ n2)
                                                       2
                                                           + (n1 + n2 − 1)
       2(40)(10)
     =           +1                   2(40)(10)[ 2(40)(10) − (40) − (10)]
        40 + 10                   =
                                         (40+10)
                                                               2
     = 17                                                          + (40 + 10 − 1)
                                  = 2.213


          R − µR           13 − 17
                                                    -1.96 ≤ Z = -1.81 ≤ 1.96,
Z=                       =         = −181
                                       .            do not reject H0
           σ     R
                            2.213
Ujian Mann-Whitney U




                       14
Mann-Whitney U Test
• Nonparametric counterpart of the t test for
  independent samples
• Does not require normally distributed populations
• May be applied to ordinal data
• Assumptions
   – Independent Samples
   – At Least Ordinal Data
Mann-Whitney U Test:
     Sample Size Consideration
• Size of sample one: n1
• Size of sample two: n2
• If both n1 and n2 are ≤ 10, the small sample
  procedure is appropriate.
• If either n1 or n2 is greater than 10, the large
  sample procedure is appropriate.
Mann-Whitney U Test:
          Small Sample Example
H0: The health service               Health    Educational
    population is identical to the   Service       Service
    educational service               20.10          26.19
    population on employee            19.80          23.88
    compensation                      22.36          25.50
Ha: The health service                18.75          21.64
    population is not identical to    21.90          24.85
    the educational service           22.96          25.30
    population on employee            20.75          24.12
    compensation                                     23.45
Mann-Whitney U Test:
α = .05
            Small Sample Example
                                           Compensation   Rank   Group
                                                  18.75      1       H
If the final p-value < .05, reject H0.            19.80      2       H
                                                  20.10      3       H
                                                  20.75      4       H
                                                  21.64      5       E
                                                  21.90      6       H
W1 = 1 + 2 + 3 + 4 + 6 + 7 + 8                    22.36      7       H
                                                  22.96      8       H
   = 31                                           23.45      9       E
                                                  23.88     10       E
W2 = 5 + 9 + 10 + 11 + 12 + 13 + 14 + 15          24.12     11       E
                                                  24.85     12       E
   = 89                                           25.30     13       E
                                                  25.50     14       E
                                                  26.19     15       E
Mann-Whitney U Test:
                Small Sample Example
                  n (n + 1) −            Since U2 < U1, U = 3.
U =n n
 1      1   2
                +  1
                    2
                       1
                            W1
                (7)(8)                   p-value = .0011 < .05, reject H0.
     = (7)(8) +        − 31
                  2
     = 53
                  n (n     + 1)
U =n n
 2      1   2
                +  2   2
                       2
                                  −W 2
                      (8)(9)
     = (7)(8) n1 n2 +        − 89
                        2
     =3
Mann-Whitney U Test:
Formulas for Large Sample Case

   U = n1 n2      n ( n + 1) −              n ⋅n
                                         µ = 2     1       2
                +
                  2
                    1   1
                                 W   1    U



where : n1 = number in group 1                     n ⋅n ( n + n              )
                                                                            +1
                                         σU
                                              =
                                                       1       2   1

                                                                   12
                                                                        2



 n   2
         = number in group 2
                                                  U − µU
                                          Z=
 W   1
       = sum or the ranks of                       σ       U

         values in group 1
Incomes of PBS                         PBS      Non-PBS

       and Non-PBS Viewers                      24,500
                                                39,400
                                                           41,000
                                                           32,500
 Ho: The incomes for PBS viewers                36,800     33,000
                                                44,300     21,000
     and non-PBS viewers are
                                                57,960     40,500
     identical                                  32,000     32,400
 Ha: The incomes for PBS viewers                61,000     16,000
     and non-PBS viewers are not                34,000     21,500
     identical                                  43,500     39,500
                                                55,000     27,600
                                      n1 = 14
  α =.05                                        39,000     43,500
                                                62,500     51,900
If Z < −1.96 or Z > 1.96, reject Ho
                                      n2 = 13   61,400     27,800
                                                53,000
Ranks of Income from Combined
 Groups of PBS and Non-PBS
   Income Rank Viewers Rank Group
                  Group Income
    16,000    1 Non-PBS  39,500 15 Non-PBS
     21,000    2   Non-PBS   40,500    16    Non-PBS
     21,500    3   Non-PBS   41,000    17    Non-PBS
     24,500    4     PBS     43,000    18      PBS
     27,600    5   Non-PBS   43,500   19.5     PBS
     27,800    6   Non-PBS   43,500   19.5   Non-PBS
     32,000    7     PBS     51,900    21    Non-PBS
     32,400    8   Non-PBS   53,000    22      PBS
     32,500    9   Non-PBS   55,000    23      PBS
     33,000   10   Non-PBS   57,960    24      PBS
     34,000   11     PBS     61,000    25      PBS
     36,800   12     PBS     61,400    26      PBS
     39,000   13     PBS     62,500    27      PBS
     39,400   14     PBS
PBS and Non-PBS Viewers:
              Calculation of U
W   1
        = 4 + 7 + 11 + 12 + 13 + 14 + 18 + 19.5 + 22 + 23 + 24 + 25 + 26 + 27
        = 2455
             .
U = n1 n2
                   n ( n + 1) −
                                     W1
                      1   1
                 +
                           2
                        ( 14) ( 15)
        = ( 14) ( 13) +             − 2455
                                         .
                             2
        = 415 .
PBS and Non-PBS Viewers:
            n ⋅n     Conclusion
                          U −µ
µ       =    1       2
                                            Z=                U
             2
                                                      σ
    U

          ( 14) ( 13)                                     U
        =                                      415 − 91
                                                 .
              2                              =
                                                 20.6
        = 91
                                             = −2.40
             n ⋅n ( n + n               )
                                       +1
σ   U
        =
                 1       2    1

                              12
                                   2



             ( 14) ( 13) ( 28)
        =
                         12
                                            Z   Cal
                                                      = −2.40 < −1.96, reject Ho
        = 20.6
Ujian Pemeringkatan Tanda
Padanan-Pasangan Wilcoxon




                             25
Wilcoxon Matched-Pairs
           Signed Rank Test

• A nonparametric alternative to the t test for related
  samples
• Before and After studies
• Studies in which measures are taken on the same
  person or object under different conditions
• Studies or twins or other relatives
Wilcoxon Matched-Pairs
          Signed Rank Test
• Differences of the scores of the two matched
  samples
• Differences are ranked, ignoring the sign
• Ranks are given the sign of the difference
• Positive ranks are summed
• Negative ranks are summed
• T is the smaller sum of ranks
Wilcoxon Matched-Pairs Signed
    Rank Test: Sample Size
         Consideration
• n is the number of matched pairs
• If n > 15, T is approximately normally
  distributed, and a Z test is used.
• If n ≤ 15, a special “small sample” procedure is
  followed.
   – The paired data are randomly selected.
   – The underlying distributions are symmetrical.
Wilcoxon Matched-Pairs Signed
      Rank Test: Small Sample
H: M =0
  0    d
             Example
                Family
Ha: Md ≠ 0                     Pair   Pittsburgh   Oakland
                                  1        1,950     1,760
n=6                               2        1,840     1,870
                                  3        2,015     1,810
α =0.05                           4        1,580     1,660
                                  5        1,790     1,340
                                  6        1,925     1,765
If Tobserved ≤ 1, reject H0.
Wilcoxon Matched-Pairs Signed
      Rank Test: Small Sample
       Family
                    Example d Rank
         Pair Pittsburgh Oakland
               1         1,950      1,760     190     +4
               2         1,840      1,870     -30     -1
               3         2,015      1,810     205     +5
               4         1,580      1,660     -80     -2
               5         1,790      1,340     450     +6
               6         1,925      1,765     160     +3

T = minimum(T+, T-)              T = 3 > Tcrit = 1, do not reject H0.
T+ = 4 + 5 + 6 + 3= 18
T- = 1 + 2 = 3
T=3
Wilcoxon Matched-Pairs Signed
  Rank Test: Large Sample
         Formulas
            ( n )( n + 1)
  µ   T 4
          =

     n( n + 1)( 2n + 1)
 σT=        24
            T−µ
    Z=                 T

               σ   T

where : n = number of pairs
   T = total ranks for either + or - differences, whichever is less
Airline Cost Data for 17 Cities,
          1997 and 1999
H0: Md = 0          α =.05
Ha: Md ≠ 0        If Z < −1.96 or Z > 1.96, reject Ho

 City 1979 1999      d Rank   City 1979 1999      d Rank
    1 20.3 22.8   -2.5   -8    10 20.3 20.9    -0.6    -1
    2 19.5 12.7    6.8   17    11 19.2 22.6    -3.4 -11.5
    3 18.6 14.1    4.5   13    12 19.5 16.9     2.6     9
    4 20.9 16.1    4.8   15    13 18.7 20.6    -1.9 -6.5
    5 19.9 25.2   -5.3  -16    14 17.7 18.5    -0.8    -2
    6 18.6 20.2   -1.6   -4    15 21.6 23.4    -1.8    -5
    7 19.6 14.9    4.7   14    16 22.4 21.3     1.1     3
    8 23.2 21.3    1.9  6.5    17 20.8 17.4     3.4 11.5
    9 21.8 18.7    3.1   10
Airline Cost: T Calculation
  T = min imum(T + , T − )
 T   +
         = 17 + 13 + 15 + 14 + 6.5 + 10 + 9 + 3 + 115
                                                    .
         = 99
 T   −
         = 8 + 16 + 4 + 1 + 115 + 6.5 + 2 + 5
                              .
    = 54
  T = min imum(99,54)
    = 54
Airline Cost: Conclusion
                    ( n) ( n + 1)       ( 17) ( 18)
        µ   T
                =
                          4
                                    =
                                            4
                                                      = 76.5

            n( n + 1) ( 2n + 1)   17( 18) ( 35)
        σT=         24
                                =
                                       24
                                                = 211
                                                    .

                    T − µT        54 − 76.5
          Z=                    =           = − 107
                                                 .
                      σ   T
                                    211.



−1.96 ≤ Z Cal = −1.07 ≤ 1.96, do not reject Ho
Ujian Kruskal-Wallis




                       35
Kruskal-Wallis Test
• A nonparametric alternative to one-way analysis
  of variance
• May used to analyze ordinal data
• No assumed population shape
• Assumes that the C groups are independent
• Assumes random selection of individual items
Kruskal-Wallis K Statistic
             12  T j 
                     C      2
                                − 3( n + 1)
     K=               ∑
          n( n + 1)  j =1 n j 
                              
  where : C = number of groups
     n = total number of items
     T   j
             = total of ranks in a group
      n j = number of items in a group
      K ≈ χ 2 , with df = C - 1
Number of Patients per Day
   per Physician in Three Organizational
                Categories
Ho: The three populations are identical
Ha: At least one of the three populations is different
                                             Three or
                                    Two      More
 α = 0.05                           Partners Partners HMO
 df = C − 1 = 3 − 1 = 2               13       24      26
                                      15       16      22
  χ
      2

      .05, 2
             = 5.991                  20       19      31
                                      18       22      27
  If K > 5.991, reject Ho.            23       25      28
                                               14      33
                                               17
Patients per Day Data:
Kruskal-Wallis Preliminary
    Two
        Calculations
             Three or
              More
      Partners         Partners    HMO
 Patients Rank Patients Rank Patients Rank
       13        1      24      12 26      14
       15        3      16       4 22     9.5
       20        8      19       7 31      17
       18        6      22     9.5 27      15
       23      11       25      13 28      16
                        14       2 33      18
                        17       5
           T1 = 29       T2 = 52.5 T3 = 89.5
                n1 = 5   n2 = 7     n3 = 6
                   n = n1 + n2 + n3 = 5 + 7 + 6 = 18
Patients per Day Data: Kruskal-
Wallis Calculations and Conclusion
                           2
         12  T j  C

                ∑ n  − 3 n +1
   K=                      (   )
      n( n + 1)  j =1 j 

           12       292 52.52 89.52 
     =              5 + 7 + 6  − 3( 18 + 1)
                   
       18( 18 + 1)                  
                                     
           12
     =             ( 1,897) − 3( 18 + 1)
       18( 18 + 1)
     = 9.56

               χ
                   2

                   .05, 2
                            = 5.991
               K = 9.56 > 5.991, reject Ho.
Ujian Friedman




                 41
Friedman Test
• A nonparametric alternative to the randomized
  block design
• Assumptions
     – The blocks are independent.
     – There is no interaction between blocks and
       treatments.
     – Observations within each block can be ranked.
• Hypotheses
    – Ho: The treatment populations are equal
    – Ha: At least one treatment population
          yields larger values than at least one
          other treatment population
Friedman Test
                        C
               12
  χ                    ∑ R j − 3b(C + 1)
      2                     2
          =
      r     bC (C + 1) j =1


where : C = number of treatment levels (columns)
   b = number of blocks (rows)
  R j = total ranks for a particular treatment level
      j = particular treatment level

  χ ≈χ
      2       2
                  , with df = C - 1
      r
Friedman Test: Tensile Strength
       of Plastic Housings
Ho:   The supplier populations are equal
Ha:   At least one supplier population yields larger
      values than at least one other supplier population

                  Supplier 1   Supplier 2   Supplier 3   Supplier 4
      Monday             62           63           57           61
      Tuesday            63           61           59           65
      Wednesday          61           62           56           63
      Thursday           62           60           57           64
      Friday             64           63           58           66
Friedman Test: Tensile Strength
      of Plastic Housings
     α = 0.05
     df = C − 1 = 4 − 1 = 3

     χ
          2

          .05, 3
                 = 7.81473

          χ
              2
     If       r
                  > 7.81473, reject Ho.
Friedman Test: Tensile Strength
      of Plastic Housings
                     Supplier 1      Supplier 2   Supplier 3   Supplier 4
  Monday                        3            4            1            2
  Tuesday                       3            2            1            4
  Wednesday                     2            3            1            4
  Thursday                      3            2            1            4
  Friday                        3            2            1            4
                      R    j   14           13            5           18
                           2
                      R    j   196         169           25          324

              4

              ∑ R j = (196 + 169 + 25 + 324) = 714
              j =1
                       2
Friedman Test: Tensile Strength
      of Plastic Housings     C
                      12
        χ                    ∑ R j − 3b(C + 1)
            2                     2
                =
            r     bC (C + 1) j =1
                       12
                =               (714) − 3(5)(4 + 1)
                  (5)(4)(4 + 1)
                = 10.68


χ
    2

    r
        = 10.68 > 7.81473, reject Ho.
Korelasi Pemeringkatan
      Spearman




                         48
Spearman’s Rank Correlation
• Analyze the degree of association of two
  variables
• Applicable to ordinal level data (ranks)

                      6∑ d
                              2

       r       = 1−
           s
                      ( n − 1)
                      n
                          2


where: n = number of pairs being correlated
       d = the difference in the ranks of each pair

More Related Content

What's hot

Introduction to Numerical Methods for Differential Equations
Introduction to Numerical Methods for Differential EquationsIntroduction to Numerical Methods for Differential Equations
Introduction to Numerical Methods for Differential Equations
matthew_henderson
 
C2 st lecture 10 basic statistics and the z test handout
C2 st lecture 10   basic statistics and the z test handoutC2 st lecture 10   basic statistics and the z test handout
C2 st lecture 10 basic statistics and the z test handout
fatima d
 

What's hot (20)

Model Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesModel Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular Gauges
 
Presentation2 stats
Presentation2 statsPresentation2 stats
Presentation2 stats
 
Regression analysis
Regression analysisRegression analysis
Regression analysis
 
Signal Processing Course : Theory for Sparse Recovery
Signal Processing Course : Theory for Sparse RecoverySignal Processing Course : Theory for Sparse Recovery
Signal Processing Course : Theory for Sparse Recovery
 
Initial value problems
Initial value problemsInitial value problems
Initial value problems
 
Models
ModelsModels
Models
 
IT for Business Intelligence Term Paper
IT for Business Intelligence Term PaperIT for Business Intelligence Term Paper
IT for Business Intelligence Term Paper
 
Introduction to Numerical Methods for Differential Equations
Introduction to Numerical Methods for Differential EquationsIntroduction to Numerical Methods for Differential Equations
Introduction to Numerical Methods for Differential Equations
 
Linear (in)dependence
Linear (in)dependenceLinear (in)dependence
Linear (in)dependence
 
Regression vs Neural Net
Regression vs Neural NetRegression vs Neural Net
Regression vs Neural Net
 
Regression analysis by Muthama JM
Regression analysis by Muthama JMRegression analysis by Muthama JM
Regression analysis by Muthama JM
 
BS2506 tutorial3
BS2506 tutorial3BS2506 tutorial3
BS2506 tutorial3
 
Rpra1
Rpra1Rpra1
Rpra1
 
Statistics
StatisticsStatistics
Statistics
 
how to teach covariance via excel, for CFA review course, Portfolio Management
how to teach covariance via excel, for CFA review course, Portfolio Managementhow to teach covariance via excel, for CFA review course, Portfolio Management
how to teach covariance via excel, for CFA review course, Portfolio Management
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
 
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
C2 st lecture 10 basic statistics and the z test handout
C2 st lecture 10   basic statistics and the z test handoutC2 st lecture 10   basic statistics and the z test handout
C2 st lecture 10 basic statistics and the z test handout
 
Normal lecture
Normal lectureNormal lecture
Normal lecture
 

Viewers also liked

otto esperson's the theory of three ranks
otto esperson's the theory of three ranksotto esperson's the theory of three ranks
otto esperson's the theory of three ranks
Aidana Kumargaliyeva
 
Cómo se vincula el trauma del nacimiento de Otto Rank con la psicoterapia cor...
Cómo se vincula el trauma del nacimiento de Otto Rank con la psicoterapia cor...Cómo se vincula el trauma del nacimiento de Otto Rank con la psicoterapia cor...
Cómo se vincula el trauma del nacimiento de Otto Rank con la psicoterapia cor...
Solcitho Fariña
 

Viewers also liked (12)

otto esperson's the theory of three ranks
otto esperson's the theory of three ranksotto esperson's the theory of three ranks
otto esperson's the theory of three ranks
 
Contoh analisis uji beda nonparamaetrik wilcoxon
Contoh analisis uji beda nonparamaetrik wilcoxonContoh analisis uji beda nonparamaetrik wilcoxon
Contoh analisis uji beda nonparamaetrik wilcoxon
 
Cómo se vincula el trauma del nacimiento de Otto Rank con la psicoterapia cor...
Cómo se vincula el trauma del nacimiento de Otto Rank con la psicoterapia cor...Cómo se vincula el trauma del nacimiento de Otto Rank con la psicoterapia cor...
Cómo se vincula el trauma del nacimiento de Otto Rank con la psicoterapia cor...
 
Uji Kruskal Wallis
Uji Kruskal WallisUji Kruskal Wallis
Uji Kruskal Wallis
 
Otto Rank
Otto RankOtto Rank
Otto Rank
 
Statistik parametrik
Statistik parametrikStatistik parametrik
Statistik parametrik
 
Otto rank
Otto rankOtto rank
Otto rank
 
Statistik (Bab 1)
Statistik (Bab 1) Statistik (Bab 1)
Statistik (Bab 1)
 
English : Part of speech
English : Part of speech English : Part of speech
English : Part of speech
 
Nota.statistik
Nota.statistikNota.statistik
Nota.statistik
 
Polimer
PolimerPolimer
Polimer
 
Teorías de la personalidad karen horney
Teorías de la personalidad karen horneyTeorías de la personalidad karen horney
Teorías de la personalidad karen horney
 

Similar to Bab13

09 test of hypothesis small sample.ppt
09 test of hypothesis small sample.ppt09 test of hypothesis small sample.ppt
09 test of hypothesis small sample.ppt
Pooja Sakhla
 
Cs221 lecture4-fall11
Cs221 lecture4-fall11Cs221 lecture4-fall11
Cs221 lecture4-fall11
darwinrlo
 
Measures of variation and dispersion report
Measures of variation and dispersion reportMeasures of variation and dispersion report
Measures of variation and dispersion report
Angelo
 
C2 st lecture 13 revision for test b handout
C2 st lecture 13   revision for test b handoutC2 st lecture 13   revision for test b handout
C2 st lecture 13 revision for test b handout
fatima d
 

Similar to Bab13 (20)

Statistics-Non parametric test
Statistics-Non parametric testStatistics-Non parametric test
Statistics-Non parametric test
 
Admission in India
Admission in IndiaAdmission in India
Admission in India
 
t-tests in R - Lab slides for UGA course FANR 6750
t-tests in R - Lab slides for UGA course FANR 6750t-tests in R - Lab slides for UGA course FANR 6750
t-tests in R - Lab slides for UGA course FANR 6750
 
simple linear regression - brief introduction
simple linear regression - brief introductionsimple linear regression - brief introduction
simple linear regression - brief introduction
 
09 test of hypothesis small sample.ppt
09 test of hypothesis small sample.ppt09 test of hypothesis small sample.ppt
09 test of hypothesis small sample.ppt
 
Statistical methods
Statistical methods Statistical methods
Statistical methods
 
Cs221 lecture4-fall11
Cs221 lecture4-fall11Cs221 lecture4-fall11
Cs221 lecture4-fall11
 
Measures of variation and dispersion report
Measures of variation and dispersion reportMeasures of variation and dispersion report
Measures of variation and dispersion report
 
Ali, Redescending M-estimator
Ali, Redescending M-estimator Ali, Redescending M-estimator
Ali, Redescending M-estimator
 
Regression
Regression  Regression
Regression
 
Student t t est
Student t t estStudent t t est
Student t t est
 
Sample A_Book Typesetting
Sample A_Book TypesettingSample A_Book Typesetting
Sample A_Book Typesetting
 
Correlation
CorrelationCorrelation
Correlation
 
Stat5 the t test
Stat5 the t testStat5 the t test
Stat5 the t test
 
Stat5 the t test
Stat5 the t testStat5 the t test
Stat5 the t test
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
C2 st lecture 13 revision for test b handout
C2 st lecture 13   revision for test b handoutC2 st lecture 13   revision for test b handout
C2 st lecture 13 revision for test b handout
 
NPDE-TCA
NPDE-TCANPDE-TCA
NPDE-TCA
 
Anov af03
Anov af03Anov af03
Anov af03
 
T test statistics
T test statisticsT test statistics
T test statistics
 

Bab13

  • 2. Objektif Pembelajaran • Untuk digunakan dalam pengujian hipotesis apabila tidak boleh membuat sebarang anggapan terhadap taburan yang kita ambil • Untuk mengetahui ujian untuk taburan bebas yang digunakan dalam keadaan tertentu • Untuk menggunakan dan menjelaskan enam jenis pengujian hipotesis tak berparameter • Ujian mengetahui kelemahan dan kelebihan ujian tak berparameter
  • 3. Statistik Berparameter vs Tidak Berparameter • Statistik Berparameter adalah teknik statistik berdasarkan kepada andaian berkaitan populasi dimana sampel data adalah dipungut. – Andaian dimana data yang dianalisis adalah dipilih secara rawak dari populasi yang bertaburan normal. – Memerlukan ukuran kuantitatif yang menghasilkan data bertaraf interval atau perkadaran.
  • 4. Statistik Berparameter vs Tidak Berparameter • Statistik Tidak Berparameter adalah berdasarkan andaian yang kurang populasi dan parameter. – Kadangkala dipanggil sebagai statistik “tidak mempunyai taburan”. – Berbagai-bagai jenis statistik tidak berparameter yang ada untuk digunakan dengan data bertaraf nominal atau ordinal.
  • 5. Kebaikan Teknik Tidak Berparameter • Kadangkala tidak terdapat teknik berparameter alternatif untuk digunakan berbanding teknik tidak berparameter. • Beberapa ujian tidak berparameter boleh digunakan untuk menganalisis data nominal. • Beberapa ujian tidak berparameter boleh digunakan untuk menganalisis data ordinal. • Pengiraan statistik tidak berparameter kurang rumit berbanding kaedah berparameter, terutama untuk sampel yang kecil. • Pernyataan kebarangkalian yang diperolehi dari kebanyakan ujian tidak berparameter adalah kebarangkalian yang tepat.
  • 6. Kelemahan Statistik Tidak Berparameter • Ujian tidak berparameter boleh membazirkan data jika ujian berparaeter boleh digunakan untuk data tersebut. • Ujian tidak berparameter biasanya tidak digunakan dengan meluas dan kurang dikenali berbanding ujian berparameter. • Untuk sampel yang besar, pengiraan bagi kebanyakan ujian tidak berparameter boleh mengelirukan.
  • 8. Runs Test • Test for randomness - is the order or sequence of observations in a sample random or not • Each sample item possesses one of two possible characteristics • Run - a succession of observations which possess the same characteristic • Example with two runs: F, F, F, F, F, F, F, F, M, M, M, M, M, M, M • Example with fifteen runs: F, M, F, M, F, M, F, M, F, M, F, M, F, M, F
  • 9. Runs Test: Sample Size Consideration • Sample size: n • Number of sample member possessing the first characteristic: n1 • Number of sample members possessing the second characteristic: n2 • n = n1 + n2 • If both n1 and n2 are ≤ 20, the small sample runs test is appropriate.
  • 10. Runs Test: Small Sample H : The observations in Example 0 the sample are randomly generated. H : The observations in the sample are not randomly generated. a α = .05 n1 = 18 n2 = 8 If 7 ≤ R ≤ 17, do not reject H0 Otherwise, reject H0. 1 2 3 4 5 6 7 8 9 10 11 12 D CCCCC D CC D CCCC D C D CCC DDD CCC R = 12 Since 7 ≤ R = 12 ≤ 17, do not reject H0
  • 11. Runs Test: Large Sample 2n n If either n or n is > 20, µ = +1 1 2 1 the sampling 2 R + n n 1 2 distribution of R is approximately normal. 2 n1 n2 (2 n1 n2 − n1 − n2 ) σ = (n1+ n2) R 2 + (n1 + n2 − 1) R − µR Z= σ R
  • 12. Runs Test: Large Sample 0 Example H : : The observations in the sample are randomly generated. H The observations in the sample are randomly generated. 0 H : : The observations in the sample are not randomly generated. H The observations in the sample are not randomly generated. a a α = .05 α = .05 n1 = 40 n = 40 n21= 10 n2 = 10 If -1.96 ≤ Z ≤ 1.96, do not reject H0 If -1.96 ≤ Z ≤ 1.96, do not reject H0 Otherwise, reject H0. . Otherwise, reject H0 1 1 1 1 2 2 3 4 5 6 3 4 5 6 7 7 8 8 9 9 0 0 11 11 NNN NNN F NNNNNNN F NN FF NNNNNN F NNNNNNN F NN FF NNNNNN F NNNN F NNNN F NNNNN F NNNNN 12 12 13 13 FFFF NNNNNNNNNNNN FFFF NNNNNNNNNNNN R = 13 R = 13
  • 13. Runs Test: Large Sample 2n n Example n n − n − n ) 2 n n (2 µ = 1 2 +1 σR= 1 2 1 2 1 2 R n1 + n2 (n1+ n2) 2 + (n1 + n2 − 1) 2(40)(10) = +1 2(40)(10)[ 2(40)(10) − (40) − (10)] 40 + 10 = (40+10) 2 = 17 + (40 + 10 − 1) = 2.213 R − µR 13 − 17 -1.96 ≤ Z = -1.81 ≤ 1.96, Z= = = −181 . do not reject H0 σ R 2.213
  • 15. Mann-Whitney U Test • Nonparametric counterpart of the t test for independent samples • Does not require normally distributed populations • May be applied to ordinal data • Assumptions – Independent Samples – At Least Ordinal Data
  • 16. Mann-Whitney U Test: Sample Size Consideration • Size of sample one: n1 • Size of sample two: n2 • If both n1 and n2 are ≤ 10, the small sample procedure is appropriate. • If either n1 or n2 is greater than 10, the large sample procedure is appropriate.
  • 17. Mann-Whitney U Test: Small Sample Example H0: The health service Health Educational population is identical to the Service Service educational service 20.10 26.19 population on employee 19.80 23.88 compensation 22.36 25.50 Ha: The health service 18.75 21.64 population is not identical to 21.90 24.85 the educational service 22.96 25.30 population on employee 20.75 24.12 compensation 23.45
  • 18. Mann-Whitney U Test: α = .05 Small Sample Example Compensation Rank Group 18.75 1 H If the final p-value < .05, reject H0. 19.80 2 H 20.10 3 H 20.75 4 H 21.64 5 E 21.90 6 H W1 = 1 + 2 + 3 + 4 + 6 + 7 + 8 22.36 7 H 22.96 8 H = 31 23.45 9 E 23.88 10 E W2 = 5 + 9 + 10 + 11 + 12 + 13 + 14 + 15 24.12 11 E 24.85 12 E = 89 25.30 13 E 25.50 14 E 26.19 15 E
  • 19. Mann-Whitney U Test: Small Sample Example n (n + 1) − Since U2 < U1, U = 3. U =n n 1 1 2 + 1 2 1 W1 (7)(8) p-value = .0011 < .05, reject H0. = (7)(8) + − 31 2 = 53 n (n + 1) U =n n 2 1 2 + 2 2 2 −W 2 (8)(9) = (7)(8) n1 n2 + − 89 2 =3
  • 20. Mann-Whitney U Test: Formulas for Large Sample Case U = n1 n2 n ( n + 1) − n ⋅n µ = 2 1 2 + 2 1 1 W 1 U where : n1 = number in group 1 n ⋅n ( n + n ) +1 σU = 1 2 1 12 2 n 2 = number in group 2 U − µU Z= W 1 = sum or the ranks of σ U values in group 1
  • 21. Incomes of PBS PBS Non-PBS and Non-PBS Viewers 24,500 39,400 41,000 32,500 Ho: The incomes for PBS viewers 36,800 33,000 44,300 21,000 and non-PBS viewers are 57,960 40,500 identical 32,000 32,400 Ha: The incomes for PBS viewers 61,000 16,000 and non-PBS viewers are not 34,000 21,500 identical 43,500 39,500 55,000 27,600 n1 = 14 α =.05 39,000 43,500 62,500 51,900 If Z < −1.96 or Z > 1.96, reject Ho n2 = 13 61,400 27,800 53,000
  • 22. Ranks of Income from Combined Groups of PBS and Non-PBS Income Rank Viewers Rank Group Group Income 16,000 1 Non-PBS 39,500 15 Non-PBS 21,000 2 Non-PBS 40,500 16 Non-PBS 21,500 3 Non-PBS 41,000 17 Non-PBS 24,500 4 PBS 43,000 18 PBS 27,600 5 Non-PBS 43,500 19.5 PBS 27,800 6 Non-PBS 43,500 19.5 Non-PBS 32,000 7 PBS 51,900 21 Non-PBS 32,400 8 Non-PBS 53,000 22 PBS 32,500 9 Non-PBS 55,000 23 PBS 33,000 10 Non-PBS 57,960 24 PBS 34,000 11 PBS 61,000 25 PBS 36,800 12 PBS 61,400 26 PBS 39,000 13 PBS 62,500 27 PBS 39,400 14 PBS
  • 23. PBS and Non-PBS Viewers: Calculation of U W 1 = 4 + 7 + 11 + 12 + 13 + 14 + 18 + 19.5 + 22 + 23 + 24 + 25 + 26 + 27 = 2455 . U = n1 n2 n ( n + 1) − W1 1 1 + 2 ( 14) ( 15) = ( 14) ( 13) + − 2455 . 2 = 415 .
  • 24. PBS and Non-PBS Viewers: n ⋅n Conclusion U −µ µ = 1 2 Z= U 2 σ U ( 14) ( 13) U = 415 − 91 . 2 = 20.6 = 91 = −2.40 n ⋅n ( n + n ) +1 σ U = 1 2 1 12 2 ( 14) ( 13) ( 28) = 12 Z Cal = −2.40 < −1.96, reject Ho = 20.6
  • 26. Wilcoxon Matched-Pairs Signed Rank Test • A nonparametric alternative to the t test for related samples • Before and After studies • Studies in which measures are taken on the same person or object under different conditions • Studies or twins or other relatives
  • 27. Wilcoxon Matched-Pairs Signed Rank Test • Differences of the scores of the two matched samples • Differences are ranked, ignoring the sign • Ranks are given the sign of the difference • Positive ranks are summed • Negative ranks are summed • T is the smaller sum of ranks
  • 28. Wilcoxon Matched-Pairs Signed Rank Test: Sample Size Consideration • n is the number of matched pairs • If n > 15, T is approximately normally distributed, and a Z test is used. • If n ≤ 15, a special “small sample” procedure is followed. – The paired data are randomly selected. – The underlying distributions are symmetrical.
  • 29. Wilcoxon Matched-Pairs Signed Rank Test: Small Sample H: M =0 0 d Example Family Ha: Md ≠ 0 Pair Pittsburgh Oakland 1 1,950 1,760 n=6 2 1,840 1,870 3 2,015 1,810 α =0.05 4 1,580 1,660 5 1,790 1,340 6 1,925 1,765 If Tobserved ≤ 1, reject H0.
  • 30. Wilcoxon Matched-Pairs Signed Rank Test: Small Sample Family Example d Rank Pair Pittsburgh Oakland 1 1,950 1,760 190 +4 2 1,840 1,870 -30 -1 3 2,015 1,810 205 +5 4 1,580 1,660 -80 -2 5 1,790 1,340 450 +6 6 1,925 1,765 160 +3 T = minimum(T+, T-) T = 3 > Tcrit = 1, do not reject H0. T+ = 4 + 5 + 6 + 3= 18 T- = 1 + 2 = 3 T=3
  • 31. Wilcoxon Matched-Pairs Signed Rank Test: Large Sample Formulas ( n )( n + 1) µ T 4 = n( n + 1)( 2n + 1) σT= 24 T−µ Z= T σ T where : n = number of pairs T = total ranks for either + or - differences, whichever is less
  • 32. Airline Cost Data for 17 Cities, 1997 and 1999 H0: Md = 0 α =.05 Ha: Md ≠ 0 If Z < −1.96 or Z > 1.96, reject Ho City 1979 1999 d Rank City 1979 1999 d Rank 1 20.3 22.8 -2.5 -8 10 20.3 20.9 -0.6 -1 2 19.5 12.7 6.8 17 11 19.2 22.6 -3.4 -11.5 3 18.6 14.1 4.5 13 12 19.5 16.9 2.6 9 4 20.9 16.1 4.8 15 13 18.7 20.6 -1.9 -6.5 5 19.9 25.2 -5.3 -16 14 17.7 18.5 -0.8 -2 6 18.6 20.2 -1.6 -4 15 21.6 23.4 -1.8 -5 7 19.6 14.9 4.7 14 16 22.4 21.3 1.1 3 8 23.2 21.3 1.9 6.5 17 20.8 17.4 3.4 11.5 9 21.8 18.7 3.1 10
  • 33. Airline Cost: T Calculation T = min imum(T + , T − ) T + = 17 + 13 + 15 + 14 + 6.5 + 10 + 9 + 3 + 115 . = 99 T − = 8 + 16 + 4 + 1 + 115 + 6.5 + 2 + 5 . = 54 T = min imum(99,54) = 54
  • 34. Airline Cost: Conclusion ( n) ( n + 1) ( 17) ( 18) µ T = 4 = 4 = 76.5 n( n + 1) ( 2n + 1) 17( 18) ( 35) σT= 24 = 24 = 211 . T − µT 54 − 76.5 Z= = = − 107 . σ T 211. −1.96 ≤ Z Cal = −1.07 ≤ 1.96, do not reject Ho
  • 36. Kruskal-Wallis Test • A nonparametric alternative to one-way analysis of variance • May used to analyze ordinal data • No assumed population shape • Assumes that the C groups are independent • Assumes random selection of individual items
  • 37. Kruskal-Wallis K Statistic 12  T j   C 2  − 3( n + 1) K= ∑ n( n + 1)  j =1 n j    where : C = number of groups n = total number of items T j = total of ranks in a group n j = number of items in a group K ≈ χ 2 , with df = C - 1
  • 38. Number of Patients per Day per Physician in Three Organizational Categories Ho: The three populations are identical Ha: At least one of the three populations is different Three or Two More α = 0.05 Partners Partners HMO df = C − 1 = 3 − 1 = 2 13 24 26 15 16 22 χ 2 .05, 2 = 5.991 20 19 31 18 22 27 If K > 5.991, reject Ho. 23 25 28 14 33 17
  • 39. Patients per Day Data: Kruskal-Wallis Preliminary Two Calculations Three or More Partners Partners HMO Patients Rank Patients Rank Patients Rank 13 1 24 12 26 14 15 3 16 4 22 9.5 20 8 19 7 31 17 18 6 22 9.5 27 15 23 11 25 13 28 16 14 2 33 18 17 5 T1 = 29 T2 = 52.5 T3 = 89.5 n1 = 5 n2 = 7 n3 = 6 n = n1 + n2 + n3 = 5 + 7 + 6 = 18
  • 40. Patients per Day Data: Kruskal- Wallis Calculations and Conclusion   2 12  T j  C ∑ n  − 3 n +1 K= ( ) n( n + 1)  j =1 j  12  292 52.52 89.52  =  5 + 7 + 6  − 3( 18 + 1)  18( 18 + 1)    12 = ( 1,897) − 3( 18 + 1) 18( 18 + 1) = 9.56 χ 2 .05, 2 = 5.991 K = 9.56 > 5.991, reject Ho.
  • 42. Friedman Test • A nonparametric alternative to the randomized block design • Assumptions – The blocks are independent. – There is no interaction between blocks and treatments. – Observations within each block can be ranked. • Hypotheses – Ho: The treatment populations are equal – Ha: At least one treatment population yields larger values than at least one other treatment population
  • 43. Friedman Test C 12 χ ∑ R j − 3b(C + 1) 2 2 = r bC (C + 1) j =1 where : C = number of treatment levels (columns) b = number of blocks (rows) R j = total ranks for a particular treatment level j = particular treatment level χ ≈χ 2 2 , with df = C - 1 r
  • 44. Friedman Test: Tensile Strength of Plastic Housings Ho: The supplier populations are equal Ha: At least one supplier population yields larger values than at least one other supplier population Supplier 1 Supplier 2 Supplier 3 Supplier 4 Monday 62 63 57 61 Tuesday 63 61 59 65 Wednesday 61 62 56 63 Thursday 62 60 57 64 Friday 64 63 58 66
  • 45. Friedman Test: Tensile Strength of Plastic Housings α = 0.05 df = C − 1 = 4 − 1 = 3 χ 2 .05, 3 = 7.81473 χ 2 If r > 7.81473, reject Ho.
  • 46. Friedman Test: Tensile Strength of Plastic Housings Supplier 1 Supplier 2 Supplier 3 Supplier 4 Monday 3 4 1 2 Tuesday 3 2 1 4 Wednesday 2 3 1 4 Thursday 3 2 1 4 Friday 3 2 1 4 R j 14 13 5 18 2 R j 196 169 25 324 4 ∑ R j = (196 + 169 + 25 + 324) = 714 j =1 2
  • 47. Friedman Test: Tensile Strength of Plastic Housings C 12 χ ∑ R j − 3b(C + 1) 2 2 = r bC (C + 1) j =1 12 = (714) − 3(5)(4 + 1) (5)(4)(4 + 1) = 10.68 χ 2 r = 10.68 > 7.81473, reject Ho.
  • 48. Korelasi Pemeringkatan Spearman 48
  • 49. Spearman’s Rank Correlation • Analyze the degree of association of two variables • Applicable to ordinal level data (ranks) 6∑ d 2 r = 1− s ( n − 1) n 2 where: n = number of pairs being correlated d = the difference in the ranks of each pair

Editor's Notes

  1. 2
  2. 3
  3. 4
  4. 5
  5. 37
  6. 42
  7. 43
  8. 44
  9. 45
  10. 46
  11. 47
  12. 52
  13. 53
  14. 54
  15. 55
  16. 56
  17. 57
  18. 58
  19. 59
  20. 60
  21. 67