Fcv cross hertzmann

262 views

Published on

Published in: Technology, Art & Photos
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
262
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Fcv cross hertzmann

  1. 1. Cross-fertilization of graphics and vision Aaron Hertzmann University of Toronto
  2. 2. Image/Video Manipulation
  3. 3. Image and video manipulationC. Barnes, E. Shechtman, A. Finkelstein, D. B. Goldman, “PatchMatch: A Randomized Correspondence Algorithm forStructural Image Editing, ACM Trans. Graph (SIGGRAPH) 2009
  4. 4. Special effectsStargate Studios (www.stargate lms.com)
  5. 5. Special effectsStargate Studios (www.stargate lms.com)
  6. 6. Look Effects
  7. 7. coming next year:Computer Vision for Visual EffectsRichard J. RadkeCambridge University Press, Fall 2012
  8. 8. Generalization of vision ideas
  9. 9. Geometry signal processingTaubin, SIGGRAPH 1995 Jones, Durand, Desbrun, SIGGRAPH 2003
  10. 10. Geometry processingE. Kalogerakis, A. Hertzmann, K. Singh, "Learning 3D Mesh Segmentation and Labeling",ACM Trans. Graphics / SIGGRAPH 2011A. M. Bronstein, M. M. Bronstein, M. Ovsjanikov, L. J. Guibas, "Shape Google: geometric words andexpressions for invariant shape retrieval", ACM Trans. Graphics (TOG), 2011.
  11. 11. Non-photorealistic rendering (demo)
  12. 12. Non-photorealistic rendering Lambertian rendering Contours and Suggestive Contours [DeCarlo et al. 2003]
  13. 13. “Bone” by Jeff Smith © 2007 Our result
  14. 14. “Bone” by Jeff Smith © 2007 Our result
  15. 15. “Bone” by Jeff Smith © 2007 Our result
  16. 16. The Science of ArtClaim: Vision and graphics will be fundamental tothe scientific study of artSee: A. Hertzmann, “Non-PhotorealisticRendering and The Science of Art,” NPAR 2010
  17. 17. Fei-Fei et al. 2007
  18. 18. Why vision should continue to look to graphics:Graphics builds models ofprecisely the “visual world”
  19. 19. Scene models Chaudhuri et al.SIGGRAPH 2011 Yu et al. SIGGRAPH 2011
  20. 20. Google 3D Warehouse M. Fisher, M. Savva, P. Hanrahan. “Characterizing Structural Relationships in Scenes Using Graph Kernels,” SIGGRAPH 2011
  21. 21. Human motion K. Grochow, S. L. Martin, A. Hertzmann, Z. Popović. “Style-Based Inverse Kinematics” ACM Trans. Graphics / SIGGRAPH 2004. R. Urtasun, D. J. Fleet, A. Hertzmann, P. Fua. “Priors for People Tracking from Small Training Sets” ICCV 2005
  22. 22. Claim: Understanding people inmotion requires physical models
  23. 23. Physics-Based Characters Features Contact COM AM Posture M. de Lasa, I. Mordatch, A. Hertzmann, “Feature-Based Locomotion Controllers,” SIGGRAPH 2010
  24. 24. M. de Lasa, I. Mordatch, A. Hertzmann,“Feature-Based Locomotion Controllers,” SIGGRAPH 2010
  25. 25. M. de Lasa, I. Mordatch, A. Hertzmann,“Feature-Based Locomotion Controllers,” SIGGRAPH 2010
  26. 26. M. de Lasa, I. Mordatch, A. Hertzmann,“Feature-Based Locomotion Controllers,” SIGGRAPH 2010
  27. 27. M. Brubaker, D. J. Fleet, A. Hertzmann,“Physics-Based Person Tracking Using the Anthropomorphic Walker”CVPR 2007, IJCV 2010
  28. 28. SummaryMany successes of vision ideas in graphicsVision and graphics are key to the science of artVision should look to graphics for models of thevisual world

×