SlideShare a Scribd company logo
1 of 18
Intro Soils – Lab 2
Soil Texture, Density, and Porosity
o Lecture Materials: Soil Architecture and Physical Properties
(Ch 4)
o Labs submitted without advised instructions will result in a 3
point deduction:
answers
o Submission Closes Sunday evening, February 5, 2016 with to
Module 2.
o Labs submitted on or prior Monday, February 1, 2016 will
receive feedback with the opportunity
to resubmit the lab. Do not miss out on a great opportunity to
be ensure understanding of the
materials and increase your lab grade.
Lab 2 - Soil Texture, Density, and Porosity
Introduction
Soil physical properties greatly impact how soils behave.
Outcomes of most agricultural as well
as engineering projects are often defined by the properties of
the soil involved. Soils are made
of soil solids and pore space; the soil solids are made up mostly
of minerals as well as organic
matter while the pore space is made up of air and water.
Ideally, these two portions are in a
50/50 ratio (Figure 1). Soil physical properties describe the soil
particles and the manner in
which they aggregate and are arranged. The following exercise
will focus on soil texture, soil
density, and soil porosity.
Figure 1. Ideal soil composition (Text Figure 1.18)
Soil Texture
Soil texture is the proportion of the different sized particles in
soil. Only the fine earth fraction
of sand, silt, and clay are included. There are two methods for
determining texture in soils by
feel and mechanistically using particle size analysis. Neither
the coarse fraction greater than
2mm in diameter nor organic matter are included in textural
analysis. In the previous lab
exercise, soil texture was estimated by feel. The particle size
analysis procedure via mechanical
means is accomplished using a Bouyoucos hydrometer and
calculated using Stokes Law. Stokes
law establishes a relationship between particle size and
sedimentation. The velocity by which a
particle fall through a liquid is proportional to the gravitational
force and the square of the
effective particle diameter. In other words, ‘the bigger they
are, the faster they fall’. When
the soil is dispersed, the larger, sand particles will settle or fall
to the bottom of a liquid faster
than silts or clays.
When conducting this experiment in the lab, the first task it to
remove the coarse fraction from
the soil sample which is generally done by sieving (2mm). Soil
particles want to stay together;
the soil separates and their aggregates do not easily separate. In
order to achieve separation
both mechanical and chemical intervention is needed. Sieving
removed large portions of the
organic matter, but it still is a significant agent in the binding
of soil particles together, so
hydrogen peroxide is also added to oxidize or destroy the
remaining organic matter. A
dispersing chemical agent, commonly hexametaphosphate, is
also added in addition to water to
create a soil solution and then and stirred in mixer for 4
minutes. The dispersing agent causes
an exchange of sodium with polyvanet cations like calcium and
magnesium in the clays causing
them to disperse. Depending on the need for accuracy, the soils
can be left to sit overnight to
allow for complete dispersal or moved onto mechanical mixing.
After approximately five
minutes on a mixer, the soil solution is placed in a settling
column.
The soil particles will settle based on Stoke’s Law.
Equation 1: V = d2 g (Ds – Df)
18 ŋ
Where: V = velocity (cm/s)
d = diameter of the particles (cm)
g = gravity (acceleration 980 m/s2)
Ds = density of the soil
Df = density of the liquid
ŋ = viscosity of the liquid (g/cm s)
To simplify the equation, several assumptions are made. The
particles are assumed to be
spherical with particle densities of 2.65 g/cm3. Also, the
density and viscosity of the liquid are
assumed to be constant, at a given temperature which simplifies
Stoke’s Law to:
Equation 2: V = k*d2
Where: V = velocity (cm/s)
k = constant
d = diameter of the particles (cm)
A hydrometer can be used to measure the amount of particles in
suspension. Hydrometers are
generally used to measure density or specific gravity and can be
calibrated for many different
functions such measuring the density of milk and its
constituents or even alcoholic content in
brewing activities. Bouyoucos developed a hydrometer
calibrated in grams per liter (g/L) that
allows direct measurement of the concentration of mineral
particles in a suspension.
Bouyoucos also established that sand-sized particles (2.0 to
0.05 mm) settle out of suspension
in 40 seconds while silt-sized particles (0.5 to 0.002 mm)
require approximately 2 hours to
settle out of suspension. After 2 hours, it is assumed that only
clay-sized particles (<0.002 mm)
remain in suspension.
After the soil sedimentation column has been constructed, the
entire column is gently shaken
to suspend all of the soil particles. After 40 seconds, the
hydrometer is read. The sand in the
column has settled to the bottom leaving silt and clays still in
suspension. Then the column is
allowed to continue to settle for 2 hours and a second reading is
collected. At this point, the silt
has also settled to the bottom leaving only clay in suspension.
Percentages of sand, silt, and
clay can then be determined.
Temperature also influences the density and viscosity of water.
If the temperature deviates
from 20°C (68°F), the hydrometer reading must be corrected.
For every degree over or under
20°C, 0.36 g/L should be added or subtracted from the
hydrometer reading. If the temperature
is above 20°C the value will increase, and if it is below 20°C
the value will decrease. (Note
these values are in the metric Celsius temperature scale not the
traditional Fahrenheit.)
Equation 3:
Corrected reading (g/L) = hydrometer reading + 0.36 (Recorded
Temperature - 20°C)
(Note: For this exercise, round to the nearest tenth or one
decimal place)
The corrected readings can then be used with the following
equations to calculate the
percentage of sand, silt, and clay in a sample. The textural
triangle can then be utilized to
identify the textural class of the soil.
Equation 4: % Sand + % Silt + %Clay = 100%
Equation 5: % Silt + % Clay
(Corrected 40 second hydrometer reading/Mass of Dry Soil) *
100
Equation 6: %Clay
(Corrected 2 hour hydrometer reading/Mass of Dry Soil) *100
Equation 7: % Sand
100 – (% silt + % clay)
Equation 8: %Silt
100 – (%sand + %clay)
Next, using the percetages of sand, silt, and clay, the textural
triangle can be utilized to classify
the soils into a textural class. First, find the percentage clay on
the left side of the triangle, then
from the bottom, locate the intersection of the percentage clay,
and finally out from there on
the right side of the triangle the percentage silt. The textural
class is the interesection of the
three percetages (Figure 2, Text Figure 4.6).
Figure 2: Soil Textural Triangle (Courtesy of NRCS)
Note: For this exercise, soil weight, hydrometer readings and
temperatures will be provided to
calculate percentage of sand, silt, and clay, followed by
determination of the soil textural class
using the soil textural triangle.
Soil Density and Porosity
Soils are a mixture of solids, liquids, and gases. The liquids in
soil solution and soil gases for air
exchange are located in between the soil solid particles. The
density and porosity of soils
greatly effects the ability of that soil to support a range of
activities from plant growth to
engineering.
Density generally is defined as mass per unit of volume. There
are two types of soil density
measurements: particle density and bulk density. Particle
density (Dp) is the mass per unit
volume of soil solids not including pore space. Most of the
major soil minerals are quarts,
feldspars, micas, and silicates, so the range of particle densities
seen in most mineral soils
ranges only from 2.6 to 2.75 Mg/m3. Soil organic matter as
well as organic soils are much less
dense with ranges in the 0.9 to 1.4 Mg/m3 range. Bulk density
(Db) includes the pore space and
is the mass per unit volume of dry soil representing the density
of the soil as a whole. The
relationship between bulk density and particle density are
illustrated in Figure 3 (Figure 4.32 in
the text).
Figure 3. Relationship between bulk density and particle
density (Text Figure 4.32).
Soil porosity is directly related to density. Porosity represents
the ‘other half’ of the ideal soil
composition from the soil mineral portion and is the portion of
soil containing air and water.
Bulk density and particle density predict total porosity. Pore
size determines the role they play
in soils. Macropores are the largest in size with effective
diameters greater than 0.08 mm and
are responsible for mass flow of water and air through the soil
profile. Micropores are smaller
and are responsible for water and nutrient retention thru
capillary action. Interconnectivity of
the soil pore network is important in how water, gases, and
nutrients move through the soil
profile.
Soil bulk density varies with soil depth, soil texture, and
structure. The surface horizons where
higher organic matter occur tend to have lower bulk densities
than subsurface horizons where
organic matter is decreased and there is there is less aggregation
and root penetration. Soil
texture plays a significant role in bulk density as well. Finer
textured soils like clays, silts, and
loams tend to generally have lower bulk densities than sands.
Sands also tend to have a greater
abundance of macropores while finer textured soils with have
more micropores. In soils with
strong structure, macropores occurring between peds allow for
greater water infiltration rates.
Bulk densities for mineral soils typically range from 1.0 to 1.8
Mg/m3 (Text Figure 4.34).
Managing bulk density is an important factor in soil
productivity from an agricultural
standpoint. How soils are managed can alter these properties
and either decrease or increase
their long term effectiveness. Two management operations that
negatively impact bulk density
as well as overall soil structure are tillage and compaction.
Generally, long term tillage leads to
higher bulk densities, lower overall pore space, and less organic
matter over a wide range of
soil textures (See text example Table 4.5). Water infiltration
rates are decreased, soil rooting
zones are not easily accessible and gas exchange is decreased.
Compaction is also a concern as
continual passes with heavy equipment decreases pore size,
collapses established soil
aggregates and overall causes a loss of useful soil structure.
Other factors that can increase
bulk density include limiting crop rotations with varying
rooting depths and structures,
incorporating or removing crop residues, and overgrazing
livestock which leads to trails and
loafing areas where compaction can occur.
Bulk density and porosity in soils can be measured by using a
double-cylinder drop hammer
sampler which contains and inner cylinder of known volume to
remove an undisturbed soil
sample, then determining the dry weight of the sample
(measuring a volume of moist soil then
drying it in an oven overnight to determine the percentage
moisture) and using the equations
below to determine bulk density, particle density, and soil
porosity. Bulk density is the weight
of total soil per unit of volume. Soil particle density can be
determined by placing a known
amount of soil into a volume of water and determining the
volume of water it displaces. Water
is removed from the sample with drying and air will leave the
soil pores when placed in water,
the volume of the water displace can be used to determine the
particle density.
Note: For this exercise, the cylinder dimensions will be
provided to calculate the total volume
of soil collected, oven dry soil weights, and volume of water
displaced to be used for the
determination of bulk density, particle density, and pore space.
Equation 9: Volume of Cylinder (cm3) = π r2 * height of the
cylinder
Where = r is the radius of the cylinder
Height = height or depth of the sampling ring
Equation 10: Db (Bulk Density, g/cm3) = Weight of oven dry
soil (g)
Volume (cm3)
Equation 11: Dp (Particle Density, g/cm3) = Weight of oven
dry soil (g)
Volume of water displaced (mL or cm3)
Equation 12: % Pore Space = 100% - (Db/Dp) *100)
Where Db = Calculated Bulk Density
Dp = Calculated where possible or if not, assumed particle
density of 2.65
g/cm3
Recommended reference from NRCS:
http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142
p2_053256.pdf
(Lab End – Assignment Questions on Next Page)
http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142
p2_053256.pdf
Intro Soils - Lab 2 Assignment Questions
Soil Texture, Density, and Porosity
o Utilize lab as well as lecture materials: Soil Architecture and
Physical Properties (Ch 4)
o Note for this and future assignments: For full credit, always
show your work. These are
relatively simple equations so “/” for divide or “*” for multiply
is just fine. As long as I
can recreate how you came to your answers you will get full
credit, if correct. Also, if
you use a source or reference other than your text or this lab
material, it should be
cited. It does not have to be in any specific format, just be sure
to give the person or
group the proper credit.
o Read the lab carefully, the information you need to complete
the calculations below is
readily available.
o Submission closes with Module 1, February 7, 2016
1.) Soil Texture: For each of the following soils, calculate the
percentage of sand, silt, and
clay and then classify the soil into a textural class using the soil
textural triangle. A total
of 50 grams of dry soil was used to conduct the experiment, and
the temperature for all
of the hydrometer readings was 72°F. (8 points total)
Hint: First, utilize equation 3 to correct each reading for
temperature, then utilize
equations 3 thru 12 to determine percent sand, silt, and clay,
finally utilize the textural
triangle to determine soil textural class.
a.) Soil A: 40 second hydrometer reading: 35 g/L
2 hour hydrometer reading: 15 g/L
Percent Clay:
Percent Sand:
Percent Silt:
Soil Textural Class:
b.) Soil B: 40 second hydrometer reading: 10 g/L
2 hour hydrometer reading: 2.5 g/L
Percent Clay:
Percent Sand:
Percent Silt:
Soil Textural Class:
2.) Soil Bulk Density and Porosity
For each of the following soils calculate the bulk density,
particle density, and porosity.
Each of the soil samples was collected using a standard double-
cylinder drop hammer
sampler which has a height of 6 cm and a diameter of 5 cm. (6
points total)
Hint: First utilize equation 9 to determine the volume of the
cylinder, then utilize
equation 10 to determine bulk density, finally utilize equations
11 and 12 to calculate
particle density and total porosity respectively.
a.) Soil C: The soil has an oven dry weight of 152 g. When
that core was ground and
placed in 100ml of water, the final volume of was 157 ml.
Bulk Density:
Particle Density:
% Total Porosity:
b.) Soil D: The soil has an oven dry weight of 188 g. When
that core was ground and
placed in 100ml of water, the final volume of was 170 ml.
Bulk Density:
Particle Density:
% Total Porosity:
3.) In your own words, describe how Stoke’s Law is used to
estimate particle size and
subsequently soil texture. Include in your discussion why there
are two separate
hydrometer readings taken and which particles are being
measured at each step. (3
points)
4.) Practically speaking discuss some of the soil physical
properties that might be different
between soils A and B based on just their soil textural class.
(Think soil structure and
generalized properties. (2 points)
5.) Identify the soil textural class for the following using the
textural triangle. (3 points)
a. Clay 40%, Sand 50%, Silt 10%
b. Clay 20%, Sand 40%, Silt 40%
c. Clay 10%, Sand 25%, Silt 70%
6.) Practically speaking discuss some of physical differences
that one might find in Soil C
and Soil D based on the density and porosity values you
calculated. What might some
potential issues be with Soil D based on those same values? (2
points)
7.) How are the density properties and porosity in soils related?
(2 points)
8.) Explain why surface soil horizons might have higher bulk
densities than subsurface soils.
(2 points)
9.) Would one expect to find a greater preponderance of
macropores in a sandy loam or a
silty clay and why? (3 points)
10.) The idea of a ‘heavy soil’ is based on textural properties of
a clay soil and its ease
or lack thereof of tilling while sandy soils are considered ‘light’
based on that same
principle. How does this idea change when viewed from the
standpoint of bulk density?
( points)
11.) How might continuous cropping with a single crop (e.g.,
continuous corn or
cotton vs a corn, wheat, bean rotation) effect bulk density? (3
points)
12.) In your own words, give a brief description of the
data shown in Table 4.5 of the
text and discuss how it brings together the ideas of soil texture,
soil management, bulk
density, and porosity. (3 points)
Intro Soils – Lab 2 Soil Texture, Density, and Porosity  .docx

More Related Content

Similar to Intro Soils – Lab 2 Soil Texture, Density, and Porosity .docx

2013IMPACTOFSEPTICTANKSLUDGEONFILTERPERMEABILITY.pdf
2013IMPACTOFSEPTICTANKSLUDGEONFILTERPERMEABILITY.pdf2013IMPACTOFSEPTICTANKSLUDGEONFILTERPERMEABILITY.pdf
2013IMPACTOFSEPTICTANKSLUDGEONFILTERPERMEABILITY.pdfssusere1a96a
 
Irrigation Home study.docx
Irrigation Home study.docxIrrigation Home study.docx
Irrigation Home study.docxChanakoDane
 
An Experimental Study on Stabilization of Loose Soil by Using Jute Fiber
An Experimental Study on Stabilization of Loose Soil by Using Jute FiberAn Experimental Study on Stabilization of Loose Soil by Using Jute Fiber
An Experimental Study on Stabilization of Loose Soil by Using Jute Fiberijtsrd
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
physical properties of soil
physical properties of soilphysical properties of soil
physical properties of soilhamoodrehman7
 
index properties.pptx
index properties.pptxindex properties.pptx
index properties.pptxsamatha6
 
Water science l3 available soil water 150912ed
Water science l3 available soil water 150912edWater science l3 available soil water 150912ed
Water science l3 available soil water 150912edRione Drevale
 
topic 5 The physical properties of soil dr, mactal.ppt
topic 5 The physical properties of soil dr, mactal.ppttopic 5 The physical properties of soil dr, mactal.ppt
topic 5 The physical properties of soil dr, mactal.pptalfordglenn
 
PhysicalPropertiesofSoils.pdf
PhysicalPropertiesofSoils.pdfPhysicalPropertiesofSoils.pdf
PhysicalPropertiesofSoils.pdfkamalakarsavane
 
Rewetting soils: effects of drying and soil properties on the magnitude and r...
Rewetting soils: effects of drying and soil properties on the magnitude and r...Rewetting soils: effects of drying and soil properties on the magnitude and r...
Rewetting soils: effects of drying and soil properties on the magnitude and r...Sergio Gomes
 
Physical properties of sediments and water sediment mixture
Physical properties of sediments and water sediment mixturePhysical properties of sediments and water sediment mixture
Physical properties of sediments and water sediment mixtureJyoti Khatiwada
 
Shale Gas, Petrophysical Considerations in Producing and Evaluating
Shale Gas, Petrophysical Considerations in Producing and EvaluatingShale Gas, Petrophysical Considerations in Producing and Evaluating
Shale Gas, Petrophysical Considerations in Producing and EvaluatingOrkhan Mammadov
 
Experiential Investigation on the Stabilization of Dispersive Soil with Lime
Experiential Investigation on the Stabilization of Dispersive Soil with LimeExperiential Investigation on the Stabilization of Dispersive Soil with Lime
Experiential Investigation on the Stabilization of Dispersive Soil with Limeijtsrd
 

Similar to Intro Soils – Lab 2 Soil Texture, Density, and Porosity .docx (20)

INDEX PROPERTIES OF SOIL
INDEX PROPERTIES OF SOILINDEX PROPERTIES OF SOIL
INDEX PROPERTIES OF SOIL
 
Soil moisture
Soil moistureSoil moisture
Soil moisture
 
2013IMPACTOFSEPTICTANKSLUDGEONFILTERPERMEABILITY.pdf
2013IMPACTOFSEPTICTANKSLUDGEONFILTERPERMEABILITY.pdf2013IMPACTOFSEPTICTANKSLUDGEONFILTERPERMEABILITY.pdf
2013IMPACTOFSEPTICTANKSLUDGEONFILTERPERMEABILITY.pdf
 
Irrigation Home study.docx
Irrigation Home study.docxIrrigation Home study.docx
Irrigation Home study.docx
 
Soil Texture
Soil TextureSoil Texture
Soil Texture
 
An Experimental Study on Stabilization of Loose Soil by Using Jute Fiber
An Experimental Study on Stabilization of Loose Soil by Using Jute FiberAn Experimental Study on Stabilization of Loose Soil by Using Jute Fiber
An Experimental Study on Stabilization of Loose Soil by Using Jute Fiber
 
Physical properties of soil
Physical properties of soilPhysical properties of soil
Physical properties of soil
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
physical properties of soil
physical properties of soilphysical properties of soil
physical properties of soil
 
index properties.pptx
index properties.pptxindex properties.pptx
index properties.pptx
 
Water science l3 available soil water 150912ed
Water science l3 available soil water 150912edWater science l3 available soil water 150912ed
Water science l3 available soil water 150912ed
 
topic 5 The physical properties of soil dr, mactal.ppt
topic 5 The physical properties of soil dr, mactal.ppttopic 5 The physical properties of soil dr, mactal.ppt
topic 5 The physical properties of soil dr, mactal.ppt
 
PhysicalPropertiesofSoils.pdf
PhysicalPropertiesofSoils.pdfPhysicalPropertiesofSoils.pdf
PhysicalPropertiesofSoils.pdf
 
Catena de-physicalproperties
Catena de-physicalpropertiesCatena de-physicalproperties
Catena de-physicalproperties
 
Rewetting soils: effects of drying and soil properties on the magnitude and r...
Rewetting soils: effects of drying and soil properties on the magnitude and r...Rewetting soils: effects of drying and soil properties on the magnitude and r...
Rewetting soils: effects of drying and soil properties on the magnitude and r...
 
Physical properties of sediments and water sediment mixture
Physical properties of sediments and water sediment mixturePhysical properties of sediments and water sediment mixture
Physical properties of sediments and water sediment mixture
 
Density log
Density logDensity log
Density log
 
Shale Gas, Petrophysical Considerations in Producing and Evaluating
Shale Gas, Petrophysical Considerations in Producing and EvaluatingShale Gas, Petrophysical Considerations in Producing and Evaluating
Shale Gas, Petrophysical Considerations in Producing and Evaluating
 
Practical
PracticalPractical
Practical
 
Experiential Investigation on the Stabilization of Dispersive Soil with Lime
Experiential Investigation on the Stabilization of Dispersive Soil with LimeExperiential Investigation on the Stabilization of Dispersive Soil with Lime
Experiential Investigation on the Stabilization of Dispersive Soil with Lime
 

More from vrickens

1000 words, 2 referencesBegin conducting research now on your .docx
1000 words, 2 referencesBegin conducting research now on your .docx1000 words, 2 referencesBegin conducting research now on your .docx
1000 words, 2 referencesBegin conducting research now on your .docxvrickens
 
1000 words only due by 5314 at 1200 estthis is a second part to.docx
1000 words only due by 5314 at 1200 estthis is a second part to.docx1000 words only due by 5314 at 1200 estthis is a second part to.docx
1000 words only due by 5314 at 1200 estthis is a second part to.docxvrickens
 
1000 words with refernceBased on the American constitution,” wh.docx
1000 words with refernceBased on the American constitution,” wh.docx1000 words with refernceBased on the American constitution,” wh.docx
1000 words with refernceBased on the American constitution,” wh.docxvrickens
 
10.1. In a t test for a single sample, the samples mean.docx
10.1. In a t test for a single sample, the samples mean.docx10.1. In a t test for a single sample, the samples mean.docx
10.1. In a t test for a single sample, the samples mean.docxvrickens
 
100 WORDS OR MOREConsider your past experiences either as a studen.docx
100 WORDS OR MOREConsider your past experiences either as a studen.docx100 WORDS OR MOREConsider your past experiences either as a studen.docx
100 WORDS OR MOREConsider your past experiences either as a studen.docxvrickens
 
1000 to 2000 words Research Title VII of the Civil Rights Act of.docx
1000 to 2000 words Research Title VII of the Civil Rights Act of.docx1000 to 2000 words Research Title VII of the Civil Rights Act of.docx
1000 to 2000 words Research Title VII of the Civil Rights Act of.docxvrickens
 
1000 word essay MlA Format.. What is our personal responsibility tow.docx
1000 word essay MlA Format.. What is our personal responsibility tow.docx1000 word essay MlA Format.. What is our personal responsibility tow.docx
1000 word essay MlA Format.. What is our personal responsibility tow.docxvrickens
 
100 wordsGoods and services that are not sold in markets.docx
100 wordsGoods and services that are not sold in markets.docx100 wordsGoods and services that are not sold in markets.docx
100 wordsGoods and services that are not sold in markets.docxvrickens
 
100 word responseChicago style citingLink to textbook httpbo.docx
100 word responseChicago style citingLink to textbook httpbo.docx100 word responseChicago style citingLink to textbook httpbo.docx
100 word responseChicago style citingLink to textbook httpbo.docxvrickens
 
100 word response to the followingBoth perspectives that we rea.docx
100 word response to the followingBoth perspectives that we rea.docx100 word response to the followingBoth perspectives that we rea.docx
100 word response to the followingBoth perspectives that we rea.docxvrickens
 
100 word response to the followingThe point that Penetito is tr.docx
100 word response to the followingThe point that Penetito is tr.docx100 word response to the followingThe point that Penetito is tr.docx
100 word response to the followingThe point that Penetito is tr.docxvrickens
 
100 word response to the folowingMust use Chicago style citing an.docx
100 word response to the folowingMust use Chicago style citing an.docx100 word response to the folowingMust use Chicago style citing an.docx
100 word response to the folowingMust use Chicago style citing an.docxvrickens
 
100 word response using textbook Getlein, Mark. Living with Art, 9t.docx
100 word response using textbook Getlein, Mark. Living with Art, 9t.docx100 word response using textbook Getlein, Mark. Living with Art, 9t.docx
100 word response using textbook Getlein, Mark. Living with Art, 9t.docxvrickens
 
100 word response to the following. Must cite properly in MLA.Un.docx
100 word response to the following. Must cite properly in MLA.Un.docx100 word response to the following. Must cite properly in MLA.Un.docx
100 word response to the following. Must cite properly in MLA.Un.docxvrickens
 
100 original, rubric, word count and required readings must be incl.docx
100 original, rubric, word count and required readings must be incl.docx100 original, rubric, word count and required readings must be incl.docx
100 original, rubric, word count and required readings must be incl.docxvrickens
 
100 or more wordsFor this Discussion imagine that you are speaki.docx
100 or more wordsFor this Discussion imagine that you are speaki.docx100 or more wordsFor this Discussion imagine that you are speaki.docx
100 or more wordsFor this Discussion imagine that you are speaki.docxvrickens
 
10. (TCOs 1 and 10) Apple, Inc. a cash basis S corporation in Or.docx
10. (TCOs 1 and 10) Apple, Inc. a cash basis S corporation in Or.docx10. (TCOs 1 and 10) Apple, Inc. a cash basis S corporation in Or.docx
10. (TCOs 1 and 10) Apple, Inc. a cash basis S corporation in Or.docxvrickens
 
10-12 slides with Notes APA Style ReferecesThe prosecutor is getti.docx
10-12 slides with Notes APA Style ReferecesThe prosecutor is getti.docx10-12 slides with Notes APA Style ReferecesThe prosecutor is getti.docx
10-12 slides with Notes APA Style ReferecesThe prosecutor is getti.docxvrickens
 
10-12 page paer onDiscuss the advantages and problems with trailer.docx
10-12 page paer onDiscuss the advantages and problems with trailer.docx10-12 page paer onDiscuss the advantages and problems with trailer.docx
10-12 page paer onDiscuss the advantages and problems with trailer.docxvrickens
 
10. Assume that you are responsible for decontaminating materials in.docx
10. Assume that you are responsible for decontaminating materials in.docx10. Assume that you are responsible for decontaminating materials in.docx
10. Assume that you are responsible for decontaminating materials in.docxvrickens
 

More from vrickens (20)

1000 words, 2 referencesBegin conducting research now on your .docx
1000 words, 2 referencesBegin conducting research now on your .docx1000 words, 2 referencesBegin conducting research now on your .docx
1000 words, 2 referencesBegin conducting research now on your .docx
 
1000 words only due by 5314 at 1200 estthis is a second part to.docx
1000 words only due by 5314 at 1200 estthis is a second part to.docx1000 words only due by 5314 at 1200 estthis is a second part to.docx
1000 words only due by 5314 at 1200 estthis is a second part to.docx
 
1000 words with refernceBased on the American constitution,” wh.docx
1000 words with refernceBased on the American constitution,” wh.docx1000 words with refernceBased on the American constitution,” wh.docx
1000 words with refernceBased on the American constitution,” wh.docx
 
10.1. In a t test for a single sample, the samples mean.docx
10.1. In a t test for a single sample, the samples mean.docx10.1. In a t test for a single sample, the samples mean.docx
10.1. In a t test for a single sample, the samples mean.docx
 
100 WORDS OR MOREConsider your past experiences either as a studen.docx
100 WORDS OR MOREConsider your past experiences either as a studen.docx100 WORDS OR MOREConsider your past experiences either as a studen.docx
100 WORDS OR MOREConsider your past experiences either as a studen.docx
 
1000 to 2000 words Research Title VII of the Civil Rights Act of.docx
1000 to 2000 words Research Title VII of the Civil Rights Act of.docx1000 to 2000 words Research Title VII of the Civil Rights Act of.docx
1000 to 2000 words Research Title VII of the Civil Rights Act of.docx
 
1000 word essay MlA Format.. What is our personal responsibility tow.docx
1000 word essay MlA Format.. What is our personal responsibility tow.docx1000 word essay MlA Format.. What is our personal responsibility tow.docx
1000 word essay MlA Format.. What is our personal responsibility tow.docx
 
100 wordsGoods and services that are not sold in markets.docx
100 wordsGoods and services that are not sold in markets.docx100 wordsGoods and services that are not sold in markets.docx
100 wordsGoods and services that are not sold in markets.docx
 
100 word responseChicago style citingLink to textbook httpbo.docx
100 word responseChicago style citingLink to textbook httpbo.docx100 word responseChicago style citingLink to textbook httpbo.docx
100 word responseChicago style citingLink to textbook httpbo.docx
 
100 word response to the followingBoth perspectives that we rea.docx
100 word response to the followingBoth perspectives that we rea.docx100 word response to the followingBoth perspectives that we rea.docx
100 word response to the followingBoth perspectives that we rea.docx
 
100 word response to the followingThe point that Penetito is tr.docx
100 word response to the followingThe point that Penetito is tr.docx100 word response to the followingThe point that Penetito is tr.docx
100 word response to the followingThe point that Penetito is tr.docx
 
100 word response to the folowingMust use Chicago style citing an.docx
100 word response to the folowingMust use Chicago style citing an.docx100 word response to the folowingMust use Chicago style citing an.docx
100 word response to the folowingMust use Chicago style citing an.docx
 
100 word response using textbook Getlein, Mark. Living with Art, 9t.docx
100 word response using textbook Getlein, Mark. Living with Art, 9t.docx100 word response using textbook Getlein, Mark. Living with Art, 9t.docx
100 word response using textbook Getlein, Mark. Living with Art, 9t.docx
 
100 word response to the following. Must cite properly in MLA.Un.docx
100 word response to the following. Must cite properly in MLA.Un.docx100 word response to the following. Must cite properly in MLA.Un.docx
100 word response to the following. Must cite properly in MLA.Un.docx
 
100 original, rubric, word count and required readings must be incl.docx
100 original, rubric, word count and required readings must be incl.docx100 original, rubric, word count and required readings must be incl.docx
100 original, rubric, word count and required readings must be incl.docx
 
100 or more wordsFor this Discussion imagine that you are speaki.docx
100 or more wordsFor this Discussion imagine that you are speaki.docx100 or more wordsFor this Discussion imagine that you are speaki.docx
100 or more wordsFor this Discussion imagine that you are speaki.docx
 
10. (TCOs 1 and 10) Apple, Inc. a cash basis S corporation in Or.docx
10. (TCOs 1 and 10) Apple, Inc. a cash basis S corporation in Or.docx10. (TCOs 1 and 10) Apple, Inc. a cash basis S corporation in Or.docx
10. (TCOs 1 and 10) Apple, Inc. a cash basis S corporation in Or.docx
 
10-12 slides with Notes APA Style ReferecesThe prosecutor is getti.docx
10-12 slides with Notes APA Style ReferecesThe prosecutor is getti.docx10-12 slides with Notes APA Style ReferecesThe prosecutor is getti.docx
10-12 slides with Notes APA Style ReferecesThe prosecutor is getti.docx
 
10-12 page paer onDiscuss the advantages and problems with trailer.docx
10-12 page paer onDiscuss the advantages and problems with trailer.docx10-12 page paer onDiscuss the advantages and problems with trailer.docx
10-12 page paer onDiscuss the advantages and problems with trailer.docx
 
10. Assume that you are responsible for decontaminating materials in.docx
10. Assume that you are responsible for decontaminating materials in.docx10. Assume that you are responsible for decontaminating materials in.docx
10. Assume that you are responsible for decontaminating materials in.docx
 

Recently uploaded

भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonJericReyAuditor
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 

Recently uploaded (20)

भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lesson
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 

Intro Soils – Lab 2 Soil Texture, Density, and Porosity .docx

  • 1. Intro Soils – Lab 2 Soil Texture, Density, and Porosity o Lecture Materials: Soil Architecture and Physical Properties (Ch 4) o Labs submitted without advised instructions will result in a 3 point deduction: answers o Submission Closes Sunday evening, February 5, 2016 with to Module 2. o Labs submitted on or prior Monday, February 1, 2016 will receive feedback with the opportunity to resubmit the lab. Do not miss out on a great opportunity to be ensure understanding of the materials and increase your lab grade. Lab 2 - Soil Texture, Density, and Porosity
  • 2. Introduction Soil physical properties greatly impact how soils behave. Outcomes of most agricultural as well as engineering projects are often defined by the properties of the soil involved. Soils are made of soil solids and pore space; the soil solids are made up mostly of minerals as well as organic matter while the pore space is made up of air and water. Ideally, these two portions are in a 50/50 ratio (Figure 1). Soil physical properties describe the soil particles and the manner in which they aggregate and are arranged. The following exercise will focus on soil texture, soil density, and soil porosity. Figure 1. Ideal soil composition (Text Figure 1.18) Soil Texture Soil texture is the proportion of the different sized particles in soil. Only the fine earth fraction of sand, silt, and clay are included. There are two methods for
  • 3. determining texture in soils by feel and mechanistically using particle size analysis. Neither the coarse fraction greater than 2mm in diameter nor organic matter are included in textural analysis. In the previous lab exercise, soil texture was estimated by feel. The particle size analysis procedure via mechanical means is accomplished using a Bouyoucos hydrometer and calculated using Stokes Law. Stokes law establishes a relationship between particle size and sedimentation. The velocity by which a particle fall through a liquid is proportional to the gravitational force and the square of the effective particle diameter. In other words, ‘the bigger they are, the faster they fall’. When the soil is dispersed, the larger, sand particles will settle or fall to the bottom of a liquid faster than silts or clays. When conducting this experiment in the lab, the first task it to remove the coarse fraction from the soil sample which is generally done by sieving (2mm). Soil particles want to stay together; the soil separates and their aggregates do not easily separate. In order to achieve separation both mechanical and chemical intervention is needed. Sieving removed large portions of the organic matter, but it still is a significant agent in the binding of soil particles together, so hydrogen peroxide is also added to oxidize or destroy the remaining organic matter. A dispersing chemical agent, commonly hexametaphosphate, is also added in addition to water to create a soil solution and then and stirred in mixer for 4 minutes. The dispersing agent causes an exchange of sodium with polyvanet cations like calcium and
  • 4. magnesium in the clays causing them to disperse. Depending on the need for accuracy, the soils can be left to sit overnight to allow for complete dispersal or moved onto mechanical mixing. After approximately five minutes on a mixer, the soil solution is placed in a settling column. The soil particles will settle based on Stoke’s Law. Equation 1: V = d2 g (Ds – Df) 18 ŋ Where: V = velocity (cm/s) d = diameter of the particles (cm) g = gravity (acceleration 980 m/s2) Ds = density of the soil Df = density of the liquid ŋ = viscosity of the liquid (g/cm s) To simplify the equation, several assumptions are made. The particles are assumed to be spherical with particle densities of 2.65 g/cm3. Also, the density and viscosity of the liquid are assumed to be constant, at a given temperature which simplifies Stoke’s Law to: Equation 2: V = k*d2
  • 5. Where: V = velocity (cm/s) k = constant d = diameter of the particles (cm) A hydrometer can be used to measure the amount of particles in suspension. Hydrometers are generally used to measure density or specific gravity and can be calibrated for many different functions such measuring the density of milk and its constituents or even alcoholic content in brewing activities. Bouyoucos developed a hydrometer calibrated in grams per liter (g/L) that allows direct measurement of the concentration of mineral particles in a suspension. Bouyoucos also established that sand-sized particles (2.0 to 0.05 mm) settle out of suspension in 40 seconds while silt-sized particles (0.5 to 0.002 mm) require approximately 2 hours to settle out of suspension. After 2 hours, it is assumed that only clay-sized particles (<0.002 mm) remain in suspension. After the soil sedimentation column has been constructed, the entire column is gently shaken to suspend all of the soil particles. After 40 seconds, the hydrometer is read. The sand in the column has settled to the bottom leaving silt and clays still in suspension. Then the column is allowed to continue to settle for 2 hours and a second reading is collected. At this point, the silt has also settled to the bottom leaving only clay in suspension. Percentages of sand, silt, and clay can then be determined.
  • 6. Temperature also influences the density and viscosity of water. If the temperature deviates from 20°C (68°F), the hydrometer reading must be corrected. For every degree over or under 20°C, 0.36 g/L should be added or subtracted from the hydrometer reading. If the temperature is above 20°C the value will increase, and if it is below 20°C the value will decrease. (Note these values are in the metric Celsius temperature scale not the traditional Fahrenheit.) Equation 3: Corrected reading (g/L) = hydrometer reading + 0.36 (Recorded Temperature - 20°C) (Note: For this exercise, round to the nearest tenth or one decimal place) The corrected readings can then be used with the following equations to calculate the percentage of sand, silt, and clay in a sample. The textural triangle can then be utilized to identify the textural class of the soil. Equation 4: % Sand + % Silt + %Clay = 100% Equation 5: % Silt + % Clay (Corrected 40 second hydrometer reading/Mass of Dry Soil) * 100
  • 7. Equation 6: %Clay (Corrected 2 hour hydrometer reading/Mass of Dry Soil) *100 Equation 7: % Sand 100 – (% silt + % clay) Equation 8: %Silt 100 – (%sand + %clay) Next, using the percetages of sand, silt, and clay, the textural triangle can be utilized to classify the soils into a textural class. First, find the percentage clay on the left side of the triangle, then from the bottom, locate the intersection of the percentage clay, and finally out from there on the right side of the triangle the percentage silt. The textural class is the interesection of the three percetages (Figure 2, Text Figure 4.6). Figure 2: Soil Textural Triangle (Courtesy of NRCS) Note: For this exercise, soil weight, hydrometer readings and temperatures will be provided to calculate percentage of sand, silt, and clay, followed by determination of the soil textural class using the soil textural triangle. Soil Density and Porosity
  • 8. Soils are a mixture of solids, liquids, and gases. The liquids in soil solution and soil gases for air exchange are located in between the soil solid particles. The density and porosity of soils greatly effects the ability of that soil to support a range of activities from plant growth to engineering. Density generally is defined as mass per unit of volume. There are two types of soil density measurements: particle density and bulk density. Particle density (Dp) is the mass per unit volume of soil solids not including pore space. Most of the major soil minerals are quarts, feldspars, micas, and silicates, so the range of particle densities seen in most mineral soils ranges only from 2.6 to 2.75 Mg/m3. Soil organic matter as well as organic soils are much less dense with ranges in the 0.9 to 1.4 Mg/m3 range. Bulk density (Db) includes the pore space and is the mass per unit volume of dry soil representing the density of the soil as a whole. The relationship between bulk density and particle density are illustrated in Figure 3 (Figure 4.32 in the text). Figure 3. Relationship between bulk density and particle density (Text Figure 4.32). Soil porosity is directly related to density. Porosity represents the ‘other half’ of the ideal soil composition from the soil mineral portion and is the portion of
  • 9. soil containing air and water. Bulk density and particle density predict total porosity. Pore size determines the role they play in soils. Macropores are the largest in size with effective diameters greater than 0.08 mm and are responsible for mass flow of water and air through the soil profile. Micropores are smaller and are responsible for water and nutrient retention thru capillary action. Interconnectivity of the soil pore network is important in how water, gases, and nutrients move through the soil profile. Soil bulk density varies with soil depth, soil texture, and structure. The surface horizons where higher organic matter occur tend to have lower bulk densities than subsurface horizons where organic matter is decreased and there is there is less aggregation and root penetration. Soil texture plays a significant role in bulk density as well. Finer textured soils like clays, silts, and loams tend to generally have lower bulk densities than sands. Sands also tend to have a greater abundance of macropores while finer textured soils with have more micropores. In soils with strong structure, macropores occurring between peds allow for greater water infiltration rates. Bulk densities for mineral soils typically range from 1.0 to 1.8 Mg/m3 (Text Figure 4.34). Managing bulk density is an important factor in soil productivity from an agricultural
  • 10. standpoint. How soils are managed can alter these properties and either decrease or increase their long term effectiveness. Two management operations that negatively impact bulk density as well as overall soil structure are tillage and compaction. Generally, long term tillage leads to higher bulk densities, lower overall pore space, and less organic matter over a wide range of soil textures (See text example Table 4.5). Water infiltration rates are decreased, soil rooting zones are not easily accessible and gas exchange is decreased. Compaction is also a concern as continual passes with heavy equipment decreases pore size, collapses established soil aggregates and overall causes a loss of useful soil structure. Other factors that can increase bulk density include limiting crop rotations with varying rooting depths and structures, incorporating or removing crop residues, and overgrazing livestock which leads to trails and loafing areas where compaction can occur. Bulk density and porosity in soils can be measured by using a double-cylinder drop hammer sampler which contains and inner cylinder of known volume to remove an undisturbed soil sample, then determining the dry weight of the sample (measuring a volume of moist soil then drying it in an oven overnight to determine the percentage moisture) and using the equations below to determine bulk density, particle density, and soil porosity. Bulk density is the weight of total soil per unit of volume. Soil particle density can be determined by placing a known amount of soil into a volume of water and determining the volume of water it displaces. Water
  • 11. is removed from the sample with drying and air will leave the soil pores when placed in water, the volume of the water displace can be used to determine the particle density. Note: For this exercise, the cylinder dimensions will be provided to calculate the total volume of soil collected, oven dry soil weights, and volume of water displaced to be used for the determination of bulk density, particle density, and pore space. Equation 9: Volume of Cylinder (cm3) = π r2 * height of the cylinder Where = r is the radius of the cylinder Height = height or depth of the sampling ring Equation 10: Db (Bulk Density, g/cm3) = Weight of oven dry soil (g) Volume (cm3) Equation 11: Dp (Particle Density, g/cm3) = Weight of oven dry soil (g) Volume of water displaced (mL or cm3) Equation 12: % Pore Space = 100% - (Db/Dp) *100) Where Db = Calculated Bulk Density
  • 12. Dp = Calculated where possible or if not, assumed particle density of 2.65 g/cm3 Recommended reference from NRCS: http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142 p2_053256.pdf (Lab End – Assignment Questions on Next Page) http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142 p2_053256.pdf
  • 13. Intro Soils - Lab 2 Assignment Questions Soil Texture, Density, and Porosity o Utilize lab as well as lecture materials: Soil Architecture and Physical Properties (Ch 4) o Note for this and future assignments: For full credit, always show your work. These are relatively simple equations so “/” for divide or “*” for multiply is just fine. As long as I can recreate how you came to your answers you will get full credit, if correct. Also, if you use a source or reference other than your text or this lab material, it should be cited. It does not have to be in any specific format, just be sure to give the person or group the proper credit. o Read the lab carefully, the information you need to complete the calculations below is readily available. o Submission closes with Module 1, February 7, 2016 1.) Soil Texture: For each of the following soils, calculate the percentage of sand, silt, and clay and then classify the soil into a textural class using the soil textural triangle. A total of 50 grams of dry soil was used to conduct the experiment, and the temperature for all of the hydrometer readings was 72°F. (8 points total)
  • 14. Hint: First, utilize equation 3 to correct each reading for temperature, then utilize equations 3 thru 12 to determine percent sand, silt, and clay, finally utilize the textural triangle to determine soil textural class. a.) Soil A: 40 second hydrometer reading: 35 g/L 2 hour hydrometer reading: 15 g/L Percent Clay: Percent Sand: Percent Silt: Soil Textural Class: b.) Soil B: 40 second hydrometer reading: 10 g/L 2 hour hydrometer reading: 2.5 g/L Percent Clay: Percent Sand: Percent Silt: Soil Textural Class: 2.) Soil Bulk Density and Porosity For each of the following soils calculate the bulk density,
  • 15. particle density, and porosity. Each of the soil samples was collected using a standard double- cylinder drop hammer sampler which has a height of 6 cm and a diameter of 5 cm. (6 points total) Hint: First utilize equation 9 to determine the volume of the cylinder, then utilize equation 10 to determine bulk density, finally utilize equations 11 and 12 to calculate particle density and total porosity respectively. a.) Soil C: The soil has an oven dry weight of 152 g. When that core was ground and placed in 100ml of water, the final volume of was 157 ml. Bulk Density: Particle Density: % Total Porosity: b.) Soil D: The soil has an oven dry weight of 188 g. When that core was ground and placed in 100ml of water, the final volume of was 170 ml. Bulk Density: Particle Density: % Total Porosity: 3.) In your own words, describe how Stoke’s Law is used to estimate particle size and
  • 16. subsequently soil texture. Include in your discussion why there are two separate hydrometer readings taken and which particles are being measured at each step. (3 points) 4.) Practically speaking discuss some of the soil physical properties that might be different between soils A and B based on just their soil textural class. (Think soil structure and generalized properties. (2 points) 5.) Identify the soil textural class for the following using the textural triangle. (3 points) a. Clay 40%, Sand 50%, Silt 10% b. Clay 20%, Sand 40%, Silt 40% c. Clay 10%, Sand 25%, Silt 70% 6.) Practically speaking discuss some of physical differences that one might find in Soil C and Soil D based on the density and porosity values you calculated. What might some potential issues be with Soil D based on those same values? (2 points) 7.) How are the density properties and porosity in soils related? (2 points)
  • 17. 8.) Explain why surface soil horizons might have higher bulk densities than subsurface soils. (2 points) 9.) Would one expect to find a greater preponderance of macropores in a sandy loam or a silty clay and why? (3 points) 10.) The idea of a ‘heavy soil’ is based on textural properties of a clay soil and its ease or lack thereof of tilling while sandy soils are considered ‘light’ based on that same principle. How does this idea change when viewed from the standpoint of bulk density? ( points) 11.) How might continuous cropping with a single crop (e.g., continuous corn or cotton vs a corn, wheat, bean rotation) effect bulk density? (3 points) 12.) In your own words, give a brief description of the data shown in Table 4.5 of the text and discuss how it brings together the ideas of soil texture, soil management, bulk density, and porosity. (3 points)