SlideShare a Scribd company logo
1 of 7
Download to read offline
552 Aim, J Cliii Nuir 1996:64:552-8. Printed in USA. © 1996 American Society for Clinical Nutrition
Serum albumin is associated with skeletal muscle in elderly
men and women13
Richard N Baungartner, Kathleen M Koehler, Linda Ro,nero, and Philip J Garrv
ABSTRACT Serum albumin concentrations decrease with
age and values < 38 g/L are associated with increased morbidity,
mortality, and disability in the elderly. It is not clear to what extent
the decreases are associated independently with changes in metab-
olism, dietary intake, physical activity, morbidity, or body com-
position. We examined associations of serum albumin with age.
protein and energy intakes, physical activity, morbidity, and mus-
cle mass in 275 men and women aged 60-95 y. Serum albumin
was measured with the bromcresol green procedure. Usual dietary
intake and physical activity were quantified through question-
naires. Morbidity was ascertained from medical history, question-
naire, and examination. Muscle mass was estimated from dual-
energy X-ray absorptiometry. In multivariate analyses, serum
albumin was associated significantly with muscle mass after age,
protein intake, physical activity, and comorbidity were controlled
for in men and women. This study suggests that decreases with age
in serum albumin concentrations are associated with muscle loss
(sarcopenia) in the elderly. This association is independent of other
factors that may affect muscle mass and albumin concentration.
We suggest that the increased risk of disability with low serum
albumin concentrations observed in the elderly may actually re-
fleet an association with sarcopenia. Am J Cliii Nuir
I 996:64:552-8.
KEY WORDS Muscle, serum albumin, aging
INTRODUCTION
Serum albumin has long been recognized as a crude indicator
of “health” and “nutritional” status. Several recent epidemio-
logic and clinical studies have described an apparent associa-
tion of low serum albumin concentrations with increased mor-
tality as well as morbidity, and have also described possible
protective effects of high concentrations (1-5). Functional im-
pairment and disability in elderly groups are also reported to be
associated with low serum albumin (4, 6).
Serum albumin is the main protein synthesized by the liver.
Acute changes may be produced by large reductions in protein
intake or by trauma and infectious diseases. Long-term changes
may be produced by chronic renal and liver diseases. Serum
albumin concentrations decrease with age. especially in the
elderly, although the magnitude of decrease varies consider-
ably among studies (3, 4, 7-9). It is not clear to what extent the
lower concentrations seen at older ages are associated indepen-
dently with age-related changes in metabolism, dietary intake,
physical activity, morbidity, or body composition (8). Age-
related changes in the absence of significant disease, trauma, or
reductions in protein intake may be due to alterations in the
balance between protein synthesis and degradation (10-12).
These changes in protein turnover may occur in peripheral
muscle tissues as well as in liver, and could explain, in part, the
observed decreases with age in muscle mass in the elderly, a
phenomenon now referred to as sarcopenia ( 13, 14). Taken
together, these observations suggest that changes in protein
metabolism in liver and muscle could be interrelated, resulting
in a correlation between serum albumin concentration and
muscle mass (13).
In some epidemiologic reports, low serum albumin concen-
trations have been reported to be associated with risk factors
related to muscle strength and function, such as impaired
mobility, balance, and gait, suggesting a link with sarcopenia
(4, 6). To date, however, there are few data for the possible
association of the sarcopenia of aging with morbidity, mortal-
ity, or disability. This may be due to the difficulty of accurately
measuring muscle mass in epidemiologic studies. The reported
association of low body mass index (BMI: in kg/rn2) with
increased morbidity, mortality, and disability suggests such an
association (15).
The purpose of the present study was to examine the joint
associations among age, serum albumin, dietary intakes of
protein and energy, morbidity, physical activity, and muscle
mass in a cohort of elderly men and women. A strength of this
study is the availability of accurate estimates of muscle mass
from dual-energy X-ray absorptiometry (DXA) in a relatively
large cohort of healthy elderly men and women.
SUBJECTS AND METHODS
The data analyzed in the present report were collected in
1993 for 275 participants in the New Mexico Aging Process
Study, an ongoing longitudinal study of nutrition and aging that
began in 1980 (14). These elderly volunteers are white, are of
above average income and education, and reside mostly in the
I From the Clinical Nutrition Program, School of Medicine. University
of New Mexico, Albuquerque.
2 Supported by grants AG1O149 (to RNB). AG02049 (to PJG). and GCR
DRR, 5 MO1-00997-13-l3,l4 from the National Institutes of Health.
3 Address reprint requests to RN Baumgartner. Clinical Nutrition Program.
215 Surge Building. 2701 Frontier Place. University ofNew Mexico School of
Medicine, Albuquerque. NM. E-mail: rbaumgar@medusa.unm.edu.
Received February 15, 1996.
Accepted for publication June 26, 1996.
byguestonJanuary18,2015ajcn.nutrition.orgDownloadedfrom
SERUM ALBUMIN AND MUSCLE IN THE ELDERLY 553
‘ ± SD.
2 Significantly different from men.P < 0.02.
area of Albuquerque. NM. Ninety-six percent of the partici-
pants are non-Hispanic whites, whereas 4% claim Hispanic
origin: the cohort does not represent a population-based sample
of Albuquerque, which is 33% Hispanic. The entrance crite-
na for the study excluded persons with serious diseases, for
example, cancer (other than skin) within the past5 y; recent,
acute myocardial infarction; or chronic obstructive pulmonary
disease, and persons taking a meaningful number of medica-
tions, such as those undergoing chemotherapy or taking car-
diac, respiratory, or antipsychotic medications. About 56% of
the participants in the present data set were recruited between
1980 and 1985: the remainder were recruited in 1992-1993.
Because the maintenance of good health is not required to
remain in the study, participants who developed chronic ill-
nesses before or during the 1993 study year are included in the
present analyses. All participants gave their informed consent
to participate in the study. The study protocol was approved by
the Human Subjects Research Review Committee of the Uni-
versity of New Mexico School of Medicine.
Serum albumin concentrations were determined with the
bromcresol green procedure on a 747 SMA (Hitachi, Tokyo) at
the New Mexico Medical Reference Laboratory (Albuquerque,
NM). Usual dietary intake was estimated through amodified,
standard food-frequency questionnaire administered in an in-
terview (Health Habits and History Questionnaire, version 2.2;
16). Physical activity was graded using a modification of the
self-administered instrument first described by Shapiro et al
( I 7) and later adapted by Cassel et al ( 18) to study the relation
of physical activity to coronary heart disease. The modifica-
tions were a substitution of questions on job-related activities
with a more extended set relating to leisure-time activities
appropriate to ambulatory, community-dwelling elderly peo-
pIe. The questionnaire results in a summary score (range: 0-65)
that grades individuals with regard to self-reported “usual”
physical activity, rather than in anestimate of energy expen-
diture. Past and current morbidity and medication use were
ascertained from medical histories and examinations. Prevalent
major chronic diseases were ascertained by physical examina-
tion and from medical records and grouped by International
Classification of Diseases codes ( I 9). An index of comorbidity
was defined as the sum of the current, chronic conditions
present at the time of the body-composition examinations.
Subjects with current, acute infectious illness or recent trauma
(eg, hip fractures) were excluded.
Body composition (fat, fat-free soft tissue, and bone mineral
content) was estimated using DXA (Lunar DPX, version 3.6z
software: Lunar Corp. Madison, WI), as described previously
(14). Fat-free mass (FFM) was defined as the sum of the
fat-free soft tissue and total-body bone mineral content from
whole-body scans. Medium-length scans (20 mm) were used
for all subjects except for those with> 27-cm anteroposterior
thicknesses, for whom the slow (40-mm) scan speed was used.
The technical errors of body-composition determinations by
DXA were estimated to be ± 0.77 kg for FFM or ± 1 .2% for
percentage body fat from two repeated scans taken on separate
days for five randomly selected subjects. Appendicular skeletal
muscle mass (ASM) was derived as the sum of the fat-free soft
tissue masses of the arms and the legs, as described by Heyms-
field et al (20). Anthropometric measurements were taken
using standardized methods (2 1). Weight was measured to the
nearest 0. 1 kg on a balance scale and stature was measured to
the nearest 0.1 cm with a wall-mounted stadiometer. Knee
height was measured with a sliding caliper as described previ-
ously (22). All anthropometric measurements were taken twice
and the reported values are the means of the repeated
measurements.
Data for men and women were analyzed separately. All
variables were regressed on age to describe age differences.
Regressions of muscle mass on age were adjusted additionally
for body weight, knee height, comorbidity, energy and protein
intakes, and physical activity score. Muscle was also expressed
as a percentage of lean soft tissue mass (FFM less bone) and
protein intake as a percentage of total energy intake. Univariate
associations of muscle mass, percentage muscle mass,protein
and energy intakes, and physical activity with serum albumin
were tested by linear regression. The association of serum
albumin with levels of comorbidity (0 to4 comorbid con-
ditions) was tested by analysis of variance. Differences in
age-adjusted mean serum albumin concentrations across levels
of comorbidity were tested using analysis of covariance. Mul-
tiple regression was used to test for the independent effects of
age, protein intake, comorbidity, physical activity, and muscle
mass on serum albumin. Estrogen replacement therapy (ERT)
was also entered as a variable in regression analyses for
women. Statistical significance was evaluated at a 0.05.
RESULTS
Descriptive statistics for the study variables are shown in
Table 1. Twenty-six percent of the men and 3 1% of the women
had BMIs > 27. Percentage body fat ranged from 7% to 40%
in the men and from 17% to 53% in the women. ASM, as
quantified from DXA, was 41.3% of FFM in the men and
38.8% in the women. Dietary energy and protein intakes were
comparable with those reported elsewhere for healthy elderly
adults (23). Protein as a percentage of energy intake was
15.8 ± 2.6% and there was no significant difference between
the men and the women. Protein intake was 0.90 g/kg body wt
( I .46 glkg FFM) in the women and 0.89 gfkg body wt ( I .22
g/kg FFM) in the men.
Physical activity scores were significantly higher in the men
than in the women (P < 0.02). The scores were positively
TABLE I
Descriptive statistics for study variables’
Men
(ii - 108)
Women
(ii 167)
Age (y) 76.0 ± 5.4 75.7 ± 6.4
Weight (kg) 76.2 ± 10.8 63.1 ± 10.7
Stature (cm) 172.6 ± 6.9 158.3 ± 6.1
Knee height (cm) 53.6 ± 2.5 48.5 ± 2.5
BMI (kg/m2) 25.6 3.4 25.1 ± 3.8
Body fat(%) 27.0 ± 6.9 37.3 7.3
Fat-free mass (kg) 55.0 ± 6.1 38.1 ± 3.7
Appendicular skeletal muscle (kg) 22.7 ± 2.9 14.8 ± 1.8
Energy intake (kJ/d) 7065.9 ± 189.6 6010.0 ± 152.5
Protein intake (g/d) 66.3 20.9 55.5 ± 16.6
Serum albumin (gIL) 41.3 ± 2.9 40.9 ± 2.4
Physical activity score 18.5 ± 0.6 16.7 ± 0.52
byguestonJanuary18,2015ajcn.nutrition.orgDownloadedfrom
554 BAUMGARTNER ET AL
correlated with ASM in the men(r 0.28, P < 0.003) and the
women (r = 0. 13, P < 0.09). Correlations with percentage
body fat, however, were negative, were about the same mag-
nitude in both sexes, and were also significant (r = -0.22, P <
0.04).
As shown in Table 2, only 2% and 2.5% of serum albumin
concentrations in the men and women, respectively, were< 35
g/L, the lower limit of the normal reference range (10). Ten
percent of serum albumin values were< 38 g/L in each sex,
the concentration below which risk has been reported to in-
crease (6). None of the men and only 3.6% of the women were
current smokers. There was no detectable difference in serum
albumin concentration between smoking and nonsmoking
women. Alcohol consumption (not shown) was light to mod-
erate. About 26% of the women were receiving ERT and mean
serum albumin concentrations were slightly but significantly
lower in these women (40.3 ± 0.4 gIL) than in those not
receiving ERT (4 1. I ± 0.2 gIL, P < 0.03). None of the
participants was taking any other steroid hormones at the time
of data collection.
Table 2 also shows the prevalences of major chronic diseases
in the study population. Osteoarthritis was the most common
condition, occurring in more than one-half of all participants,
followed by hypertension. None of the men or women had
rheumatoid arthritis or other acute or chronic inflammatory
conditions known to affect serum albumin (24). About 10% of
the men and 3% of the women had diagnosed renal or liver
diseases. Although renal and liver disease may significantly
affect serum albumin, this group did not differ significantly for
mean age, protein intake, physical activity, body composition,
or serum albumin concentration from the group without these
diseases. The exclusion of participants with diagnosed renal or
liver disease did not materially affect the results of the analyses
except in terms of reduced statistical power, as would be
expected as a result of the somewhat smaller sample sizes. As
a result, the analyses reported were made with data for the
complete study population.
Results for the linear regressions of the variables on age are
shown in Table 3. Serum albumin, ASM, ASM as a percentage
of lean soft tissue mass, and physical activity score had signif-
TABLE 2
Percentages of men and women with low serum albumin concentrations,
smoking habit, medication use, or chronic disease’
Men
(n 108)
Women
(n 167)
%
Serum albumin
35g/L 2.0 2.5
38 g/L 10.0 10.0
Current smokers 0.0 3.6
Estrogen replacement therapy NA 26.3
CHD or CVD 19.4 16.8
Neoplasias2 14.8 9.0
Osteoarthritis 51.9 66.5
Hypertension 24.1 28.7
Renal or liver disease 10.2 3.0
‘ NA, not applicable; CHD, coronary heart disease; CVD, cardiovascu-
lar disease.
2 Benign or in remission during 1993.
icant negative correlations with age in both sexes(P < 0.05),
whereas comorbidity had significant positive correlations. Pro-
tein and energy intakes were not associated significantly with
age in either sex. Albumin decreased with age in both men
(slope = -0.16 g L_i . y_i) and women (slope = -0.08
g L y I) ASM (absolute as well as a percentage of lean
soft tissue mass) decreased significantly with age in the men
and women even after adjustment for weight, knee height,
comorbidity, energy and protein intakes, and physical activity.
There were no significant differences in age-adjusted mean
serum albumin concentrations across levels of comorbidity
(Table 4). In addition, therewere no differences in age-ad-
justed mean serum albumin concentrations between those with
and without specific categories of morbidity. It is recognized,
however, that the statistical power to detect significant differ-
ences is low for some of these comparisons because of the
small numbers of cases.
Serum albumin concentrations were positively associated
with total muscle mass in the men (Figure 1), even after age,
protein intake, comorbidity, and physical activity were con-
trolled for, as shown in Table 5. Serum albumin concentrations
were positively associated with muscle as a percentage of lean
soft tissue mass in the women (Figure 2), even after age,
protein intake, comorbidity, ERT, and physical activity were
controlled for (Table 5). Age remained significantly associated
(P < 0.05) with serum albumin in both men and women after
adjustment for the other independent variables. Physical activ-
ity had a significant negative association with serum albumin in
the women but not in the men. Serum albumin also had a
significant negative association with ERT in the women after
adjustment for age, protein intake, comorbidity, physical ac-
tivity, and muscle. The inclusion of dietary energy intake in
these regression models had no meaningful effect on the
results.
DISCUSSION
This study suggests that low serum albumin concentrations
are associated with reduced muscle mass (sarcopenia) in rela-
tively healthy, well-nourished elderly men and women. In our
study population, serum albumin concentrations were generally
within the normal reference range(35-50 g/L), but decreased
significantly with age. The concentrations were not associated
significantly with either protein or energy intake and did not
differ among categories of chronic morbidity or across levels of
comorbidity. Serum albumin was associated significantly with
skeletal muscle mass independent of age, dietary protein and
energy intakes, physical activity, ERT in women, and morbid-
ity. This association suggests some connection between serum
albumin and muscle mass such that losses of somatic (muscle)
protein stores either covary with or affect decreases in serum
albumin concentrations. This association is independent of
factors known to affect protein metabolism, such as dietary
intake and physical activity. The mechanism or mechanism
connecting serum albumin and skeletal muscle is not known
but could involve changes in eitherI) the extravascular distri-
bution of albumin in muscle or2) protein synthesis and deg-
radation in both muscle and liver.
Rall Ct al (10) recently reviewed current knowledge about
serum albumin as an indicator of nutritional and health status.
byguestonJanuary18,2015ajcn.nutrition.orgDownloadedfrom
SERUM ALBUMIN AND MUSCLE IN THE ELDERLY 555
TABLE 3
Correlation and regression of study variables with age (y)’
Men (n = 108) Women (n = 167)
r Slope2 r Slope2
Serum albumin (gIL) -0.29” -0.158 ± 0.050 -0.077 0.028
ASM (g) -0.34 - 1 83.45 ± 50.08 -0.34 -94.97 ± 20.1
ASM/LSTM (Ck) 0.341 -0.1 17 ± 0.032 -0.32” -0.1 16 0.026
Protein intake
(g/d) -0.06 -0.254 ± 0.377 -0.1 1 -0.295 ± 0.199
(‘7c of energy) -0.09 -0.036 ± 0.040 -0.1 1 -0.049 0.034
Energy (kJ/d) -0.02 -9.28 ± 39.94 -0.05 - 15.49 ± 21.73
Comorbidity 0.34” 0.061 ± 0.017 0.40” 0.060 ± 0.01 1
Physical activity score -0.38 -0.448 ± 0.105 -0.23” -0.212 ± 0.684
‘ ASM, appendicular skeletal muscle mass; LSTM, lean soft tissue mass.
2 SE.
“P < 0.05.
In brief summary, albumin is the main protein synthesized by acute reduction in albumin production and serum albumin
the liver. Serum concentrations depend on liver synthesis, concentrations are often low in patients with alcoholic cirrhosis
degradation in peripheral tissue, and intra- and extravascular (1 1). The effects of chronic diseases, other than renal and liver
distribution in extracellular fluids. The functions of serum disease, are unclear. Heavy smoking is reported to be inversely
albumin are 1) to maintain osmotic pressure, 2) to act as a associated with serum albumin and may confound associations
transport vehicle for amino acids and other substances to pe- with chronic morbidity and mortality in some studies (4). There
ripheral tissues, and 3) to serve as a temporary amino acid is little evidence that hepatic synthesis of albumin is impaired
storage site. About 120-220 mg albumin/kg body wt is syn- with age independent of disease( 1 1).
thesized daily and its half-life is= 17-20 d. About one-third of Protein distribution and turnover in the visceral and muscle
the amino acids in daily dietary intake are used in the synthesis compartments were not measured in the present study. As a
of albumin and other plasma proteins. Hepatic synthesis of result, we can only speculate as to the underlying nature of the
albumin increases after a meal in response to the increased association observed between serum albumin and muscle mass,
availability of amino acids and decreases during fasting in which could be direct or indirect. Sixty percent of total body
association with the reduction of the amino acid pool (1 1). albumin is extravascular in muscle and skin, and serum albu-
These changes in albumin synthesis, however, do not result in mm exchanges with this pool (10, 1 1). It is not clear, however,
large changes in serum concentrations, so serum albumin is how an alteration in the extravascular muscle pool would affect
often regarded as an insensitive indicator of dietary intake serum albumin concentrations unless exchange between the
status ( 10). intra- and extravascular pools is somehow altered ( 1 1). It
Serum albumin synthesis appears to be spared in starvation seems more likely that the connection is indirect; covariation
because amino acids are drawn from skeletal muscle. Long- between serum albumin and muscle mass may reflect shared
term protein deficiency with adequate energy intake (protein- effects of changes with age in protein metabolism.
energy malnutrition), however, results in skeletal muscle up- It is generally believed that rates of protein synthesis and
take of carbohydrate, fatty acids, and amino acids at the degradation decrease with age (25). Some recent studies mdi-
expense of hepatic protein synthesis and leads to hypoalbumin- cate, however, that whole-body protein synthesis rates are
emia. Injury and inflammation cause acute declines in serum actually slightly higher and that rates of degradation are the
albumin concentrations ( I 0, 24). Alcohol intake causes an same in elderly compared with young adults when expressed in
TABLE 4
Analysis of variance of serum albumin concentrations by number of comorbid conditions present (0 to4)!
0 1 2 3
Men
ml 25 39 35 6 3
Crude value (gIL) 41.1 41.3 41.7 41.0 39.7
Age-adjusted value, (gIL) 40.6 41.4 41.8 41.6 39.7
Women
ii 23 82 41 15 6
Crude value (gIL) 41.0 40.8 41.1 40.2 41.3
Age-adjusted value. (gIL) 40.8 40.8 41.1 40.8 41.9
, Crude values are mean serum albumin concentrations; age-adjusted values are mean concentrations adjusted by analysis of covariance for differences
in age across levels of comorbidity. Comorbidity was defined as the sum of International Classification of Disease-coded prevalent chronic conditions,
including coronary heart disease and cardiovascular disease, neoplasias (benign or in remission), osteoarthritis and arthrosis, hypertension, and renal and
liver diseases.
byguestonJanuary18,2015ajcn.nutrition.orgDownloadedfrom
..1..(
50
45
40
35
-I
C)
C
E
.0
Co
E
5-
a)
Cl)
U
. .
U
U
U
UU U U
_U U U
U #{149}U U
U #{149}#{149}UU
U F
#{149}UU #{149}
- U U
U UU
U
r = 0.29
U
10 35
-j
C)
C
E
.0
Co
E
5-
a)
Cl)
45
40
35
30
S #{149}
.
.. _.... .
. S S #{149}
. __.
. S #{149}#{149}#{149}
__... . .
... _._.
- .. ... .
. . .
. a
.
r = 0.25
‘ ASM, appendicular skeletal muscle mass: NS, not significant: LSTM.
lean soft tissue mass.
2 SE.
4 Total R2 (ek) = 14.06 for men and 20.23 for women.
Muscle (% of lean soft tissue mass)
556 BAUMGARTNER ET AL
FIGURE 2. Correlation of seruiii alhuniin concentration with muscle
mass as a percentage of lean soft tissue mass in elderly women.ii = 167.
30
15 20 25 30
Muscle mass (kg)
FIGURE 1.Correlation of serum albumin concentration with muscle
mass in elderly men. n = 108.
relation to body cell mass or creatinine excretion (26). Young
(26) and associates have suggested that these results reflect the
decreased contribution of skeletal muscle to whole-body pro-
tein turnover. They estimate that muscle contributes 20% to
whole-body protein turnover in the elderly compared with 30%
in younger adults. The decreased reserve of skeletal muscle
protein in the elderly limits the supply of amino acids from
peripheral tissues for protein synthesis by vital organs during
acute physiologic stresses such as disease, injury, and starva-
tion. The elderly, therefore, should have an increased likeli-
hood of low serum albumin concentrations compared with
younger adults under these stressful conditions. It is not clear,
TABLE S
Multiple-regression results for serum albumin on independent variables’
.
Independent variable
Regression
.
coefficienr
P <
Partial
R
%
Men (n = 108)
Intercept 48.702 ± 5.694 - -
Age (y) -0.154 ± 0.059 0.0008 8.56
Protein intake (g/d) -0.002 ± 0.013 NS 0.05
Comorbidity 0.254 ± 0.294 NS 1.05
ASM (g) 0.219 ± 0.098 0.039 3.69
Physical activity score -0.043 ± 0.047 NS 0.71
Women (‘i = 167)
Intercept 40.539 ± 4.476 - -
Age (y) -0.108 ± 0.032 0.0008 4.34
Protein intake (g/d) 0.005 ± 0.010 NS 0.10
Comorbidity 0.098 ± 0.197 NS 0.13
Estrogen replacement
therapy (0, 1 ) - I .524 ± 0.404 0.0002 6.21
Physical activity -0.098 ± 0.031 0.002 4.30
ASM/LSTM (C/c) 0.250 ± 0.078 0.()02 5.16
however, how a decreased availability of muscle amino acids
could result in low serum albumin in relatively ‘unstressed”
elderly people with “adequate” dietary protein intake. Thus. it
seems that we are forced to return to the hypothesis that
decreased rates of protein turnover do occur with age in both
liver and muscle and underlie covarying changes in serum
albumin concentrations and muscle mass.
With regard to the effects of dietary intake, acute and chronic
disease, alcohol intake, and smoking, it is important to empha-
size several facts in the present study. Both serum albumin and
body composition were measured after an overnight fast. The
participants were not malnourished. Those with acute illness.
recent trauma, or serious chronic disease were excluded from
the study. Only a handful of subjects smoked, and none were
known to be alcoholic. Nonetheless, a possible limitation of
this study could be the ascertainment of chronic morbidity and
the quantification of the effects of comorbidity in the analyses.
As noted, the presence of chronic illnesses in the study partic-
ipants was ascertained from a combination of self-report, med-
ical history, and examination, which should reduce the likeli-
hood of missed or misclassified illnesses. Nonetheless, we
cannot rule out the possibility of the influence of undiagnosed,
subclinical chronic illnesses. The severity of the chronic ill-
nesses present was not graded. Also, the comorbidity index
could have obscured the associations of specific illnesses with
serum albumin. Significant differences in serum albumin con-
centrations were not observed, however, among the different
classes of morbidity, but these analyses lacked statistical power
because of small numbers.
Roubenoff et al (24) observed that serum albumin, as well as
body cell mass, is reduced in patients with rheumatoid arthritis.
They hypothesized that other chronic inflammatory conditions
alter protein metabolism also, and could underlie the decreases
seen in both serum albumin and muscle mass with aging.
Inflammatory illnesses and illnesses that cause the acute-phase
response reduce albumin gene expression, alter the intra- and
extravascular distribution of albumin, and increase the rate of
degradation ( 1 1). We did not measure C-reactive protein or
30 35 40 45 50
byguestonJanuary18,2015ajcn.nutrition.orgDownloadedfrom
SERUM ALBUMIN AND MUSCLE IN THE ELDERLY 557
cytokines that could serve as markers or mediators for inflam-
mation-based alterations in protein metabolism in both liver
and muscle (24). It is therefore possible that the association
between serum albumin and muscle mass observed in the
present study reflects the effects in some of our subjects of
underlying chronic inflammatory conditions that were not ac-
counted for in our ascertainment of morbidity.
Serum albumin was reduced significantly in the women
receiving ERT. This could be due to increased plasma volume
in these women but we cannot test this hypothesis with the
current data. In any event, the associations of serum albumin
with age and muscle mass in the women were independent of
this effect of ERT. None of themen was currently using any
steroid medications. As a result, the associations of serum
albumin with age and muscle cannot be readily explained by
confounding effects of medications in either sex. In addition,
we have noted elsewhere thatdecreases with age in muscle
mass, as well as in body cell mass, in women may be masked
somewhat by increases in the fraction of FFM that is extracel-
lular fluid (14). This could explain why in the women ASM as
a percentage of lean soft tissue mass was a better predictor of
serum albumin than absolute ASM.
Finally, the association between serum albumin and muscle
mass was independent of physical activity. Physical activity, as
graded in the present study, was associated significantly with
age and body composition in both sexes and with serum albu-
mm concentrations in the women. The physical activity assess-
ment instrument used captures a broad range of activities from
relatively sedentary (eg,gardening and fishing) to high-energy-
expenditure activities (eg, jogging and cross-country skiing).
We believe that the significant correlations of the physical
activity scores with body composition support the general
validity of our questionnaire for grading physical activity in
this study population. Recent studies suggest that high-inten-
sity, weight-bearing exercise stimulates muscle protein metab-
olism in older men and may elevate the need for dietary protein
(27). Although participants in the Aging Process Study may be
generally characterized as healthy, active elderly adults, few
are known to engage regularly in high-intensity weight lifting
or resistive exercise.
Controversy exists for the effects on protein metabolism of
low-intensity or aerobic exercise, which is more typical of
relatively healthy, community-dwelling elderly people. Carraro
et al (28) reported no effects on the fractional rates or concen-
trations of serum albumin in men after 4 h of aerobic exercise
at 40% maximal oxygen consumption while dietary protein
intake was held constant. In the present analyses, the associa-
tion of physical activity with serum albumin inthe women was
negative. This might suggest that higher levels of physical
activity in the elderly women were associated with increased
protein degradation without a corresponding stimulation of
protein synthesis. This interpretation is highly speculative,
however, in the absence of data for protein turnover. Some
investigators have reported a transient decrease in serum albu-
mm after moderate-intensity exercise that lasts 4-10 d (29). It
is important to keep in mind that the instrument used in the
present study was designed tomeasure habitual or usual phys-
ical activity and therefore would be expected to reflect chronic
rather than transient effects on protein metabolism. Also, there
is no obvious explanation for why an association between
serum albumin and physical activity was found in the women
but not in the men. In sum, although the decrease with age in
muscle mass, or sarcopenia, can be attributed in part to a
progressive decline in physical activity with age (30), it is
difficult to explain either the age-related decrease in serum
albumin or the association between albumin and muscle in
terms of physical activity.
An important strength of the current study was the estimation
of muscle mass by DXA. Previous studies have not reported
significant associations between serum albumin and indexes of
body composition, such as the BMI (3 1). BMI, however, cor-
relates more strongly with body fat than with lean body mass
and may not be a very sensitive index of muscle or body
protein stores, except in emaciation. In elderly people, muscle
loss can be masked by increased body fat. The elderly also tend
to have less muscle and more fat at any BMI than younger
adults ( 14). There are inconsistent reports of associations of
serum albumin with more specific components of fat-free body
composition, such as body cell mass and FFM (24, 32). Both of
these components include inert subcomponents, such as water
and bone mineral, and do not separate skeletal muscle from
organ tissue. DXA is not affected in any known way by
age-related changes in anatomy. physiology. or metabolism.
which may bias anthropometric and creatinine excretion meth-
ods of estimating muscle mass (33). Estimates of muscle mass
from DXA compare favorably with those from computerized
tomography, which is considered to be the most accurate in
vivo means of quantitating major soft tissue components such
as muscle and adipose tissue (33).
Serum albumin concentrations < 38 g/L have been shown to
be associated with increased risk of disability in elderly adults
(6). Low BMI has also been shown to be associated with
reduced functional capabilities in community-dwelling elderly
( 15). Most elderly people with low BMIs have reduced muscle
mass, which may be worsened by weight loss (14). Regardless
of the nature of the mechanisms underlying the relation be-
tween serum albumin and somatic protein reserves in healthy
elderly persons, the present study suggests that serum albumin
does reflect muscle mass to some extent. It is not possible to
establish any causal direction to this relation from the present
cross-sectional analyses. It seems reasonable, however, to hy-
pothesize that the reported risk of disability with low serum
albumin concentrations in the elderly is more likely to be
attributable to sarcopenia. Further research is needed to clarify
the joint associations between serum albumin, sarcopenia, mor-
bidity, and disability in elderly populations. It is possible that
low serum albumin concentrations and sarcopenia are corre-
lated, early warning signs ofdeleterious underlying, subclinical
conditions and impending disease and disability. Future studies
should include more precise estimates of skeletal muscle mass
from DXA as a risk factor for functional disability as well as
for chronic diseases. A
REFERENCES
I . Phillips A, Shaper AG. Whincup PH. Association between serum
albumin and mortality from cardiovascular disease. cancer. and other
causes. Lancet 1989:2:1434-6.
2. Kuller LH, Eichner JE, Orcahrd Ti. The relationship between serum
albumin levels and risk of coronary heart disease in the Multiple Risk
Factor Intervention Trial. Am J Epidemiol l99l:l34:l266-77.
3. Klonoff-Cohen H. Barrett-Conor EL. Edelstein SL. Albumin levels as
byguestonJanuary18,2015ajcn.nutrition.orgDownloadedfrom
558 BAUMGARTNER ET AL
a predictor of mortality in the healthy elderly. J Clin Epidemiol
1992:4:207-12.
4. Salive ME, Cornoni-Huntley J, PhillipsCL, et al. Serum albumin in
older persons: relationship with age and health status. J Clin Epidemiol
1992:4:213-21.
5. Gillum RF, Ingram DD. Makuc DM. Relationship betweenserum
albumin concentration and stroke incidence and death: the NHANES
I Epidemiologic Follow-up Study. AmJ Epidemiol 1994;140:876-88.
6. Corti M-C, Guralnik JM, Salive ME, Sorkin JD. Serum albumin level
and physical disability as predictors of mortality in older persons.
JAMA l994;272: 1036-42.
7. Campion EW, deLabry LO, Glynn Ri. The effect of age on serum
albumin in healthy males: report from the Normative Aging Study. J
Gerontol l988;43:M I 8-20.
8. Shibata H, Haga H. Ueno M, Nagai H, Yasumura S. Koyano W.
Longitudinal changes of serum albuminin elderly people living in the
community. Age Ageing l991;20:417-20.
9. Romero L, Hunt WC, Garry PJ. Serum albumin results from a longi-
tudinal study of community-dwelling healthy elderly in the New
Mexico Aging Process Study. In: Rosenberg IH, ed. Nutritional as-
sessment of elderly populations. Bristol-Myers SquibblMead Johnson
nutrition symposia. Vol 13. New York: Raven Press, 1995:40-9.
10. RaIl LC, Roubenoff R, Harris TB. Albumin as a marker of nutritional
and health status. In: Rosenberg IH, ed. Nutritional assessment of
elderly populations. Bristol-Myers SquibblMead Johnson nutrition
symposia. Vol 13. New York: Raven Press, 1995:1-17.
11. Rothschild MA, Oratz M, Schrieber SS. Serum albumin. Hepatology
1988:8:385-410.
12. Gersovitz M, Munro HN, Udall J, Young yR. Albumin synthesis in
young and elderly subjects using a new stable isotope methodology:
response to level of protein intake. Metabolism 1980;29: 1075-85.
13. Young VR, Sanchez M. Albumin, skeletal muscle, and leanbody mass
as functional predictors in the elderly: brief commentand analysis. In:
Rosenberg IH, ed. Nutritional assessment of elderly populations.
Bristol-Myers SquibbfMead Johnson nutrition symposia. Vol 13.
New York: Raven Press, 1995:63-73.
14. Baumgartner RN. Stauber PM, McHugh D, Koehler K. GarryPJ.
Cross-sectional age-differences inbody compostion in persons 60+
years of age. I Gerontol l995:50A:M307-l6.
I 5. Galanos AN, Pieper CF. Coroni-Huntley JC, Bales CW, Fillenbaum
GO. Nutrition and function: is there a relationship between body mass
index and the functional capabilities of community-dwelling elderly?
J Am Geriatr Soc 1994;42:368-73.
I 6. National Cancer Institute. Health habits and history questionnaire: diet
history and other risk factors. Personal computer system packet, ver-
sion 2.2. Bethesda, MD: National Cancer Institute, 1989.
17. Shapiro 5, Weinblatt E, Frank CW, Sager RV. The HIP. study of
incidence and prognosis of coronary heart disease: preliminary find-
ings on incidence of myocardial infarction and angina. J Chronic Dis
1965; 18:527-58.
18. Cassel J, Heyden 5, Bartel AG,et al. Occupation and physical activity
and coronary heart disease. Arch Intern Med 197 1:128:920-8.
19. Commission on Professional and Hospital Activities. The international
classification of diseases. 9th revision. Ann Arbor, MI: Edwards
Brothers, 1987.
20. Heymsfield SB. Smith R.Aulet M. et al. Appendicular skeletal muscle
mass: measurement by dual photon absorptiometry. Am J Clin Nutr
l990;52:2l4-8.
21. Lohman TG, Roche AF, Martorell R, eds. Anthropometric standard-
ization reference manual. Champaign, IL: Human Kinetics, 1988.
22. Cockram DB, Baumgartner RN. Evaluation of accuracy and reliability
of calipers for measuring recumbent knee height in elderly people.
Am J Clin Nutr l990;52:397-400.
23. Mares-Perlman IA, Klein BEK, Klein R, Ritter LL, Fisher MR.
Freudenheim JL. A diet history questionnaire ranks nutrient intakes in
middle-age and older men and womensimilarly to multiple food
records.J Nutr 1993;l23:489-S0l.
24. Roubenoff R, Grimm LW, Roubenoff RA. Albumin, body composi-
tion, and dietary intake inchronic inflammation. In: Rosenberg IH. ed.
Nutritional assessment of elderly populations. Bristol-Myers Squibb/
Mead Johnson nutrition symposia. Vol13. New York: Raven Press.
1995:30-9.
25. Richardson A, Ward WF. Changes in protein turnover as a function of
age and nutritional status. In: WatsonRR, ed. Handbook of nutrition in
the aged. Boca Raton, FL: CRC Press, 1994:309-16.
26. Young yR. Amino acids and proteins inrelation to the nutrition of
elderly people. Age Ageing l990;l9:S10-24.
27. Evans Wi. Exercise, nutrition and aging. J Nutr 1992:122:796-801.
28. Carraro F, Hartl WH, Stuart CA, Layman DK, Jahoor F, Wolfe RR.
Whole body and plasma protein synthesis inexercise and recovery in
human subjects. Am J Physiol 1990;258:E82 1-31.
29. Butterfield 0. Whole body protein utilization in humans. Med Sci
Sports Exerc 1987;19:S157-65.
30. Bortz WM. Disuse and aging. JAMA 1982;248: 1203-8.
3 1. Lemonnier D, Acher S. Boukaiba N. et al. Discrepancy between
anthropometry and biochemistry in theassessment of the nutritional
status of the elderly. Eur J Clin Nutr l99l;45:28l-6.
32. Forse RA, Shizgal HM. Serum albumin and nutritional status. JPEN J
Parenter Enteral Nutr 1908:4:450-4.
33. Wang Z, Visser M, Ma R,et a!. Skeletal muscle mass: validation of
neutron activation and dual energy X-ray absorptiometry methods by
computed tomography. J AppI Physiol I 996;80:824-3 I.
byguestonJanuary18,2015ajcn.nutrition.orgDownloadedfrom

More Related Content

What's hot

A Comparative Study Establishing the Importance of Physiotherapeutic Principl...
A Comparative Study Establishing the Importance of Physiotherapeutic Principl...A Comparative Study Establishing the Importance of Physiotherapeutic Principl...
A Comparative Study Establishing the Importance of Physiotherapeutic Principl...IOSR Journals
 
Παρουσίαση καθ. Παιδιατρικής Γ. Χρούσου
Παρουσίαση καθ. Παιδιατρικής Γ. ΧρούσουΠαρουσίαση καθ. Παιδιατρικής Γ. Χρούσου
Παρουσίαση καθ. Παιδιατρικής Γ. Χρούσουvtsiatsiamis
 
The American Journal of Clinical Nutrition - ¿Sabemos todo sobre las bebidas ...
The American Journal of Clinical Nutrition - ¿Sabemos todo sobre las bebidas ...The American Journal of Clinical Nutrition - ¿Sabemos todo sobre las bebidas ...
The American Journal of Clinical Nutrition - ¿Sabemos todo sobre las bebidas ...claudiadelbosque
 
Leukocyte, Leukocyte Subsets, and Inflammatory Cytokine Response to Resistanc...
Leukocyte, Leukocyte Subsets, and Inflammatory Cytokine Response to Resistanc...Leukocyte, Leukocyte Subsets, and Inflammatory Cytokine Response to Resistanc...
Leukocyte, Leukocyte Subsets, and Inflammatory Cytokine Response to Resistanc...Coleman Mills
 
Seaman, Palombo, Metabolic Syndrome, JCM 2014
Seaman, Palombo, Metabolic Syndrome, JCM 2014Seaman, Palombo, Metabolic Syndrome, JCM 2014
Seaman, Palombo, Metabolic Syndrome, JCM 2014Adam Palombo DC, ICCSP
 
Journal of clinical nutrition : How to treat obesity with calorically unrestr...
Journal of clinical nutrition : How to treat obesity with calorically unrestr...Journal of clinical nutrition : How to treat obesity with calorically unrestr...
Journal of clinical nutrition : How to treat obesity with calorically unrestr...Wouter de Heij
 
Why repeated meta-analyses can show very different results?
Why repeated meta-analyses can show very different results?Why repeated meta-analyses can show very different results?
Why repeated meta-analyses can show very different results?Reijo Laatikainen
 
Jose María Ordovás-El impacto de las ciencias ómicas en la nutrición, la medi...
Jose María Ordovás-El impacto de las ciencias ómicas en la nutrición, la medi...Jose María Ordovás-El impacto de las ciencias ómicas en la nutrición, la medi...
Jose María Ordovás-El impacto de las ciencias ómicas en la nutrición, la medi...Fundación Ramón Areces
 
Biosocial research:How to use biological data in social science research?
Biosocial research:How to use biological data in social science research?Biosocial research:How to use biological data in social science research?
Biosocial research:How to use biological data in social science research?University of Southampton
 
Weight loss among metabolically healthy obese men and women: harmful or benef...
Weight loss among metabolically healthy obese men and women: harmful or benef...Weight loss among metabolically healthy obese men and women: harmful or benef...
Weight loss among metabolically healthy obese men and women: harmful or benef...PeterJaniszewski
 
Exercise as prevention in CAD
 Exercise as prevention in CAD  Exercise as prevention in CAD
Exercise as prevention in CAD QuratBenu1
 
Physical Fitness for Elderly of a University Project Participants, Practition...
Physical Fitness for Elderly of a University Project Participants, Practition...Physical Fitness for Elderly of a University Project Participants, Practition...
Physical Fitness for Elderly of a University Project Participants, Practition...CrimsonPublishersGGS
 
Ferrodyn 02 iron bariatric
Ferrodyn 02 iron bariatricFerrodyn 02 iron bariatric
Ferrodyn 02 iron bariatricRoberto Conte
 
2013 List_Weight Cycling
2013 List_Weight Cycling2013 List_Weight Cycling
2013 List_Weight CyclingEdward List
 

What's hot (20)

A Comparative Study Establishing the Importance of Physiotherapeutic Principl...
A Comparative Study Establishing the Importance of Physiotherapeutic Principl...A Comparative Study Establishing the Importance of Physiotherapeutic Principl...
A Comparative Study Establishing the Importance of Physiotherapeutic Principl...
 
NYU Langone Medical Center
NYU Langone Medical CenterNYU Langone Medical Center
NYU Langone Medical Center
 
Παρουσίαση καθ. Παιδιατρικής Γ. Χρούσου
Παρουσίαση καθ. Παιδιατρικής Γ. ΧρούσουΠαρουσίαση καθ. Παιδιατρικής Γ. Χρούσου
Παρουσίαση καθ. Παιδιατρικής Γ. Χρούσου
 
The American Journal of Clinical Nutrition - ¿Sabemos todo sobre las bebidas ...
The American Journal of Clinical Nutrition - ¿Sabemos todo sobre las bebidas ...The American Journal of Clinical Nutrition - ¿Sabemos todo sobre las bebidas ...
The American Journal of Clinical Nutrition - ¿Sabemos todo sobre las bebidas ...
 
Leukocyte, Leukocyte Subsets, and Inflammatory Cytokine Response to Resistanc...
Leukocyte, Leukocyte Subsets, and Inflammatory Cytokine Response to Resistanc...Leukocyte, Leukocyte Subsets, and Inflammatory Cytokine Response to Resistanc...
Leukocyte, Leukocyte Subsets, and Inflammatory Cytokine Response to Resistanc...
 
Queen's Study
Queen's StudyQueen's Study
Queen's Study
 
Seaman, Palombo, Metabolic Syndrome, JCM 2014
Seaman, Palombo, Metabolic Syndrome, JCM 2014Seaman, Palombo, Metabolic Syndrome, JCM 2014
Seaman, Palombo, Metabolic Syndrome, JCM 2014
 
2014_AAHPERD_Poster
2014_AAHPERD_Poster2014_AAHPERD_Poster
2014_AAHPERD_Poster
 
nihms411798
nihms411798nihms411798
nihms411798
 
Journal of clinical nutrition : How to treat obesity with calorically unrestr...
Journal of clinical nutrition : How to treat obesity with calorically unrestr...Journal of clinical nutrition : How to treat obesity with calorically unrestr...
Journal of clinical nutrition : How to treat obesity with calorically unrestr...
 
Investigation of physical fitness and fat percentage of intervarsity male pla...
Investigation of physical fitness and fat percentage of intervarsity male pla...Investigation of physical fitness and fat percentage of intervarsity male pla...
Investigation of physical fitness and fat percentage of intervarsity male pla...
 
Why repeated meta-analyses can show very different results?
Why repeated meta-analyses can show very different results?Why repeated meta-analyses can show very different results?
Why repeated meta-analyses can show very different results?
 
Publication
PublicationPublication
Publication
 
Jose María Ordovás-El impacto de las ciencias ómicas en la nutrición, la medi...
Jose María Ordovás-El impacto de las ciencias ómicas en la nutrición, la medi...Jose María Ordovás-El impacto de las ciencias ómicas en la nutrición, la medi...
Jose María Ordovás-El impacto de las ciencias ómicas en la nutrición, la medi...
 
Biosocial research:How to use biological data in social science research?
Biosocial research:How to use biological data in social science research?Biosocial research:How to use biological data in social science research?
Biosocial research:How to use biological data in social science research?
 
Weight loss among metabolically healthy obese men and women: harmful or benef...
Weight loss among metabolically healthy obese men and women: harmful or benef...Weight loss among metabolically healthy obese men and women: harmful or benef...
Weight loss among metabolically healthy obese men and women: harmful or benef...
 
Exercise as prevention in CAD
 Exercise as prevention in CAD  Exercise as prevention in CAD
Exercise as prevention in CAD
 
Physical Fitness for Elderly of a University Project Participants, Practition...
Physical Fitness for Elderly of a University Project Participants, Practition...Physical Fitness for Elderly of a University Project Participants, Practition...
Physical Fitness for Elderly of a University Project Participants, Practition...
 
Ferrodyn 02 iron bariatric
Ferrodyn 02 iron bariatricFerrodyn 02 iron bariatric
Ferrodyn 02 iron bariatric
 
2013 List_Weight Cycling
2013 List_Weight Cycling2013 List_Weight Cycling
2013 List_Weight Cycling
 

Viewers also liked

Viewers also liked (15)

Nutrition interventions for frailty and sarcopenia
Nutrition interventions for frailty and sarcopeniaNutrition interventions for frailty and sarcopenia
Nutrition interventions for frailty and sarcopenia
 
Sarcopenia
SarcopeniaSarcopenia
Sarcopenia
 
Introduction to Sarcopenia and frailty
Introduction to Sarcopenia and frailtyIntroduction to Sarcopenia and frailty
Introduction to Sarcopenia and frailty
 
Douglas Gauld3
Douglas Gauld3Douglas Gauld3
Douglas Gauld3
 
Passenger rights in context of European Parliament
Passenger rights in context of European ParliamentPassenger rights in context of European Parliament
Passenger rights in context of European Parliament
 
Documento Académico
Documento AcadémicoDocumento Académico
Documento Académico
 
FACQUA-PRESENTATION
FACQUA-PRESENTATIONFACQUA-PRESENTATION
FACQUA-PRESENTATION
 
GCresume
GCresumeGCresume
GCresume
 
Etude de la WIFI sur NS2
Etude de la WIFI sur NS2Etude de la WIFI sur NS2
Etude de la WIFI sur NS2
 
dogs
dogsdogs
dogs
 
Theorys
Theorys Theorys
Theorys
 
MANOJ_new_CV
MANOJ_new_CVMANOJ_new_CV
MANOJ_new_CV
 
Chuaffeur Service Dubai
Chuaffeur Service DubaiChuaffeur Service Dubai
Chuaffeur Service Dubai
 
PASSION
PASSIONPASSION
PASSION
 
Dr queries
Dr queriesDr queries
Dr queries
 

Similar to Albumina sarcopenia

Arterial Destiffening With Weight Loss in Overweight and Obese.docx
Arterial Destiffening With Weight Loss in Overweight and Obese.docxArterial Destiffening With Weight Loss in Overweight and Obese.docx
Arterial Destiffening With Weight Loss in Overweight and Obese.docxrossskuddershamus
 
A Systematic Review Of The Literature Concerning The Relationship Between Obe...
A Systematic Review Of The Literature Concerning The Relationship Between Obe...A Systematic Review Of The Literature Concerning The Relationship Between Obe...
A Systematic Review Of The Literature Concerning The Relationship Between Obe...Valerie Felton
 
Does perception equal reality? Weight misperception in relation to weight-rel...
Does perception equal reality? Weight misperception in relation to weight-rel...Does perception equal reality? Weight misperception in relation to weight-rel...
Does perception equal reality? Weight misperception in relation to weight-rel...Elizabeth Lagunas
 
Does perception equal reality? Weight misperception in relation to weight-rel...
Does perception equal reality? Weight misperception in relation to weight-rel...Does perception equal reality? Weight misperception in relation to weight-rel...
Does perception equal reality? Weight misperception in relation to weight-rel...Elizabeth Lagunas
 
Optimizing Medical Nutrition Therapy in sarcopenia of Elderly patients
Optimizing Medical Nutrition Therapy in  sarcopenia of Elderly patients Optimizing Medical Nutrition Therapy in  sarcopenia of Elderly patients
Optimizing Medical Nutrition Therapy in sarcopenia of Elderly patients Chomarhlaing
 
RESEARCH ARTICLE & 2017 American Journal of.docx
RESEARCH ARTICLE            & 2017 American Journal of.docxRESEARCH ARTICLE            & 2017 American Journal of.docx
RESEARCH ARTICLE & 2017 American Journal of.docxWilheminaRossi174
 
Sedentary Behaviors Increase Risk of Cardiovascular Disease Mortality In Men
Sedentary Behaviors Increase Risk of Cardiovascular Disease Mortality In MenSedentary Behaviors Increase Risk of Cardiovascular Disease Mortality In Men
Sedentary Behaviors Increase Risk of Cardiovascular Disease Mortality In MenTatiana Y. Warren-Jones, Ph.D.
 
COMPARISON OF SERUM LEVELS OF ZINC AND LEPTIN IN FEMALE ENDURANCE AND SPRINTI...
COMPARISON OF SERUM LEVELS OF ZINC AND LEPTIN IN FEMALE ENDURANCE AND SPRINTI...COMPARISON OF SERUM LEVELS OF ZINC AND LEPTIN IN FEMALE ENDURANCE AND SPRINTI...
COMPARISON OF SERUM LEVELS OF ZINC AND LEPTIN IN FEMALE ENDURANCE AND SPRINTI...EDITOR IJCRCPS
 
Nutritional Interventional trials in muscle and cachexia PhD research directi...
Nutritional Interventional trials in muscle and cachexia PhD research directi...Nutritional Interventional trials in muscle and cachexia PhD research directi...
Nutritional Interventional trials in muscle and cachexia PhD research directi...PhD Assistance
 
Dose–Response Relationships Between Energy Availability and Bo.docx
Dose–Response Relationships Between Energy Availability and Bo.docxDose–Response Relationships Between Energy Availability and Bo.docx
Dose–Response Relationships Between Energy Availability and Bo.docxmadlynplamondon
 
Perceived barriers to exercise in people with spinal cord injury
Perceived barriers to exercise in people with spinal cord injury Perceived barriers to exercise in people with spinal cord injury
Perceived barriers to exercise in people with spinal cord injury igbenito777
 
ATT_1424628128019_90 HUSSEINI MASOOMEH......
ATT_1424628128019_90 HUSSEINI MASOOMEH......ATT_1424628128019_90 HUSSEINI MASOOMEH......
ATT_1424628128019_90 HUSSEINI MASOOMEH......Masoumeh Hosseini
 
El sindrome metabolico
El sindrome metabolicoEl sindrome metabolico
El sindrome metabolicoDeiber Pinzon
 
Nutritional Interventional trials in muscle and cachexia PhD research directi...
Nutritional Interventional trials in muscle and cachexia PhD research directi...Nutritional Interventional trials in muscle and cachexia PhD research directi...
Nutritional Interventional trials in muscle and cachexia PhD research directi...PhD Assistance
 
Hematological and Biochemical Reference Intervals
Hematological and Biochemical Reference IntervalsHematological and Biochemical Reference Intervals
Hematological and Biochemical Reference IntervalsLázaro Nunes
 

Similar to Albumina sarcopenia (20)

1012000
10120001012000
1012000
 
Arterial Destiffening With Weight Loss in Overweight and Obese.docx
Arterial Destiffening With Weight Loss in Overweight and Obese.docxArterial Destiffening With Weight Loss in Overweight and Obese.docx
Arterial Destiffening With Weight Loss in Overweight and Obese.docx
 
A Systematic Review Of The Literature Concerning The Relationship Between Obe...
A Systematic Review Of The Literature Concerning The Relationship Between Obe...A Systematic Review Of The Literature Concerning The Relationship Between Obe...
A Systematic Review Of The Literature Concerning The Relationship Between Obe...
 
Does perception equal reality? Weight misperception in relation to weight-rel...
Does perception equal reality? Weight misperception in relation to weight-rel...Does perception equal reality? Weight misperception in relation to weight-rel...
Does perception equal reality? Weight misperception in relation to weight-rel...
 
Does perception equal reality? Weight misperception in relation to weight-rel...
Does perception equal reality? Weight misperception in relation to weight-rel...Does perception equal reality? Weight misperception in relation to weight-rel...
Does perception equal reality? Weight misperception in relation to weight-rel...
 
Optimizing Medical Nutrition Therapy in sarcopenia of Elderly patients
Optimizing Medical Nutrition Therapy in  sarcopenia of Elderly patients Optimizing Medical Nutrition Therapy in  sarcopenia of Elderly patients
Optimizing Medical Nutrition Therapy in sarcopenia of Elderly patients
 
22 je20120006
22 je2012000622 je20120006
22 je20120006
 
RESEARCH ARTICLE & 2017 American Journal of.docx
RESEARCH ARTICLE            & 2017 American Journal of.docxRESEARCH ARTICLE            & 2017 American Journal of.docx
RESEARCH ARTICLE & 2017 American Journal of.docx
 
Sedentary Behaviors Increase Risk of Cardiovascular Disease Mortality In Men
Sedentary Behaviors Increase Risk of Cardiovascular Disease Mortality In MenSedentary Behaviors Increase Risk of Cardiovascular Disease Mortality In Men
Sedentary Behaviors Increase Risk of Cardiovascular Disease Mortality In Men
 
COMPARISON OF SERUM LEVELS OF ZINC AND LEPTIN IN FEMALE ENDURANCE AND SPRINTI...
COMPARISON OF SERUM LEVELS OF ZINC AND LEPTIN IN FEMALE ENDURANCE AND SPRINTI...COMPARISON OF SERUM LEVELS OF ZINC AND LEPTIN IN FEMALE ENDURANCE AND SPRINTI...
COMPARISON OF SERUM LEVELS OF ZINC AND LEPTIN IN FEMALE ENDURANCE AND SPRINTI...
 
Nutritional Interventional trials in muscle and cachexia PhD research directi...
Nutritional Interventional trials in muscle and cachexia PhD research directi...Nutritional Interventional trials in muscle and cachexia PhD research directi...
Nutritional Interventional trials in muscle and cachexia PhD research directi...
 
Dose–Response Relationships Between Energy Availability and Bo.docx
Dose–Response Relationships Between Energy Availability and Bo.docxDose–Response Relationships Between Energy Availability and Bo.docx
Dose–Response Relationships Between Energy Availability and Bo.docx
 
Perceived barriers to exercise in people with spinal cord injury
Perceived barriers to exercise in people with spinal cord injury Perceived barriers to exercise in people with spinal cord injury
Perceived barriers to exercise in people with spinal cord injury
 
ATT_1424628128019_90 HUSSEINI MASOOMEH......
ATT_1424628128019_90 HUSSEINI MASOOMEH......ATT_1424628128019_90 HUSSEINI MASOOMEH......
ATT_1424628128019_90 HUSSEINI MASOOMEH......
 
El sindrome metabolico
El sindrome metabolicoEl sindrome metabolico
El sindrome metabolico
 
Nutritional Interventional trials in muscle and cachexia PhD research directi...
Nutritional Interventional trials in muscle and cachexia PhD research directi...Nutritional Interventional trials in muscle and cachexia PhD research directi...
Nutritional Interventional trials in muscle and cachexia PhD research directi...
 
Hematological and Biochemical Reference Intervals
Hematological and Biochemical Reference IntervalsHematological and Biochemical Reference Intervals
Hematological and Biochemical Reference Intervals
 
Waist circumference
Waist circumferenceWaist circumference
Waist circumference
 
B042106011
B042106011B042106011
B042106011
 
jgi_01104.pdf
jgi_01104.pdfjgi_01104.pdf
jgi_01104.pdf
 

Albumina sarcopenia

  • 1. 552 Aim, J Cliii Nuir 1996:64:552-8. Printed in USA. © 1996 American Society for Clinical Nutrition Serum albumin is associated with skeletal muscle in elderly men and women13 Richard N Baungartner, Kathleen M Koehler, Linda Ro,nero, and Philip J Garrv ABSTRACT Serum albumin concentrations decrease with age and values < 38 g/L are associated with increased morbidity, mortality, and disability in the elderly. It is not clear to what extent the decreases are associated independently with changes in metab- olism, dietary intake, physical activity, morbidity, or body com- position. We examined associations of serum albumin with age. protein and energy intakes, physical activity, morbidity, and mus- cle mass in 275 men and women aged 60-95 y. Serum albumin was measured with the bromcresol green procedure. Usual dietary intake and physical activity were quantified through question- naires. Morbidity was ascertained from medical history, question- naire, and examination. Muscle mass was estimated from dual- energy X-ray absorptiometry. In multivariate analyses, serum albumin was associated significantly with muscle mass after age, protein intake, physical activity, and comorbidity were controlled for in men and women. This study suggests that decreases with age in serum albumin concentrations are associated with muscle loss (sarcopenia) in the elderly. This association is independent of other factors that may affect muscle mass and albumin concentration. We suggest that the increased risk of disability with low serum albumin concentrations observed in the elderly may actually re- fleet an association with sarcopenia. Am J Cliii Nuir I 996:64:552-8. KEY WORDS Muscle, serum albumin, aging INTRODUCTION Serum albumin has long been recognized as a crude indicator of “health” and “nutritional” status. Several recent epidemio- logic and clinical studies have described an apparent associa- tion of low serum albumin concentrations with increased mor- tality as well as morbidity, and have also described possible protective effects of high concentrations (1-5). Functional im- pairment and disability in elderly groups are also reported to be associated with low serum albumin (4, 6). Serum albumin is the main protein synthesized by the liver. Acute changes may be produced by large reductions in protein intake or by trauma and infectious diseases. Long-term changes may be produced by chronic renal and liver diseases. Serum albumin concentrations decrease with age. especially in the elderly, although the magnitude of decrease varies consider- ably among studies (3, 4, 7-9). It is not clear to what extent the lower concentrations seen at older ages are associated indepen- dently with age-related changes in metabolism, dietary intake, physical activity, morbidity, or body composition (8). Age- related changes in the absence of significant disease, trauma, or reductions in protein intake may be due to alterations in the balance between protein synthesis and degradation (10-12). These changes in protein turnover may occur in peripheral muscle tissues as well as in liver, and could explain, in part, the observed decreases with age in muscle mass in the elderly, a phenomenon now referred to as sarcopenia ( 13, 14). Taken together, these observations suggest that changes in protein metabolism in liver and muscle could be interrelated, resulting in a correlation between serum albumin concentration and muscle mass (13). In some epidemiologic reports, low serum albumin concen- trations have been reported to be associated with risk factors related to muscle strength and function, such as impaired mobility, balance, and gait, suggesting a link with sarcopenia (4, 6). To date, however, there are few data for the possible association of the sarcopenia of aging with morbidity, mortal- ity, or disability. This may be due to the difficulty of accurately measuring muscle mass in epidemiologic studies. The reported association of low body mass index (BMI: in kg/rn2) with increased morbidity, mortality, and disability suggests such an association (15). The purpose of the present study was to examine the joint associations among age, serum albumin, dietary intakes of protein and energy, morbidity, physical activity, and muscle mass in a cohort of elderly men and women. A strength of this study is the availability of accurate estimates of muscle mass from dual-energy X-ray absorptiometry (DXA) in a relatively large cohort of healthy elderly men and women. SUBJECTS AND METHODS The data analyzed in the present report were collected in 1993 for 275 participants in the New Mexico Aging Process Study, an ongoing longitudinal study of nutrition and aging that began in 1980 (14). These elderly volunteers are white, are of above average income and education, and reside mostly in the I From the Clinical Nutrition Program, School of Medicine. University of New Mexico, Albuquerque. 2 Supported by grants AG1O149 (to RNB). AG02049 (to PJG). and GCR DRR, 5 MO1-00997-13-l3,l4 from the National Institutes of Health. 3 Address reprint requests to RN Baumgartner. Clinical Nutrition Program. 215 Surge Building. 2701 Frontier Place. University ofNew Mexico School of Medicine, Albuquerque. NM. E-mail: rbaumgar@medusa.unm.edu. Received February 15, 1996. Accepted for publication June 26, 1996. byguestonJanuary18,2015ajcn.nutrition.orgDownloadedfrom
  • 2. SERUM ALBUMIN AND MUSCLE IN THE ELDERLY 553 ‘ ± SD. 2 Significantly different from men.P < 0.02. area of Albuquerque. NM. Ninety-six percent of the partici- pants are non-Hispanic whites, whereas 4% claim Hispanic origin: the cohort does not represent a population-based sample of Albuquerque, which is 33% Hispanic. The entrance crite- na for the study excluded persons with serious diseases, for example, cancer (other than skin) within the past5 y; recent, acute myocardial infarction; or chronic obstructive pulmonary disease, and persons taking a meaningful number of medica- tions, such as those undergoing chemotherapy or taking car- diac, respiratory, or antipsychotic medications. About 56% of the participants in the present data set were recruited between 1980 and 1985: the remainder were recruited in 1992-1993. Because the maintenance of good health is not required to remain in the study, participants who developed chronic ill- nesses before or during the 1993 study year are included in the present analyses. All participants gave their informed consent to participate in the study. The study protocol was approved by the Human Subjects Research Review Committee of the Uni- versity of New Mexico School of Medicine. Serum albumin concentrations were determined with the bromcresol green procedure on a 747 SMA (Hitachi, Tokyo) at the New Mexico Medical Reference Laboratory (Albuquerque, NM). Usual dietary intake was estimated through amodified, standard food-frequency questionnaire administered in an in- terview (Health Habits and History Questionnaire, version 2.2; 16). Physical activity was graded using a modification of the self-administered instrument first described by Shapiro et al ( I 7) and later adapted by Cassel et al ( 18) to study the relation of physical activity to coronary heart disease. The modifica- tions were a substitution of questions on job-related activities with a more extended set relating to leisure-time activities appropriate to ambulatory, community-dwelling elderly peo- pIe. The questionnaire results in a summary score (range: 0-65) that grades individuals with regard to self-reported “usual” physical activity, rather than in anestimate of energy expen- diture. Past and current morbidity and medication use were ascertained from medical histories and examinations. Prevalent major chronic diseases were ascertained by physical examina- tion and from medical records and grouped by International Classification of Diseases codes ( I 9). An index of comorbidity was defined as the sum of the current, chronic conditions present at the time of the body-composition examinations. Subjects with current, acute infectious illness or recent trauma (eg, hip fractures) were excluded. Body composition (fat, fat-free soft tissue, and bone mineral content) was estimated using DXA (Lunar DPX, version 3.6z software: Lunar Corp. Madison, WI), as described previously (14). Fat-free mass (FFM) was defined as the sum of the fat-free soft tissue and total-body bone mineral content from whole-body scans. Medium-length scans (20 mm) were used for all subjects except for those with> 27-cm anteroposterior thicknesses, for whom the slow (40-mm) scan speed was used. The technical errors of body-composition determinations by DXA were estimated to be ± 0.77 kg for FFM or ± 1 .2% for percentage body fat from two repeated scans taken on separate days for five randomly selected subjects. Appendicular skeletal muscle mass (ASM) was derived as the sum of the fat-free soft tissue masses of the arms and the legs, as described by Heyms- field et al (20). Anthropometric measurements were taken using standardized methods (2 1). Weight was measured to the nearest 0. 1 kg on a balance scale and stature was measured to the nearest 0.1 cm with a wall-mounted stadiometer. Knee height was measured with a sliding caliper as described previ- ously (22). All anthropometric measurements were taken twice and the reported values are the means of the repeated measurements. Data for men and women were analyzed separately. All variables were regressed on age to describe age differences. Regressions of muscle mass on age were adjusted additionally for body weight, knee height, comorbidity, energy and protein intakes, and physical activity score. Muscle was also expressed as a percentage of lean soft tissue mass (FFM less bone) and protein intake as a percentage of total energy intake. Univariate associations of muscle mass, percentage muscle mass,protein and energy intakes, and physical activity with serum albumin were tested by linear regression. The association of serum albumin with levels of comorbidity (0 to4 comorbid con- ditions) was tested by analysis of variance. Differences in age-adjusted mean serum albumin concentrations across levels of comorbidity were tested using analysis of covariance. Mul- tiple regression was used to test for the independent effects of age, protein intake, comorbidity, physical activity, and muscle mass on serum albumin. Estrogen replacement therapy (ERT) was also entered as a variable in regression analyses for women. Statistical significance was evaluated at a 0.05. RESULTS Descriptive statistics for the study variables are shown in Table 1. Twenty-six percent of the men and 3 1% of the women had BMIs > 27. Percentage body fat ranged from 7% to 40% in the men and from 17% to 53% in the women. ASM, as quantified from DXA, was 41.3% of FFM in the men and 38.8% in the women. Dietary energy and protein intakes were comparable with those reported elsewhere for healthy elderly adults (23). Protein as a percentage of energy intake was 15.8 ± 2.6% and there was no significant difference between the men and the women. Protein intake was 0.90 g/kg body wt ( I .46 glkg FFM) in the women and 0.89 gfkg body wt ( I .22 g/kg FFM) in the men. Physical activity scores were significantly higher in the men than in the women (P < 0.02). The scores were positively TABLE I Descriptive statistics for study variables’ Men (ii - 108) Women (ii 167) Age (y) 76.0 ± 5.4 75.7 ± 6.4 Weight (kg) 76.2 ± 10.8 63.1 ± 10.7 Stature (cm) 172.6 ± 6.9 158.3 ± 6.1 Knee height (cm) 53.6 ± 2.5 48.5 ± 2.5 BMI (kg/m2) 25.6 3.4 25.1 ± 3.8 Body fat(%) 27.0 ± 6.9 37.3 7.3 Fat-free mass (kg) 55.0 ± 6.1 38.1 ± 3.7 Appendicular skeletal muscle (kg) 22.7 ± 2.9 14.8 ± 1.8 Energy intake (kJ/d) 7065.9 ± 189.6 6010.0 ± 152.5 Protein intake (g/d) 66.3 20.9 55.5 ± 16.6 Serum albumin (gIL) 41.3 ± 2.9 40.9 ± 2.4 Physical activity score 18.5 ± 0.6 16.7 ± 0.52 byguestonJanuary18,2015ajcn.nutrition.orgDownloadedfrom
  • 3. 554 BAUMGARTNER ET AL correlated with ASM in the men(r 0.28, P < 0.003) and the women (r = 0. 13, P < 0.09). Correlations with percentage body fat, however, were negative, were about the same mag- nitude in both sexes, and were also significant (r = -0.22, P < 0.04). As shown in Table 2, only 2% and 2.5% of serum albumin concentrations in the men and women, respectively, were< 35 g/L, the lower limit of the normal reference range (10). Ten percent of serum albumin values were< 38 g/L in each sex, the concentration below which risk has been reported to in- crease (6). None of the men and only 3.6% of the women were current smokers. There was no detectable difference in serum albumin concentration between smoking and nonsmoking women. Alcohol consumption (not shown) was light to mod- erate. About 26% of the women were receiving ERT and mean serum albumin concentrations were slightly but significantly lower in these women (40.3 ± 0.4 gIL) than in those not receiving ERT (4 1. I ± 0.2 gIL, P < 0.03). None of the participants was taking any other steroid hormones at the time of data collection. Table 2 also shows the prevalences of major chronic diseases in the study population. Osteoarthritis was the most common condition, occurring in more than one-half of all participants, followed by hypertension. None of the men or women had rheumatoid arthritis or other acute or chronic inflammatory conditions known to affect serum albumin (24). About 10% of the men and 3% of the women had diagnosed renal or liver diseases. Although renal and liver disease may significantly affect serum albumin, this group did not differ significantly for mean age, protein intake, physical activity, body composition, or serum albumin concentration from the group without these diseases. The exclusion of participants with diagnosed renal or liver disease did not materially affect the results of the analyses except in terms of reduced statistical power, as would be expected as a result of the somewhat smaller sample sizes. As a result, the analyses reported were made with data for the complete study population. Results for the linear regressions of the variables on age are shown in Table 3. Serum albumin, ASM, ASM as a percentage of lean soft tissue mass, and physical activity score had signif- TABLE 2 Percentages of men and women with low serum albumin concentrations, smoking habit, medication use, or chronic disease’ Men (n 108) Women (n 167) % Serum albumin 35g/L 2.0 2.5 38 g/L 10.0 10.0 Current smokers 0.0 3.6 Estrogen replacement therapy NA 26.3 CHD or CVD 19.4 16.8 Neoplasias2 14.8 9.0 Osteoarthritis 51.9 66.5 Hypertension 24.1 28.7 Renal or liver disease 10.2 3.0 ‘ NA, not applicable; CHD, coronary heart disease; CVD, cardiovascu- lar disease. 2 Benign or in remission during 1993. icant negative correlations with age in both sexes(P < 0.05), whereas comorbidity had significant positive correlations. Pro- tein and energy intakes were not associated significantly with age in either sex. Albumin decreased with age in both men (slope = -0.16 g L_i . y_i) and women (slope = -0.08 g L y I) ASM (absolute as well as a percentage of lean soft tissue mass) decreased significantly with age in the men and women even after adjustment for weight, knee height, comorbidity, energy and protein intakes, and physical activity. There were no significant differences in age-adjusted mean serum albumin concentrations across levels of comorbidity (Table 4). In addition, therewere no differences in age-ad- justed mean serum albumin concentrations between those with and without specific categories of morbidity. It is recognized, however, that the statistical power to detect significant differ- ences is low for some of these comparisons because of the small numbers of cases. Serum albumin concentrations were positively associated with total muscle mass in the men (Figure 1), even after age, protein intake, comorbidity, and physical activity were con- trolled for, as shown in Table 5. Serum albumin concentrations were positively associated with muscle as a percentage of lean soft tissue mass in the women (Figure 2), even after age, protein intake, comorbidity, ERT, and physical activity were controlled for (Table 5). Age remained significantly associated (P < 0.05) with serum albumin in both men and women after adjustment for the other independent variables. Physical activ- ity had a significant negative association with serum albumin in the women but not in the men. Serum albumin also had a significant negative association with ERT in the women after adjustment for age, protein intake, comorbidity, physical ac- tivity, and muscle. The inclusion of dietary energy intake in these regression models had no meaningful effect on the results. DISCUSSION This study suggests that low serum albumin concentrations are associated with reduced muscle mass (sarcopenia) in rela- tively healthy, well-nourished elderly men and women. In our study population, serum albumin concentrations were generally within the normal reference range(35-50 g/L), but decreased significantly with age. The concentrations were not associated significantly with either protein or energy intake and did not differ among categories of chronic morbidity or across levels of comorbidity. Serum albumin was associated significantly with skeletal muscle mass independent of age, dietary protein and energy intakes, physical activity, ERT in women, and morbid- ity. This association suggests some connection between serum albumin and muscle mass such that losses of somatic (muscle) protein stores either covary with or affect decreases in serum albumin concentrations. This association is independent of factors known to affect protein metabolism, such as dietary intake and physical activity. The mechanism or mechanism connecting serum albumin and skeletal muscle is not known but could involve changes in eitherI) the extravascular distri- bution of albumin in muscle or2) protein synthesis and deg- radation in both muscle and liver. Rall Ct al (10) recently reviewed current knowledge about serum albumin as an indicator of nutritional and health status. byguestonJanuary18,2015ajcn.nutrition.orgDownloadedfrom
  • 4. SERUM ALBUMIN AND MUSCLE IN THE ELDERLY 555 TABLE 3 Correlation and regression of study variables with age (y)’ Men (n = 108) Women (n = 167) r Slope2 r Slope2 Serum albumin (gIL) -0.29” -0.158 ± 0.050 -0.077 0.028 ASM (g) -0.34 - 1 83.45 ± 50.08 -0.34 -94.97 ± 20.1 ASM/LSTM (Ck) 0.341 -0.1 17 ± 0.032 -0.32” -0.1 16 0.026 Protein intake (g/d) -0.06 -0.254 ± 0.377 -0.1 1 -0.295 ± 0.199 (‘7c of energy) -0.09 -0.036 ± 0.040 -0.1 1 -0.049 0.034 Energy (kJ/d) -0.02 -9.28 ± 39.94 -0.05 - 15.49 ± 21.73 Comorbidity 0.34” 0.061 ± 0.017 0.40” 0.060 ± 0.01 1 Physical activity score -0.38 -0.448 ± 0.105 -0.23” -0.212 ± 0.684 ‘ ASM, appendicular skeletal muscle mass; LSTM, lean soft tissue mass. 2 SE. “P < 0.05. In brief summary, albumin is the main protein synthesized by acute reduction in albumin production and serum albumin the liver. Serum concentrations depend on liver synthesis, concentrations are often low in patients with alcoholic cirrhosis degradation in peripheral tissue, and intra- and extravascular (1 1). The effects of chronic diseases, other than renal and liver distribution in extracellular fluids. The functions of serum disease, are unclear. Heavy smoking is reported to be inversely albumin are 1) to maintain osmotic pressure, 2) to act as a associated with serum albumin and may confound associations transport vehicle for amino acids and other substances to pe- with chronic morbidity and mortality in some studies (4). There ripheral tissues, and 3) to serve as a temporary amino acid is little evidence that hepatic synthesis of albumin is impaired storage site. About 120-220 mg albumin/kg body wt is syn- with age independent of disease( 1 1). thesized daily and its half-life is= 17-20 d. About one-third of Protein distribution and turnover in the visceral and muscle the amino acids in daily dietary intake are used in the synthesis compartments were not measured in the present study. As a of albumin and other plasma proteins. Hepatic synthesis of result, we can only speculate as to the underlying nature of the albumin increases after a meal in response to the increased association observed between serum albumin and muscle mass, availability of amino acids and decreases during fasting in which could be direct or indirect. Sixty percent of total body association with the reduction of the amino acid pool (1 1). albumin is extravascular in muscle and skin, and serum albu- These changes in albumin synthesis, however, do not result in mm exchanges with this pool (10, 1 1). It is not clear, however, large changes in serum concentrations, so serum albumin is how an alteration in the extravascular muscle pool would affect often regarded as an insensitive indicator of dietary intake serum albumin concentrations unless exchange between the status ( 10). intra- and extravascular pools is somehow altered ( 1 1). It Serum albumin synthesis appears to be spared in starvation seems more likely that the connection is indirect; covariation because amino acids are drawn from skeletal muscle. Long- between serum albumin and muscle mass may reflect shared term protein deficiency with adequate energy intake (protein- effects of changes with age in protein metabolism. energy malnutrition), however, results in skeletal muscle up- It is generally believed that rates of protein synthesis and take of carbohydrate, fatty acids, and amino acids at the degradation decrease with age (25). Some recent studies mdi- expense of hepatic protein synthesis and leads to hypoalbumin- cate, however, that whole-body protein synthesis rates are emia. Injury and inflammation cause acute declines in serum actually slightly higher and that rates of degradation are the albumin concentrations ( I 0, 24). Alcohol intake causes an same in elderly compared with young adults when expressed in TABLE 4 Analysis of variance of serum albumin concentrations by number of comorbid conditions present (0 to4)! 0 1 2 3 Men ml 25 39 35 6 3 Crude value (gIL) 41.1 41.3 41.7 41.0 39.7 Age-adjusted value, (gIL) 40.6 41.4 41.8 41.6 39.7 Women ii 23 82 41 15 6 Crude value (gIL) 41.0 40.8 41.1 40.2 41.3 Age-adjusted value. (gIL) 40.8 40.8 41.1 40.8 41.9 , Crude values are mean serum albumin concentrations; age-adjusted values are mean concentrations adjusted by analysis of covariance for differences in age across levels of comorbidity. Comorbidity was defined as the sum of International Classification of Disease-coded prevalent chronic conditions, including coronary heart disease and cardiovascular disease, neoplasias (benign or in remission), osteoarthritis and arthrosis, hypertension, and renal and liver diseases. byguestonJanuary18,2015ajcn.nutrition.orgDownloadedfrom
  • 5. ..1..( 50 45 40 35 -I C) C E .0 Co E 5- a) Cl) U . . U U U UU U U _U U U U #{149}U U U #{149}#{149}UU U F #{149}UU #{149} - U U U UU U r = 0.29 U 10 35 -j C) C E .0 Co E 5- a) Cl) 45 40 35 30 S #{149} . .. _.... . . S S #{149} . __. . S #{149}#{149}#{149} __... . . ... _._. - .. ... . . . . . a . r = 0.25 ‘ ASM, appendicular skeletal muscle mass: NS, not significant: LSTM. lean soft tissue mass. 2 SE. 4 Total R2 (ek) = 14.06 for men and 20.23 for women. Muscle (% of lean soft tissue mass) 556 BAUMGARTNER ET AL FIGURE 2. Correlation of seruiii alhuniin concentration with muscle mass as a percentage of lean soft tissue mass in elderly women.ii = 167. 30 15 20 25 30 Muscle mass (kg) FIGURE 1.Correlation of serum albumin concentration with muscle mass in elderly men. n = 108. relation to body cell mass or creatinine excretion (26). Young (26) and associates have suggested that these results reflect the decreased contribution of skeletal muscle to whole-body pro- tein turnover. They estimate that muscle contributes 20% to whole-body protein turnover in the elderly compared with 30% in younger adults. The decreased reserve of skeletal muscle protein in the elderly limits the supply of amino acids from peripheral tissues for protein synthesis by vital organs during acute physiologic stresses such as disease, injury, and starva- tion. The elderly, therefore, should have an increased likeli- hood of low serum albumin concentrations compared with younger adults under these stressful conditions. It is not clear, TABLE S Multiple-regression results for serum albumin on independent variables’ . Independent variable Regression . coefficienr P < Partial R % Men (n = 108) Intercept 48.702 ± 5.694 - - Age (y) -0.154 ± 0.059 0.0008 8.56 Protein intake (g/d) -0.002 ± 0.013 NS 0.05 Comorbidity 0.254 ± 0.294 NS 1.05 ASM (g) 0.219 ± 0.098 0.039 3.69 Physical activity score -0.043 ± 0.047 NS 0.71 Women (‘i = 167) Intercept 40.539 ± 4.476 - - Age (y) -0.108 ± 0.032 0.0008 4.34 Protein intake (g/d) 0.005 ± 0.010 NS 0.10 Comorbidity 0.098 ± 0.197 NS 0.13 Estrogen replacement therapy (0, 1 ) - I .524 ± 0.404 0.0002 6.21 Physical activity -0.098 ± 0.031 0.002 4.30 ASM/LSTM (C/c) 0.250 ± 0.078 0.()02 5.16 however, how a decreased availability of muscle amino acids could result in low serum albumin in relatively ‘unstressed” elderly people with “adequate” dietary protein intake. Thus. it seems that we are forced to return to the hypothesis that decreased rates of protein turnover do occur with age in both liver and muscle and underlie covarying changes in serum albumin concentrations and muscle mass. With regard to the effects of dietary intake, acute and chronic disease, alcohol intake, and smoking, it is important to empha- size several facts in the present study. Both serum albumin and body composition were measured after an overnight fast. The participants were not malnourished. Those with acute illness. recent trauma, or serious chronic disease were excluded from the study. Only a handful of subjects smoked, and none were known to be alcoholic. Nonetheless, a possible limitation of this study could be the ascertainment of chronic morbidity and the quantification of the effects of comorbidity in the analyses. As noted, the presence of chronic illnesses in the study partic- ipants was ascertained from a combination of self-report, med- ical history, and examination, which should reduce the likeli- hood of missed or misclassified illnesses. Nonetheless, we cannot rule out the possibility of the influence of undiagnosed, subclinical chronic illnesses. The severity of the chronic ill- nesses present was not graded. Also, the comorbidity index could have obscured the associations of specific illnesses with serum albumin. Significant differences in serum albumin con- centrations were not observed, however, among the different classes of morbidity, but these analyses lacked statistical power because of small numbers. Roubenoff et al (24) observed that serum albumin, as well as body cell mass, is reduced in patients with rheumatoid arthritis. They hypothesized that other chronic inflammatory conditions alter protein metabolism also, and could underlie the decreases seen in both serum albumin and muscle mass with aging. Inflammatory illnesses and illnesses that cause the acute-phase response reduce albumin gene expression, alter the intra- and extravascular distribution of albumin, and increase the rate of degradation ( 1 1). We did not measure C-reactive protein or 30 35 40 45 50 byguestonJanuary18,2015ajcn.nutrition.orgDownloadedfrom
  • 6. SERUM ALBUMIN AND MUSCLE IN THE ELDERLY 557 cytokines that could serve as markers or mediators for inflam- mation-based alterations in protein metabolism in both liver and muscle (24). It is therefore possible that the association between serum albumin and muscle mass observed in the present study reflects the effects in some of our subjects of underlying chronic inflammatory conditions that were not ac- counted for in our ascertainment of morbidity. Serum albumin was reduced significantly in the women receiving ERT. This could be due to increased plasma volume in these women but we cannot test this hypothesis with the current data. In any event, the associations of serum albumin with age and muscle mass in the women were independent of this effect of ERT. None of themen was currently using any steroid medications. As a result, the associations of serum albumin with age and muscle cannot be readily explained by confounding effects of medications in either sex. In addition, we have noted elsewhere thatdecreases with age in muscle mass, as well as in body cell mass, in women may be masked somewhat by increases in the fraction of FFM that is extracel- lular fluid (14). This could explain why in the women ASM as a percentage of lean soft tissue mass was a better predictor of serum albumin than absolute ASM. Finally, the association between serum albumin and muscle mass was independent of physical activity. Physical activity, as graded in the present study, was associated significantly with age and body composition in both sexes and with serum albu- mm concentrations in the women. The physical activity assess- ment instrument used captures a broad range of activities from relatively sedentary (eg,gardening and fishing) to high-energy- expenditure activities (eg, jogging and cross-country skiing). We believe that the significant correlations of the physical activity scores with body composition support the general validity of our questionnaire for grading physical activity in this study population. Recent studies suggest that high-inten- sity, weight-bearing exercise stimulates muscle protein metab- olism in older men and may elevate the need for dietary protein (27). Although participants in the Aging Process Study may be generally characterized as healthy, active elderly adults, few are known to engage regularly in high-intensity weight lifting or resistive exercise. Controversy exists for the effects on protein metabolism of low-intensity or aerobic exercise, which is more typical of relatively healthy, community-dwelling elderly people. Carraro et al (28) reported no effects on the fractional rates or concen- trations of serum albumin in men after 4 h of aerobic exercise at 40% maximal oxygen consumption while dietary protein intake was held constant. In the present analyses, the associa- tion of physical activity with serum albumin inthe women was negative. This might suggest that higher levels of physical activity in the elderly women were associated with increased protein degradation without a corresponding stimulation of protein synthesis. This interpretation is highly speculative, however, in the absence of data for protein turnover. Some investigators have reported a transient decrease in serum albu- mm after moderate-intensity exercise that lasts 4-10 d (29). It is important to keep in mind that the instrument used in the present study was designed tomeasure habitual or usual phys- ical activity and therefore would be expected to reflect chronic rather than transient effects on protein metabolism. Also, there is no obvious explanation for why an association between serum albumin and physical activity was found in the women but not in the men. In sum, although the decrease with age in muscle mass, or sarcopenia, can be attributed in part to a progressive decline in physical activity with age (30), it is difficult to explain either the age-related decrease in serum albumin or the association between albumin and muscle in terms of physical activity. An important strength of the current study was the estimation of muscle mass by DXA. Previous studies have not reported significant associations between serum albumin and indexes of body composition, such as the BMI (3 1). BMI, however, cor- relates more strongly with body fat than with lean body mass and may not be a very sensitive index of muscle or body protein stores, except in emaciation. In elderly people, muscle loss can be masked by increased body fat. The elderly also tend to have less muscle and more fat at any BMI than younger adults ( 14). There are inconsistent reports of associations of serum albumin with more specific components of fat-free body composition, such as body cell mass and FFM (24, 32). Both of these components include inert subcomponents, such as water and bone mineral, and do not separate skeletal muscle from organ tissue. DXA is not affected in any known way by age-related changes in anatomy. physiology. or metabolism. which may bias anthropometric and creatinine excretion meth- ods of estimating muscle mass (33). Estimates of muscle mass from DXA compare favorably with those from computerized tomography, which is considered to be the most accurate in vivo means of quantitating major soft tissue components such as muscle and adipose tissue (33). Serum albumin concentrations < 38 g/L have been shown to be associated with increased risk of disability in elderly adults (6). Low BMI has also been shown to be associated with reduced functional capabilities in community-dwelling elderly ( 15). Most elderly people with low BMIs have reduced muscle mass, which may be worsened by weight loss (14). Regardless of the nature of the mechanisms underlying the relation be- tween serum albumin and somatic protein reserves in healthy elderly persons, the present study suggests that serum albumin does reflect muscle mass to some extent. It is not possible to establish any causal direction to this relation from the present cross-sectional analyses. It seems reasonable, however, to hy- pothesize that the reported risk of disability with low serum albumin concentrations in the elderly is more likely to be attributable to sarcopenia. Further research is needed to clarify the joint associations between serum albumin, sarcopenia, mor- bidity, and disability in elderly populations. It is possible that low serum albumin concentrations and sarcopenia are corre- lated, early warning signs ofdeleterious underlying, subclinical conditions and impending disease and disability. Future studies should include more precise estimates of skeletal muscle mass from DXA as a risk factor for functional disability as well as for chronic diseases. A REFERENCES I . Phillips A, Shaper AG. Whincup PH. Association between serum albumin and mortality from cardiovascular disease. cancer. and other causes. Lancet 1989:2:1434-6. 2. Kuller LH, Eichner JE, Orcahrd Ti. The relationship between serum albumin levels and risk of coronary heart disease in the Multiple Risk Factor Intervention Trial. Am J Epidemiol l99l:l34:l266-77. 3. Klonoff-Cohen H. Barrett-Conor EL. Edelstein SL. Albumin levels as byguestonJanuary18,2015ajcn.nutrition.orgDownloadedfrom
  • 7. 558 BAUMGARTNER ET AL a predictor of mortality in the healthy elderly. J Clin Epidemiol 1992:4:207-12. 4. Salive ME, Cornoni-Huntley J, PhillipsCL, et al. Serum albumin in older persons: relationship with age and health status. J Clin Epidemiol 1992:4:213-21. 5. Gillum RF, Ingram DD. Makuc DM. Relationship betweenserum albumin concentration and stroke incidence and death: the NHANES I Epidemiologic Follow-up Study. AmJ Epidemiol 1994;140:876-88. 6. Corti M-C, Guralnik JM, Salive ME, Sorkin JD. Serum albumin level and physical disability as predictors of mortality in older persons. JAMA l994;272: 1036-42. 7. Campion EW, deLabry LO, Glynn Ri. The effect of age on serum albumin in healthy males: report from the Normative Aging Study. J Gerontol l988;43:M I 8-20. 8. Shibata H, Haga H. Ueno M, Nagai H, Yasumura S. Koyano W. Longitudinal changes of serum albuminin elderly people living in the community. Age Ageing l991;20:417-20. 9. Romero L, Hunt WC, Garry PJ. Serum albumin results from a longi- tudinal study of community-dwelling healthy elderly in the New Mexico Aging Process Study. In: Rosenberg IH, ed. Nutritional as- sessment of elderly populations. Bristol-Myers SquibblMead Johnson nutrition symposia. Vol 13. New York: Raven Press, 1995:40-9. 10. RaIl LC, Roubenoff R, Harris TB. Albumin as a marker of nutritional and health status. In: Rosenberg IH, ed. Nutritional assessment of elderly populations. Bristol-Myers SquibblMead Johnson nutrition symposia. Vol 13. New York: Raven Press, 1995:1-17. 11. Rothschild MA, Oratz M, Schrieber SS. Serum albumin. Hepatology 1988:8:385-410. 12. Gersovitz M, Munro HN, Udall J, Young yR. Albumin synthesis in young and elderly subjects using a new stable isotope methodology: response to level of protein intake. Metabolism 1980;29: 1075-85. 13. Young VR, Sanchez M. Albumin, skeletal muscle, and leanbody mass as functional predictors in the elderly: brief commentand analysis. In: Rosenberg IH, ed. Nutritional assessment of elderly populations. Bristol-Myers SquibbfMead Johnson nutrition symposia. Vol 13. New York: Raven Press, 1995:63-73. 14. Baumgartner RN. Stauber PM, McHugh D, Koehler K. GarryPJ. Cross-sectional age-differences inbody compostion in persons 60+ years of age. I Gerontol l995:50A:M307-l6. I 5. Galanos AN, Pieper CF. Coroni-Huntley JC, Bales CW, Fillenbaum GO. Nutrition and function: is there a relationship between body mass index and the functional capabilities of community-dwelling elderly? J Am Geriatr Soc 1994;42:368-73. I 6. National Cancer Institute. Health habits and history questionnaire: diet history and other risk factors. Personal computer system packet, ver- sion 2.2. Bethesda, MD: National Cancer Institute, 1989. 17. Shapiro 5, Weinblatt E, Frank CW, Sager RV. The HIP. study of incidence and prognosis of coronary heart disease: preliminary find- ings on incidence of myocardial infarction and angina. J Chronic Dis 1965; 18:527-58. 18. Cassel J, Heyden 5, Bartel AG,et al. Occupation and physical activity and coronary heart disease. Arch Intern Med 197 1:128:920-8. 19. Commission on Professional and Hospital Activities. The international classification of diseases. 9th revision. Ann Arbor, MI: Edwards Brothers, 1987. 20. Heymsfield SB. Smith R.Aulet M. et al. Appendicular skeletal muscle mass: measurement by dual photon absorptiometry. Am J Clin Nutr l990;52:2l4-8. 21. Lohman TG, Roche AF, Martorell R, eds. Anthropometric standard- ization reference manual. Champaign, IL: Human Kinetics, 1988. 22. Cockram DB, Baumgartner RN. Evaluation of accuracy and reliability of calipers for measuring recumbent knee height in elderly people. Am J Clin Nutr l990;52:397-400. 23. Mares-Perlman IA, Klein BEK, Klein R, Ritter LL, Fisher MR. Freudenheim JL. A diet history questionnaire ranks nutrient intakes in middle-age and older men and womensimilarly to multiple food records.J Nutr 1993;l23:489-S0l. 24. Roubenoff R, Grimm LW, Roubenoff RA. Albumin, body composi- tion, and dietary intake inchronic inflammation. In: Rosenberg IH. ed. Nutritional assessment of elderly populations. Bristol-Myers Squibb/ Mead Johnson nutrition symposia. Vol13. New York: Raven Press. 1995:30-9. 25. Richardson A, Ward WF. Changes in protein turnover as a function of age and nutritional status. In: WatsonRR, ed. Handbook of nutrition in the aged. Boca Raton, FL: CRC Press, 1994:309-16. 26. Young yR. Amino acids and proteins inrelation to the nutrition of elderly people. Age Ageing l990;l9:S10-24. 27. Evans Wi. Exercise, nutrition and aging. J Nutr 1992:122:796-801. 28. Carraro F, Hartl WH, Stuart CA, Layman DK, Jahoor F, Wolfe RR. Whole body and plasma protein synthesis inexercise and recovery in human subjects. Am J Physiol 1990;258:E82 1-31. 29. Butterfield 0. Whole body protein utilization in humans. Med Sci Sports Exerc 1987;19:S157-65. 30. Bortz WM. Disuse and aging. JAMA 1982;248: 1203-8. 3 1. Lemonnier D, Acher S. Boukaiba N. et al. Discrepancy between anthropometry and biochemistry in theassessment of the nutritional status of the elderly. Eur J Clin Nutr l99l;45:28l-6. 32. Forse RA, Shizgal HM. Serum albumin and nutritional status. JPEN J Parenter Enteral Nutr 1908:4:450-4. 33. Wang Z, Visser M, Ma R,et a!. Skeletal muscle mass: validation of neutron activation and dual energy X-ray absorptiometry methods by computed tomography. J AppI Physiol I 996;80:824-3 I. byguestonJanuary18,2015ajcn.nutrition.orgDownloadedfrom