SlideShare a Scribd company logo
1 of 4
Download to read offline
Cell surface actin
remodeling
Thomas P. Stossel1
, Gabriel
Fenteany2
and John H. Hartwig1
1
Hematology Division, Brigham and Womenā€™s
Hospital, Boston, MA, 02115 USA
2
Department of Chemistry, University of Illinois,
Chicago, IL, 60607 USA
Authors for correspondence (e-mail:
tstossel@rics.bwh.harvard.edu; fenteany@uic.edu;
hartwig@rics.bwh.harvard.edu)
Journal of Cell Science 119, 3261-3264
Published by The Company of Biologists 2006
doi:10.1242/jcs.02994
Actin ļ¬lament remodeling at cell surfaces
is a fundamental aspect of cellular life.
Except for minor sequence variations,
actin proteins are structurally identical.
They have similar self-association
properties and ATPase activities that
accommodate their assembly into
polarized semi-ļ¬‚exible ļ¬laments. The
ļ¬lament polarity deļ¬nes the direction
myosin motors move on them (from
the pointed end to the barbed end).
The barbed end is both more
thermodynamically favored for new
addition of actin monomer and more
kinetically dynamic (fast exchanging) in
the presence of ATP hydrolysis, which
drives conformational changes in the
exchanging subunits (Kuhn and Pollard,
2005). What makes actin truly interesting,
however, is the variety of lengths and
spatial conformations conferred upon it
by hundreds of actin-binding proteins
(ABPs). These control linear elongation,
shortening and architectural organization
of actin ļ¬laments in response to signaling
cascades set in motion by environmental
cues. The resulting exquisite variety of
actin ļ¬lament lengths and spatial
conļ¬gurations accounts for the diverse
morphologies of eukaryotic cells and their
highly speciļ¬c changes in shape.
The survival and motility, albeit
sometimes abnormal, of cells lacking
ABPs that have powerful effects on actin
in vitro imply that no single mechanism
can explain surface actin remodeling for
all cell types and occasions. This
complexity is not surprising because the
same or similar ABPs in highly motile
amoeboid cells lacking permanent
surface features can hardly be doing the
same work that they do in a brush-border
microvillus (which has a stable
architecture) or within oocytes or yeast
(which undergo relatively slow
morphological changes). Indeed it is the
details of actin remodeling that confer so
much variety on cell behaviors.
The problem of cell surface (cortical)
actin remodeling, however, is not
hopelessly impenetrable. Four decades
of research have revealed ļ¬ndings
consistent with a nine-step cycle of
3261Cell Science at a Glance
(See poster insert)
Thomas P. Stossel, Gabriel Fenteany and John H. Hartwig
Cell Surface Actin Remodeling
Ā© Journal of Cell Science 2006 (119, pp. 3261-3264)
jcs.biologists.org
Monomer
sequestration
Thymosins and profilins
9
8b
8c
1
2
Initiation
Elongation
2 Barbed-end capping
1a Barbed-end uncapping
4
Branching
amplification
Arp 2/3 complex
5
Filament
crosslinking
Ī±-Actinins, filamins,
fimbrins, esprins
Weak severing
Accelerated pointed-
end depolymerization
ADF/Cofillins
Barbed-end capping
Cap(Z)/(G), Adducin, Hsp27/70, Eps8
3a
Strong filament severing
and barbed-end capping
Gelsolin family
8a
Membrane attachment
Spectrins,
FERMS, talin, filamins,
Ī±-actinins, catenin
7
Motoring and
contraction
Myosins
6
Lateral stabilization
Tropomyosins,
caldesmons,
tropomodulin
3c Polymerization promoters,
barbed-end capping inhibitors
Profilins, (M)ENA, Drebrin,
VASP, Dia, Formins,
Vinculin, WASPs, Spir, CARMIL
3b
6
2 3c
3b
4
1
5 7 6
8a
3c
3a
8b,c
1a
PI3KY
PAKS
TESK1
LIMKS
ADF/cofilin
14-13-3Ī¶
Cronophin
Slingshots
Other
capping
proteins
Actin
disassembly
Actin
contraction
Gelsolin
MLCK
Ca2+Rho
ROCK
PI-4K
RacSrc
Nck Calmodulin
cAMP
Stabilizers
Src
Calcineurin
cAMP
Rac
HS1
Cortactin
Cdc42
Toca-1 PIP-5K-1Ī±
D4 Phosphoinositides
Filamin
Capping
proteins
Profilin, Ena/VASP, Fermins etc
Signals leading to actin filament nucleation, branching and elongation
Signals leading to actin filament cross-linking and membrane attachment
Signals leading to actin filament disassembly
Signals leading to activation of myosin for actin filament contraction
Signals leading to myosin inactivation
CARMIL Aib
Actin gelation,
membrane
attachment
Actin elongation
WASPs
Arp 2/3
WIPs
P
P
P
P
P
P
P
P
P
P
P
P
Uncapping
FERMs
Ī±-Actinin
cAMP
cGMP
Myosin II
MLCP
ADF/cofilin
Grey text depicts molecules in more than one pathway
Myosin II
JournalofCellScience
3262
functions manifested by ABPs that can
adequately explain many aspects of
cortical actin remodeling, each step
being responsive to signaling cascades.
Here, we brieļ¬‚y summarize the key
features of this cycle and their regulation.
Notice that the outline of actin
remodeling provided is based on
information obtained from studies with
different cell types but predominantly
mammalian platelets, leukocytes,
ļ¬broblasts, epithelial cells, neuronal
cells and tumor cells.
Initiation
Initiation (see poster, step 1) deļ¬nes
where and when actin ļ¬lament
elongation occurs at the cell surface.
Cells have several strategies for initiating
new actin polymerization, including de
novo nucleation by the Arp2/3 complex,
formins and Spir (Nicholson-Dykstra et
al., 2005; Rafelski and Theriot, 2004).
Polymerization of actin from newly
exposed actin ļ¬lament barbed ends is
also a compelling mechanism for
initiating new ļ¬lament assembly. Free
barbed ends elicit diffusion-limited
polymerization of actin subunits bound
to actin-monomer-sequestering proteins,
the thymosins and proļ¬lins (step 9)
(Yarmola and Bubb, 2004). Barbed-end
exposure can result from uncapping ā€“ the
removal of numerous barbed-end-
capping proteins (gelsolin family, CapZ,
Hsp70, ankyrins, Eps8) (step 1a) (Allen,
2003; Barkalow et al., 2003; Disanza et
al., 2004) ā€“ or from the action of ABPs
that sever actin ļ¬laments without
capping them (step 7b) (DesMarais et al.,
2005). One thing that makes these
mechanisms attractive is the fact that half
of the nearly millimolar actin in most
eukaryotic non-muscle cells exists as
short ļ¬laments, which provide ample
barbed ends for rapid elongatation when
uncapped and exposed to the large
reservoir of sequestered actin monomers
that cannot spontaneously nucleate. This
mechanism is linked to signaling
cascades that regulate ABPs to promote
new polymerization from pre-existing
barbed ends. Key participants in these
are polyphosphoinositides, which
remove all known capping proteins from
barbed ends. Agonists that promote
cortical actin assembly generally do so
through activation of the small GTPases
Rac, Rho and Cdc42 (Jaffe and Hall,
2005), that in turn stimulate enzymes
leading to focal polyphosphoinositide
accumulation and actin ļ¬lament
assembly and rearrangement (Niggli,
2005; Yin and Janmey, 2003).
Elongation
Actin ļ¬lament barbed-end capping by
factors that promote or inhibit capping
(see below) regulates the extent of actin
ļ¬lament elongation (see poster, step 2).
Termination
Degradation of polyphosphoinositides,
activation of the barbed-end-capping
activity of CapG by Ca2+
and activation of
Hsp70 or CapZ-interacting protein by
phosphorylation (During et al., 2005;
Eyers et al., 2005) terminate actin
ļ¬lament elongation (see poster, step 3a).
By contrast, the capping protein inhibitors
ENA, VASP, proļ¬lin, formins and
CARMIL promote elongation even in the
presence of active capping proteins (step
3b) (Barzik et al., 2005; Bubb et al., 2003;
Higgs, 2005; Kovar, 2006; Yang et al.,
2005). Actin-ļ¬lament-stabilizing proteins
such as tropomyosins, caldesmons,
calponins, and tropomodulin (which also
caps pointed ends in the presence of
tropomyosin) (Fischer and Fowler, 2003)
also promote elongation by retarding
subunit depolymerization and inhibiting
actin-depolymerizing ABPs, as described
below (step 3c) (Bakin et al., 2004; Eyers
et al., 2005; Mirzapoiazova et al., 2005).
Branching
Nucleation and transient 70Ā° branching
(see poster, step 4) of actin ļ¬laments
mediated by the Arp2/3 complex
(Pollard and Borisy, 2003; Stradal and
Scita, 2006; Vicente-Manzanares et al.,
2005) is essential for the intracellular
movements of certain pathogens
(Listeria monocytogenes, Shigella,
Salmonella and Rickettsia species and
poxviruses) (Gouin et al., 2005), some
vesicles, and for the normal dynamics of
adhesive podosomes and related
structures (Linder and Kopp, 2005). A
role for Arp2/3-mediated actin ļ¬lament
branching in leading-edge actin
elongation is less certain, given high-
resolution images preserving three-
dimensionality (Medalia et al., 2002;
Small et al., 2002), the absence of
Arp2/3 from the leading edges of certain
cells (Gupton et al., 2005; Strasser et al.,
2004), the lack of an effect of Arp2/3 on
actin ļ¬lament network rigidity required
for lamellar extension (Nakamura et al.,
2002) and the results of experiments
employing RNAi in ļ¬broblasts (Di
Nardo et al., 2005).
Actin ļ¬lament crosslinking
Bivalent actin-ļ¬lament-crosslinking
proteins either abet or repel the inherent
parallel alignment of actin ļ¬laments
promoted by thermodynamic and ionic
factors (see poster, step 5). Relatively
small globular or rod-like ABPs, such as
ļ¬mbrin, scruin, ā£-actinins and espins,
stabilize actin bundles, whereas larger
ABPs that have inherent spring-like
properties, such as the ļ¬lamins, instead
promote high-angle (orthogonal) ļ¬lament
organization (Gardel et al., 2006; Gardel
et al., 2004). ā£-Actinins, ļ¬lamins and
spectrins, a family of membrane-
associated crosslinking proteins,
also function as scaffolds for signaling
intermediates that stimulate actin
elongation; so they are well positioned to
direct the orientation of elongating actin
ļ¬laments (Broderick and Winder, 2005;
Feng and Walsh, 2004).
Actin ļ¬lament contraction, cargo
motoring, and membrane binding
Parallel bundles and orthogonal networks
represent extremes of the highly complex
actin ļ¬lament arrangements observable at
the cell surface by electron microscopy
and other high-resolution techniques.
Actin ļ¬lament conļ¬gurations are
susceptible to deformation by contractile
forces generated by bipolar myosin
ļ¬laments (predominantly myosin II)
(Landsverk and Epstein, 2005), which act
especially on actin networks attached to
membranes. Unconventional myosins
primarily move vesicles and other cargoes
along actin ļ¬laments (ā€˜motoringā€™) (see
poster, step 6). Signals contributing to
actin elongation, such as
polyphosphoinositides, also increase
binding of actin ļ¬laments and
intermediary ABPs, including talin,
vinculin, ļ¬lamins, catenins, ā£-actinins,
and zyxin to certain receptors, including
integrins (Ginsberg et al., 2005),
cadherins (Drees et al., 2005), and
proteins of the FERM family (Cho and
Stahelin, 2005) (step 7). This brings actin
ļ¬lament barbed ends close to the same
signals that promote their elongation,
Journal of Cell Science 119 (16)
JournalofCellScience
3263
potentially amplifying the mass of
elongating actin at the surface.
The linkage between actin ļ¬laments and
membranes is important for mechanical
traction against substrates and retraction
of membranes for shape changes and
locomotion in response to contractile
forces. This linkage is also essential for
localizing signaling factors to initiate the
formation of cell-substratum and cell-
cell adhesions, as well as other cellular
processes.
Actin ļ¬lament disassembly
The most efficient way to break down a
network dominated by thread-like
elements is to cut the threads. This
approach disperses lattices of long actin
ļ¬laments immobilized by interpenetration
of ļ¬laments and shorter ļ¬laments cross-
linked by ABPs. Two ABP families
accomplish this task. The most efficient
are proteins of the gelsolin family, which
disrupt the interactions between actin
subunits in ļ¬laments in response to Ca2+
or phosphorylation by Src kinase and then
tightly cap the barbed ends of the severed
ļ¬laments (Kumar et al., 2004) (see poster,
step 8a). Ca2+
can also interfere with
binding of crosslinking ABPs and thus
destabilize actin networks. Ca2+
works
with calmodulin to inhibit binding of
ļ¬lamin to actin (Nakamura et al., 2005)
and directly inhibits the binding of some
ā£-actinins (Broderick and Winder, 2005).
The second major actin-ļ¬lament-severing
ABPs are proteins of the actin-
depolymerizing factor (ADF)/coļ¬lin
family, which weakly sever but do not cap
the barbed ends of actin ļ¬laments (step
8b) (Fass et al., 2004). Barbed ends
generated by coļ¬lin either serve as
initiation sites for new elongation or
become capped (step 3a), depending upon
the signals present. A coļ¬lin-binding
protein, Aip1, enhances coļ¬lin activity
(Okada et al., 2002), as do two families of
phosphatases, the slingshots and
cronophin. The adaptor protein 14-3-3āØ
antagonizes this effect. Phosphorylation
of coļ¬lin by LIM kinase, downstream of
Rac activation, inactivates coļ¬lin (Huang
et al., 2005; Nishita et al., 2005). Actin-
ļ¬lament-stabilizing proteins, particularly
tropomyosins, also inhibit severing of
actin ļ¬laments by coļ¬lin but are less
effective against gelsolin family
members, and different tropomyosin
isoforms generated by alternative mRNA
splicing confer subtlety on this
inhibition (Gunning et al., 2005).
Polyphosphoinositides strongly inhibit
actin ļ¬lament severing by both protein
families, which is consistent with their
general propensity to promote actin
ļ¬lament assembly.
Although efficient at breaking down
actin networks and providing more
ļ¬lament ends, actin ļ¬lament severing
does not directly contribute to
maintenance of an actin monomer pool
required for new ļ¬lament assembly.
However, the coļ¬lin proteins, by
accelerating subunit dissociation from
pointed ends (ā€˜nibblingā€™) (step 8c) are
the major drivers for this (Carlier et al.,
1999).
Monomer sequestration
Proļ¬lins and, in mammalian cells,
thymosins bind to actin monomers (see
poster, step 9), preventing them from
spontaneous nucleation.
References
Allen, P. (2003). Actin ļ¬lament uncapping localizes to
ruffling lamellae and rocketing vesicles. Nat. Cell Biol. 5,
972-979.
Bakin, A., Saļ¬na, A., Rinehart, C., Daroqui, C.,
Darbary, H. and Helfman, D. (2004). A critical role of
tropomyosins in TGF-beta regulation of the actin
cytoskeleton and cell motility in epithelial cells. Mol. Biol.
Cell 15, 4682-4694.
Barkalow, K., Italiano, J., Jr, Chou, D., Matsuoka, Y.,
Bennett, V. and Hartwig, J. (2003). a-Adducin
dissociates from F-actin and spectrin during platelet
activation. J. Cell Biol. 161, 557-570.
Barzik, M., Kotova, T., Higgs, H., Hazelwood, L.,
Hanein, D., Gertler, F. and Shafer, D. (2005). Ena/VASP
proteins enhance actin polymerization in the presence of
barbed end capping proteins. J. Biol. Chem. 280, 28653-
28662.
Broderick, M. and Winder, S. (2005). Spectrin, alpha-
actinin, and dystrophin. Adv. Protein Chem. 70, 203-246.
Bubb, M., Yarmola, E., Gibson, B. and Southwick, F.
(2003). Depolymerization of actin ļ¬laments by proļ¬lin.
Effects of proļ¬lin on capping protein function. J. Biol.
Chem. 278, 24629-24635.
Carlier, M.-F., Ressad, F. and Pantaloni, D. (1999).
Control of actin dynamics in cell motility. Role of
ADF/Coļ¬lin. J. Biol. Chem. 274, 33827-33830.
Cho, W. and Stahelin, R. (2005). Membrane-protein
interactions in cell signaling and membrane trafficking.
Annu. Rev. Biophys. Biomol. Struct. 34, 119-151.
DesMarais, V., Ghosh, M., Eddy, R. and Condeelis, J.
(2005). Coļ¬lin takes the lead. J. Cell Sci. 118, 19-26.
Di Nardo, A., Cicchetti, G., Falet, H., Hartwig, J.,
Stossel, T. and Kwiatkowski, D. (2005). Arp2/3
complex-deļ¬cient mouse ļ¬broblasts are viable and have
normal leading-edge structure and function. Proc. Natl.
Acad. Sci. USA 102, 16263-16268.
Disanza, A., Carlier, M.-F., Stradal, T., Didry, D.,
Frittoli, E., Confalonieri, S., Croce, A., Wehland, J.,
DiFiore, P. and Scita, G. (2004). Eps8 controls actin-
based motility by capping the barbed ends of actin
ļ¬laments. Nat. Cell Biol. 6, 1180-1188.
Drees, F., Pokutta, S., Yamada, S., Nelson, S. and Weis,
W. (2005). a-Catenin is a molecular switch that binds E-
cadherin-ā¤-catenin and regulates actin-ļ¬lament assembly.
Cell 123, 903-915.
During, R., Li, W., Hao, B., Koenig, J., Stephens, D.,
Quinn, C. and Southwick, F. (2005). Anthrax lethal toxin
paralyzes neutrophil actin-based motility. J. Infect. Dis.
192, 837-845.
Eyers, C., McNeill, H., Knebel, A., Morrice, N., Arthur,
S., Cuenda, A. and Cohen, P. (2005). The
phosphorylation of CapZ-interacting protein (CapZIP) by
stress-activated protein kinases triggers its dissociation
from CapZ. Biochem. J. 389, 127-135.
Fass, J., Gehler, S., Sarmiere, P., Letourneau, P. and
Bamburg, J. (2004). Regulating ļ¬lopodial dynamics
through actin-depolymerizing factor/coļ¬lin. Anat. Sci. Int.
79, 173-183.
Feng, Y. and Walsh, C. (2004). The many faces of
ļ¬lamin: a versatile molecular scaffold for cell motility and
signalling. Nat. Cell Biol. 6, 1034-1038.
Fischer, R. and Fowler, V. (2003). Tropomodulins: life at
the slow end. Trends Cell Biol. 13, 593-601.
Gardel, M., Shin, J., MacKintosh, F., Madhadevan, L.,
Matsudaira, P. and Weitz, D. (2004). Elastic behavior of
cross-linked and bundled actin networks. Science 304,
1301-1305.
Gardel, M., Nakamura, F., Hartwig, J., Crocker, J.,
Stossel, T. and Weitz, D. (2006). Pre-stressed F-actin
networks cross-linked by hinged ļ¬lamins replicate
mechanical properties of cells. Proc. Natl. Acad. Sci. USA
103, 1762-1767.
Ginsberg, M., Partridge, A. and Shattil, S. (2005).
Integrin regulation. Curr. Opin. Cell Biol. 17, 509-516.
Gouin, E., Welch, M. and Cossart, P. (2005). Actin-
based motility of intracellular pathogens. Curr. Opin.
Microbiol. 8, 35-45.
Gunning, P., Schevzov, G., Kee, A. and Hardeman, E.
(2005). Tropomyosin isoforms: divining rods for actin
cytoskeleton function. Trends Cell Biol. 15, 333-341.
Gupton, S., Anderson, K., Kole, T., Fischer, R., Ponti,
A., Hitchcock-DeGregori, S., Danuser, G., Fowler, V.,
Wirtz, D., Hanein, D. et al. (2005). Cell migration
without a lamellipodium: translation of actin dynamics
into cell movement mediated by tropomyosin. J. Cell Biol.
168, 619-631.
Higgs, H. (2005). Formin proteins: a domain-based
approach. Trends Biochem. Sci. 30, 342-352.
Huang, T., Dermardirossian, C. and Bokoch, G. (2005).
Coļ¬lin phosphatases and regulation of actin dynamics.
Curr. Opin. Cell Biol. 18, 26-31.
Jaffe, A. and Hall, A. (2005). Rho GTPases: biochemistry
and biology. Annu. Rev. Cell Dev. Biol. 21, 247-269.
Kovar, D. (2006). Molecular details of formin-mediated
actin assembly. Curr. Opin. Cell Biol. 18, 11-17.
Kuhn, J. and Pollard, T. (2005). Real-time measurements
of actin ļ¬lament polymerization by total internal reļ¬‚ection
ļ¬‚uorescence microscopy. Biophys. J. 88, 1387-1402.
Kumar, N., Tomar, A., Parrill, A. and Khurana, S.
(2004). Functional dissection and molecular
characterization of calcium-sensitive actin-capping and
actin-depolymerizing sites in villin. J. Biol. Chem. 279,
45036-45046.
Landsverk, M. and Epstein, H. (2005). Genetic analysis
of myosin II assembly and organization in model
organisms. Cell. Mol. Life Sci. 62, 2270-2282.
Linder, S. and Kopp, P. (2005). Podosomes at a glance.
J. Cell Sci. 118, 2079-2082.
Medalia, O., Weber, I., Frangakis, A., Nicastro, D.,
Gerisch, G. and Baumeister, W. (2002). Macromolecular
architecture in eukaryotic cells visualized by cryoelectron
tomography. Science 298, 1209-1213.
Mirzapoiazova, T., Kolosova, I., Romer, L., Garcia, J.
and Verin, A. (2005). The role of caldesmon in the
regulation of endothelial cytoskeleton and migration. J.
Cell Physiol. 203, 520-528.
Nakamura, F., Osborn, E., Janmey, P. and Stossel, T.
(2002). Comparison of ļ¬lamin A-induced cross-linking
and Arp2/3 complex-mediated branching on the mechanics
of actin ļ¬laments. J. Biol. Chem. 277, 9148-9154.
Nakamura, F., Hartwig, J., Stossel, T. and Syzmanski,
P. (2005). Ca2+
and calmodulin regulate binding of ļ¬lamin
A to actin ļ¬laments. J. Biol. Chem. 280, 32426-32433.
Nicholson-Dykstra, S., Higgs, H. N. and Harris, E. S.
Journal of Cell Science 119 (16)
JournalofCellScience
3264
(2005). Actin dynamics: growth from dendritic branches.
Curr. Biol. 15, R346-R357.
Niggli, V. (2005). Regulation of protein activities by
phosphoprotein phosphates. Annu. Rev. Cell Dev. Biol. 21,
57-80.
Nishita, M., Tomizawa, C., Yamamoto, M., Horita, Y.,
Ohashi, K. and Mizuno, K. (2005). Spatial and temporal
regulation of coļ¬lin activity by LIM kinase and Slingshot
is critical for directional cell migration. J. Cell Biol. 171,
349-359.
Okada, K., Blanchoin, L., Abe, H., Chen, H., Pollard,
T. and Bamburg, J. (2002). Xenopus actin-interacting
protein 1 (XAip1) enhances coļ¬lin fragmentation of
ļ¬laments by capping ļ¬lament ends. J. Biol. Chem. 277,
43011-43016.
Pollard, T. and Borisy, G. (2003). Cellular motility driven
by assembly and disassembly of actin ļ¬laments. Cell 112,
453-465.
Rafelski, S. and Theriot, J. (2004). Crawling toward a
uniļ¬ed model of cell motiility: spatial and temporal
regulation of actin dynamics. Annu. Rev. Biochem. 73,
209-239.
Small, J., Stradal, T., Vignal, E. and Rottner, K. (2002).
The lamellipodium: where motility begins. Trends Cell
Biol. 12, 112-120.
Stradal, T. and Scita, G. (2006). Protein complexes
regulating Arp2/3-mediated actin assembly. Curr. Opin.
Cell Biol. 18, 4-10.
Strasser, G., Rahim, N., VanderWaal, K., Gertler, F.
and Lanier, L. (2004). Arp2/3 is a negative regulator of
growth cone translocation. Neuron 43, 81-94.
Vicente-Manzanares, M., Webb, D. and Horwitz, A.
(2005). Cell migration at a glance. J. Cell Sci. 118, 4917-
4919.
Yang, C., Pring, M., Wear, M., Huang, M., Cooper, J.,
Svitkina, T. and Zigmond, S. (2005). Mammalian
CARMIL inhibits actin ļ¬lament capping by capping
protein. Dev. Cell 9, 209-221.
Yarmola, E. and Bubb, M. (2004). Effects of proļ¬lin and
thymosin ā¤4 on the critical concentration of actin
demonstrated in vitro and in cell extracts with a novel
direct assay. J. Biol. Chem. 279, 33519-33527.
Yin, H. and Janmey, P. (2003). Phosphoinositide
regulation of the actin cytoskeleton. Annu. Rev. Physiol.
65, 761-789.
Journal of Cell Science 119 (16)
Cell Science at a Glance on the Web
Electronic copies of the poster insert are
available in the online version of this article
at jcs.biologists.org. The JPEG images can
be downloaded for printing or used as
slides.
Commentaries
JCS Commentaries highlight and critically discuss recent exciting work that will interest those working
in cell biology, molecular biology, genetics and related disciplines. These short reviews are
commissioned from leading ļ¬gures in the ļ¬eld and are subject to rigorous peer-review and in-house
editorial appraisal. Each issue of the journal usually contains at least two Commentaries. JCS thus
provides readers with more than 50 Commentaries over the year, which cover the complete spectrum
of cell science. The following are just some of the Commentaries appearing in JCS over the coming
months.
Roles of the centrosome Michel Bornens Spir proteins R. Dyche Mullins
Non-apoptotic functions of caspases Bruce Hay Golgi fragmentation Jennifer Lippincott-Schwartz
Mechanotransduction Chris Chen Nuclear actin Pavel Hozak
Dorsal closure Daniel Kiehart p120 catenin Albert Reynolds
Cargo-selective adaptors Linton Traub Non-centrosomal MT networks Greg Gundersen
Filopodia Richard Cheney p53 outputs Karen Vousden
Cancer stem cells Max Wicha Endomembrane evolution Joel Dacks
Although we discourage submission of unsolicited Commentaries to the journal, ideas for future articles
ā€“ in the form of a short proposal and some key references ā€“ are welcome and should be sent to the
Executive Editor at the address below.
Journal of Cell Science, Bidder Building, 140 Cowley Rd, Cambridge, CB4 0DL, UK
E-mail: jcs@biologists.com; http://jcs.biologists.org
JournalofCellScience

More Related Content

What's hot

Wojciechowski stevens 2021_a_dynamic_duo
Wojciechowski stevens 2021_a_dynamic_duoWojciechowski stevens 2021_a_dynamic_duo
Wojciechowski stevens 2021_a_dynamic_duoFranProfesor1
Ā 
Mol. Biol. Cell-1998-Goichberg-3119-31
Mol. Biol. Cell-1998-Goichberg-3119-31Mol. Biol. Cell-1998-Goichberg-3119-31
Mol. Biol. Cell-1998-Goichberg-3119-31Polina Goichberg
Ā 
The effect of core destabilisation on the mechanical resistance of i27
The effect of core destabilisation on the mechanical resistance of i27The effect of core destabilisation on the mechanical resistance of i27
The effect of core destabilisation on the mechanical resistance of i27John Clarkson
Ā 
Abstract piis0022202 x1831114x
Abstract piis0022202 x1831114xAbstract piis0022202 x1831114x
Abstract piis0022202 x1831114xWaddah Moghram
Ā 
BiomembranesArticle_2011
BiomembranesArticle_2011BiomembranesArticle_2011
BiomembranesArticle_2011William Sprowl
Ā 
Molecular evolution
Molecular evolutionMolecular evolution
Molecular evolutionPromila Sheoran
Ā 
Genomic imprinting
Genomic imprinting Genomic imprinting
Genomic imprinting SumedhaBobade
Ā 
Epigenetics mediated gene regulation in plants
Epigenetics mediated gene regulation in plantsEpigenetics mediated gene regulation in plants
Epigenetics mediated gene regulation in plantsSachin Ekatpure
Ā 
SACNAS poster_007
SACNAS poster_007SACNAS poster_007
SACNAS poster_007David Sutter
Ā 
Epigenetics final
Epigenetics finalEpigenetics final
Epigenetics finalNilesh Chandra
Ā 
Protein aggregation
Protein aggregationProtein aggregation
Protein aggregationNADIRHASSAN10
Ā 
CVA Biology I - B10vrv4133
CVA Biology I - B10vrv4133CVA Biology I - B10vrv4133
CVA Biology I - B10vrv4133ClayVirtual
Ā 
Science-2015-Siklenka-science.aab2006
Science-2015-Siklenka-science.aab2006Science-2015-Siklenka-science.aab2006
Science-2015-Siklenka-science.aab2006Sarah Kimmins
Ā 
Presentation1 (1)
Presentation1 (1)Presentation1 (1)
Presentation1 (1)Julia Knox
Ā 
Weber-Thesis
Weber-ThesisWeber-Thesis
Weber-ThesisAnna Weber
Ā 

What's hot (20)

Wojciechowski stevens 2021_a_dynamic_duo
Wojciechowski stevens 2021_a_dynamic_duoWojciechowski stevens 2021_a_dynamic_duo
Wojciechowski stevens 2021_a_dynamic_duo
Ā 
Mol. Biol. Cell-1998-Goichberg-3119-31
Mol. Biol. Cell-1998-Goichberg-3119-31Mol. Biol. Cell-1998-Goichberg-3119-31
Mol. Biol. Cell-1998-Goichberg-3119-31
Ā 
The effect of core destabilisation on the mechanical resistance of i27
The effect of core destabilisation on the mechanical resistance of i27The effect of core destabilisation on the mechanical resistance of i27
The effect of core destabilisation on the mechanical resistance of i27
Ā 
Mutants2
Mutants2Mutants2
Mutants2
Ā 
Abstract piis0022202 x1831114x
Abstract piis0022202 x1831114xAbstract piis0022202 x1831114x
Abstract piis0022202 x1831114x
Ā 
BiomembranesArticle_2011
BiomembranesArticle_2011BiomembranesArticle_2011
BiomembranesArticle_2011
Ā 
Molecular evolution
Molecular evolutionMolecular evolution
Molecular evolution
Ā 
Genomic imprinting
Genomic imprinting Genomic imprinting
Genomic imprinting
Ā 
Epigenetics mediated gene regulation in plants
Epigenetics mediated gene regulation in plantsEpigenetics mediated gene regulation in plants
Epigenetics mediated gene regulation in plants
Ā 
Mutations, types , causes
Mutations, types , causesMutations, types , causes
Mutations, types , causes
Ā 
SACNAS poster_007
SACNAS poster_007SACNAS poster_007
SACNAS poster_007
Ā 
Epigenetics final
Epigenetics finalEpigenetics final
Epigenetics final
Ā 
Epigenetics
EpigeneticsEpigenetics
Epigenetics
Ā 
Mutation
MutationMutation
Mutation
Ā 
Mutation
MutationMutation
Mutation
Ā 
Protein aggregation
Protein aggregationProtein aggregation
Protein aggregation
Ā 
CVA Biology I - B10vrv4133
CVA Biology I - B10vrv4133CVA Biology I - B10vrv4133
CVA Biology I - B10vrv4133
Ā 
Science-2015-Siklenka-science.aab2006
Science-2015-Siklenka-science.aab2006Science-2015-Siklenka-science.aab2006
Science-2015-Siklenka-science.aab2006
Ā 
Presentation1 (1)
Presentation1 (1)Presentation1 (1)
Presentation1 (1)
Ā 
Weber-Thesis
Weber-ThesisWeber-Thesis
Weber-Thesis
Ā 

Similar to cell surface actin remodeling

4. 2 Intracellular Binding Partners Of Podocalyxin Lab Study
4. 2 Intracellular Binding Partners Of Podocalyxin Lab Study4. 2 Intracellular Binding Partners Of Podocalyxin Lab Study
4. 2 Intracellular Binding Partners Of Podocalyxin Lab StudyStephanie Roberts
Ā 
Organelles In Animal Cells Essay
Organelles In Animal Cells EssayOrganelles In Animal Cells Essay
Organelles In Animal Cells EssayJennifer Letterman
Ā 
Pielak_DevBiol2004
Pielak_DevBiol2004Pielak_DevBiol2004
Pielak_DevBiol2004Rafal M. Pielak
Ā 
GenesDev_2008
GenesDev_2008GenesDev_2008
GenesDev_2008Jerod Ptacin
Ā 
Cell migration
Cell migrationCell migration
Cell migrationPradeep Singh
Ā 
Dr Ayman Ewies - Effect of stretch & Levormeloxifene on the cytoskeleton of c...
Dr Ayman Ewies - Effect of stretch & Levormeloxifene on the cytoskeleton of c...Dr Ayman Ewies - Effect of stretch & Levormeloxifene on the cytoskeleton of c...
Dr Ayman Ewies - Effect of stretch & Levormeloxifene on the cytoskeleton of c...AymanEwies
Ā 
Writing assignment 4 molecular cell biology
Writing assignment 4   molecular cell biologyWriting assignment 4   molecular cell biology
Writing assignment 4 molecular cell biologycorv629
Ā 
J Neurochem 2003
J Neurochem 2003J Neurochem 2003
J Neurochem 2003Raul Pardo
Ā 
Revision parodi 2013
Revision parodi 2013Revision parodi 2013
Revision parodi 2013Jorge Parodi
Ā 
Estructura Celular
Estructura CelularEstructura Celular
Estructura CelularPablo Sp
Ā 
Leukocyte Trafficking in Health and Diseases 2016
Leukocyte Trafficking in Health and Diseases 2016Leukocyte Trafficking in Health and Diseases 2016
Leukocyte Trafficking in Health and Diseases 2016BostonIDI
Ā 
Quantum entanglement in theoretical physics as a new insight into cancer biology
Quantum entanglement in theoretical physics as a new insight into cancer biologyQuantum entanglement in theoretical physics as a new insight into cancer biology
Quantum entanglement in theoretical physics as a new insight into cancer biologyAfrican Journal of Biological Sciences
Ā 
Describe The Relationship Between Organelles And Eukaryotes
Describe The Relationship Between Organelles And EukaryotesDescribe The Relationship Between Organelles And Eukaryotes
Describe The Relationship Between Organelles And EukaryotesPaula Smith
Ā 
H27äø‰é‡å¤§ę•™é¤Šę•™č‚²ć€ŒåŒ»å­¦åŒ»ē™‚Aļ¼ē”Ÿå‘½åŒ»ē§‘å­¦ć®čŖ²é”Œć€å³¶å²”要
H27äø‰é‡å¤§ę•™é¤Šę•™č‚²ć€ŒåŒ»å­¦åŒ»ē™‚Aļ¼ē”Ÿå‘½åŒ»ē§‘å­¦ć®čŖ²é”Œć€å³¶å²”要H27äø‰é‡å¤§ę•™é¤Šę•™č‚²ć€ŒåŒ»å­¦åŒ»ē™‚Aļ¼ē”Ÿå‘½åŒ»ē§‘å­¦ć®čŖ²é”Œć€å³¶å²”要
H27äø‰é‡å¤§ę•™é¤Šę•™č‚²ć€ŒåŒ»å­¦åŒ»ē™‚Aļ¼ē”Ÿå‘½åŒ»ē§‘å­¦ć®čŖ²é”Œć€å³¶å²”要BostonIDI
Ā 
Epithelial to Mesenchymal Transition Epithelial vs.docx
Epithelial to Mesenchymal Transition Epithelial vs.docxEpithelial to Mesenchymal Transition Epithelial vs.docx
Epithelial to Mesenchymal Transition Epithelial vs.docxSALU18
Ā 
BiochemPaper
BiochemPaperBiochemPaper
BiochemPaperEric Newman
Ā 
Bs963 apoptosis 09-10
Bs963 apoptosis 09-10Bs963 apoptosis 09-10
Bs963 apoptosis 09-10antavait
Ā 

Similar to cell surface actin remodeling (20)

4. 2 Intracellular Binding Partners Of Podocalyxin Lab Study
4. 2 Intracellular Binding Partners Of Podocalyxin Lab Study4. 2 Intracellular Binding Partners Of Podocalyxin Lab Study
4. 2 Intracellular Binding Partners Of Podocalyxin Lab Study
Ā 
Msc thesis
Msc thesisMsc thesis
Msc thesis
Ā 
Organelles In Animal Cells Essay
Organelles In Animal Cells EssayOrganelles In Animal Cells Essay
Organelles In Animal Cells Essay
Ā 
Pielak_DevBiol2004
Pielak_DevBiol2004Pielak_DevBiol2004
Pielak_DevBiol2004
Ā 
GenesDev_2008
GenesDev_2008GenesDev_2008
GenesDev_2008
Ā 
Cell migration
Cell migrationCell migration
Cell migration
Ā 
Dr Ayman Ewies - Effect of stretch & Levormeloxifene on the cytoskeleton of c...
Dr Ayman Ewies - Effect of stretch & Levormeloxifene on the cytoskeleton of c...Dr Ayman Ewies - Effect of stretch & Levormeloxifene on the cytoskeleton of c...
Dr Ayman Ewies - Effect of stretch & Levormeloxifene on the cytoskeleton of c...
Ā 
Writing assignment 4 molecular cell biology
Writing assignment 4   molecular cell biologyWriting assignment 4   molecular cell biology
Writing assignment 4 molecular cell biology
Ā 
J Neurochem 2003
J Neurochem 2003J Neurochem 2003
J Neurochem 2003
Ā 
Revision parodi 2013
Revision parodi 2013Revision parodi 2013
Revision parodi 2013
Ā 
Estructura Celular
Estructura CelularEstructura Celular
Estructura Celular
Ā 
Leukocyte Trafficking in Health and Diseases 2016
Leukocyte Trafficking in Health and Diseases 2016Leukocyte Trafficking in Health and Diseases 2016
Leukocyte Trafficking in Health and Diseases 2016
Ā 
Quantum entanglement in theoretical physics as a new insight into cancer biology
Quantum entanglement in theoretical physics as a new insight into cancer biologyQuantum entanglement in theoretical physics as a new insight into cancer biology
Quantum entanglement in theoretical physics as a new insight into cancer biology
Ā 
Describe The Relationship Between Organelles And Eukaryotes
Describe The Relationship Between Organelles And EukaryotesDescribe The Relationship Between Organelles And Eukaryotes
Describe The Relationship Between Organelles And Eukaryotes
Ā 
H27äø‰é‡å¤§ę•™é¤Šę•™č‚²ć€ŒåŒ»å­¦åŒ»ē™‚Aļ¼ē”Ÿå‘½åŒ»ē§‘å­¦ć®čŖ²é”Œć€å³¶å²”要
H27äø‰é‡å¤§ę•™é¤Šę•™č‚²ć€ŒåŒ»å­¦åŒ»ē™‚Aļ¼ē”Ÿå‘½åŒ»ē§‘å­¦ć®čŖ²é”Œć€å³¶å²”要H27äø‰é‡å¤§ę•™é¤Šę•™č‚²ć€ŒåŒ»å­¦åŒ»ē™‚Aļ¼ē”Ÿå‘½åŒ»ē§‘å­¦ć®čŖ²é”Œć€å³¶å²”要
H27äø‰é‡å¤§ę•™é¤Šę•™č‚²ć€ŒåŒ»å­¦åŒ»ē™‚Aļ¼ē”Ÿå‘½åŒ»ē§‘å­¦ć®čŖ²é”Œć€å³¶å²”要
Ā 
Epithelial to Mesenchymal Transition Epithelial vs.docx
Epithelial to Mesenchymal Transition Epithelial vs.docxEpithelial to Mesenchymal Transition Epithelial vs.docx
Epithelial to Mesenchymal Transition Epithelial vs.docx
Ā 
BiochemPaper
BiochemPaperBiochemPaper
BiochemPaper
Ā 
Choo et al., 2004
Choo et al., 2004Choo et al., 2004
Choo et al., 2004
Ā 
Herrmann STAT3 2008
Herrmann STAT3 2008Herrmann STAT3 2008
Herrmann STAT3 2008
Ā 
Bs963 apoptosis 09-10
Bs963 apoptosis 09-10Bs963 apoptosis 09-10
Bs963 apoptosis 09-10
Ā 

More from SoM

Hįŗ„p thu cį»§a ruį»™t non
Hįŗ„p thu cį»§a ruį»™t nonHįŗ„p thu cį»§a ruį»™t non
Hįŗ„p thu cį»§a ruį»™t nonSoM
Ā 
Điį»u hĆ²a dį»‹ch tį»„y
Điį»u hĆ²a dį»‹ch tį»„y Điį»u hĆ²a dį»‹ch tį»„y
Điį»u hĆ²a dį»‹ch tį»„y SoM
Ā 
Điį»u hĆ²a hĆ“ hįŗ„p
Điį»u hĆ²a hĆ“ hįŗ„pĐiį»u hĆ²a hĆ“ hįŗ„p
Điį»u hĆ²a hĆ“ hįŗ„pSoM
Ā 
QuĆ” trƬnh trao đį»•i vĆ  vįŗ­n chuyį»ƒn khĆ­
QuĆ” trƬnh trao đį»•i vĆ  vįŗ­n chuyį»ƒn khĆ­QuĆ” trƬnh trao đį»•i vĆ  vįŗ­n chuyį»ƒn khĆ­
QuĆ” trƬnh trao đį»•i vĆ  vįŗ­n chuyį»ƒn khĆ­SoM
Ā 
CƂU Hį»ŽI ƔN Tįŗ¬P THI TAY NGHį»€ BƁC SÄØ TRįŗŗ NĂM 2022.docx
CƂU Hį»ŽI ƔN Tįŗ¬P THI TAY NGHį»€ BƁC SÄØ TRįŗŗ NĂM 2022.docxCƂU Hį»ŽI ƔN Tįŗ¬P THI TAY NGHį»€ BƁC SÄØ TRįŗŗ NĂM 2022.docx
CƂU Hį»ŽI ƔN Tįŗ¬P THI TAY NGHį»€ BƁC SÄØ TRįŗŗ NĂM 2022.docxSoM
Ā 
CĆ”c yįŗæu tį»‘ įŗ£nh hĘ°į»Ÿng đįŗæn huyįŗæt Ć”p
CĆ”c yįŗæu tį»‘ įŗ£nh hĘ°į»Ÿng đįŗæn huyįŗæt Ć”pCĆ”c yįŗæu tį»‘ įŗ£nh hĘ°į»Ÿng đįŗæn huyįŗæt Ć”p
CĆ”c yįŗæu tį»‘ įŗ£nh hĘ°į»Ÿng đįŗæn huyįŗæt Ć”pSoM
Ā 
Điį»u hĆ²a hoįŗ”t đį»™ng cį»§a tim
Điį»u hĆ²a hoįŗ”t đį»™ng cį»§a timĐiį»u hĆ²a hoįŗ”t đį»™ng cį»§a tim
Điį»u hĆ²a hoįŗ”t đį»™ng cį»§a timSoM
Ā 
Chu kį»³ hoįŗ”t đį»™ng cį»§a tim
Chu kį»³ hoįŗ”t đį»™ng cį»§a timChu kį»³ hoįŗ”t đį»™ng cį»§a tim
Chu kį»³ hoįŗ”t đį»™ng cį»§a timSoM
Ā 
NhĆ³m mĆ”u hį»‡ rhesus
NhĆ³m mĆ”u hį»‡ rhesusNhĆ³m mĆ”u hį»‡ rhesus
NhĆ³m mĆ”u hį»‡ rhesusSoM
Ā 
Cįŗ„u trĆŗc vĆ  chį»©c năng cį»§a hį»“ng cįŗ§u
Cįŗ„u trĆŗc vĆ  chį»©c năng cį»§a hį»“ng cįŗ§uCįŗ„u trĆŗc vĆ  chį»©c năng cį»§a hį»“ng cįŗ§u
Cįŗ„u trĆŗc vĆ  chį»©c năng cį»§a hį»“ng cįŗ§uSoM
Ā 
Vįŗ­n chuyį»ƒn vįŗ­t chįŗ„t qua mĆ ng tįŗæ bĆ o
Vįŗ­n chuyį»ƒn vįŗ­t chįŗ„t qua mĆ ng tįŗæ bĆ o Vįŗ­n chuyį»ƒn vįŗ­t chįŗ„t qua mĆ ng tįŗæ bĆ o
Vįŗ­n chuyį»ƒn vįŗ­t chįŗ„t qua mĆ ng tįŗæ bĆ o SoM
Ā 
bį»‡nh phį»•i tįŗÆc nghįŗ½n mįŗ”n tĆ­nh.pdf
bį»‡nh phį»•i tįŗÆc nghįŗ½n mįŗ”n tĆ­nh.pdfbį»‡nh phį»•i tįŗÆc nghįŗ½n mįŗ”n tĆ­nh.pdf
bį»‡nh phį»•i tįŗÆc nghįŗ½n mįŗ”n tĆ­nh.pdfSoM
Ā 
hen phįŗæ quįŗ£n.pdf
hen phįŗæ quįŗ£n.pdfhen phįŗæ quįŗ£n.pdf
hen phįŗæ quįŗ£n.pdfSoM
Ā 
cĘ”n hen cįŗ„p.pdf
cĘ”n hen cįŗ„p.pdfcĘ”n hen cįŗ„p.pdf
cĘ”n hen cįŗ„p.pdfSoM
Ā 
đį»£t cįŗ„p bį»‡nh phį»•i tįŗÆc nghįŗ½n mįŗ”n tĆ­nh.pdf
đį»£t cįŗ„p bį»‡nh phį»•i tįŗÆc nghįŗ½n mįŗ”n tĆ­nh.pdfđį»£t cįŗ„p bį»‡nh phį»•i tįŗÆc nghįŗ½n mįŗ”n tĆ­nh.pdf
đį»£t cįŗ„p bį»‡nh phį»•i tįŗÆc nghįŗ½n mįŗ”n tĆ­nh.pdfSoM
Ā 
khĆ³ thį»Ÿ.pdf
khĆ³ thį»Ÿ.pdfkhĆ³ thį»Ÿ.pdf
khĆ³ thį»Ÿ.pdfSoM
Ā 
cĆ”c test chį»©c năng phį»•i.pdf
cĆ”c test chį»©c năng phį»•i.pdfcĆ”c test chį»©c năng phį»•i.pdf
cĆ”c test chį»©c năng phį»•i.pdfSoM
Ā 
ngįŗ„t.pdf
ngįŗ„t.pdfngįŗ„t.pdf
ngįŗ„t.pdfSoM
Ā 
rung nhĩ.pdf
rung nhĩ.pdfrung nhĩ.pdf
rung nhĩ.pdfSoM
Ā 
Ä‘Ć”nh gia nguy cĘ” tim mįŗ”ch cho phįŗ«u thuįŗ­t.pdf
Ä‘Ć”nh gia nguy cĘ” tim mįŗ”ch cho phįŗ«u thuįŗ­t.pdfÄ‘Ć”nh gia nguy cĘ” tim mįŗ”ch cho phįŗ«u thuįŗ­t.pdf
Ä‘Ć”nh gia nguy cĘ” tim mįŗ”ch cho phįŗ«u thuįŗ­t.pdfSoM
Ā 

More from SoM (20)

Hįŗ„p thu cį»§a ruį»™t non
Hįŗ„p thu cį»§a ruį»™t nonHįŗ„p thu cį»§a ruį»™t non
Hįŗ„p thu cį»§a ruį»™t non
Ā 
Điį»u hĆ²a dį»‹ch tį»„y
Điį»u hĆ²a dį»‹ch tį»„y Điį»u hĆ²a dį»‹ch tį»„y
Điį»u hĆ²a dį»‹ch tį»„y
Ā 
Điį»u hĆ²a hĆ“ hįŗ„p
Điį»u hĆ²a hĆ“ hįŗ„pĐiį»u hĆ²a hĆ“ hįŗ„p
Điį»u hĆ²a hĆ“ hįŗ„p
Ā 
QuĆ” trƬnh trao đį»•i vĆ  vįŗ­n chuyį»ƒn khĆ­
QuĆ” trƬnh trao đį»•i vĆ  vįŗ­n chuyį»ƒn khĆ­QuĆ” trƬnh trao đį»•i vĆ  vįŗ­n chuyį»ƒn khĆ­
QuĆ” trƬnh trao đį»•i vĆ  vįŗ­n chuyį»ƒn khĆ­
Ā 
CƂU Hį»ŽI ƔN Tįŗ¬P THI TAY NGHį»€ BƁC SÄØ TRįŗŗ NĂM 2022.docx
CƂU Hį»ŽI ƔN Tįŗ¬P THI TAY NGHį»€ BƁC SÄØ TRįŗŗ NĂM 2022.docxCƂU Hį»ŽI ƔN Tįŗ¬P THI TAY NGHį»€ BƁC SÄØ TRįŗŗ NĂM 2022.docx
CƂU Hį»ŽI ƔN Tįŗ¬P THI TAY NGHį»€ BƁC SÄØ TRįŗŗ NĂM 2022.docx
Ā 
CĆ”c yįŗæu tį»‘ įŗ£nh hĘ°į»Ÿng đįŗæn huyįŗæt Ć”p
CĆ”c yįŗæu tį»‘ įŗ£nh hĘ°į»Ÿng đįŗæn huyįŗæt Ć”pCĆ”c yįŗæu tį»‘ įŗ£nh hĘ°į»Ÿng đįŗæn huyįŗæt Ć”p
CĆ”c yįŗæu tį»‘ įŗ£nh hĘ°į»Ÿng đįŗæn huyįŗæt Ć”p
Ā 
Điį»u hĆ²a hoįŗ”t đį»™ng cį»§a tim
Điį»u hĆ²a hoįŗ”t đį»™ng cį»§a timĐiį»u hĆ²a hoįŗ”t đį»™ng cį»§a tim
Điį»u hĆ²a hoįŗ”t đį»™ng cį»§a tim
Ā 
Chu kį»³ hoįŗ”t đį»™ng cį»§a tim
Chu kį»³ hoįŗ”t đį»™ng cį»§a timChu kį»³ hoįŗ”t đį»™ng cį»§a tim
Chu kį»³ hoįŗ”t đį»™ng cį»§a tim
Ā 
NhĆ³m mĆ”u hį»‡ rhesus
NhĆ³m mĆ”u hį»‡ rhesusNhĆ³m mĆ”u hį»‡ rhesus
NhĆ³m mĆ”u hį»‡ rhesus
Ā 
Cįŗ„u trĆŗc vĆ  chį»©c năng cį»§a hį»“ng cįŗ§u
Cįŗ„u trĆŗc vĆ  chį»©c năng cį»§a hį»“ng cįŗ§uCįŗ„u trĆŗc vĆ  chį»©c năng cį»§a hį»“ng cįŗ§u
Cįŗ„u trĆŗc vĆ  chį»©c năng cį»§a hį»“ng cįŗ§u
Ā 
Vįŗ­n chuyį»ƒn vįŗ­t chįŗ„t qua mĆ ng tįŗæ bĆ o
Vįŗ­n chuyį»ƒn vįŗ­t chįŗ„t qua mĆ ng tįŗæ bĆ o Vįŗ­n chuyį»ƒn vįŗ­t chįŗ„t qua mĆ ng tįŗæ bĆ o
Vįŗ­n chuyį»ƒn vįŗ­t chįŗ„t qua mĆ ng tįŗæ bĆ o
Ā 
bį»‡nh phį»•i tįŗÆc nghįŗ½n mįŗ”n tĆ­nh.pdf
bį»‡nh phį»•i tįŗÆc nghįŗ½n mįŗ”n tĆ­nh.pdfbį»‡nh phį»•i tįŗÆc nghįŗ½n mįŗ”n tĆ­nh.pdf
bį»‡nh phį»•i tįŗÆc nghįŗ½n mįŗ”n tĆ­nh.pdf
Ā 
hen phįŗæ quįŗ£n.pdf
hen phįŗæ quįŗ£n.pdfhen phįŗæ quįŗ£n.pdf
hen phįŗæ quįŗ£n.pdf
Ā 
cĘ”n hen cįŗ„p.pdf
cĘ”n hen cįŗ„p.pdfcĘ”n hen cįŗ„p.pdf
cĘ”n hen cįŗ„p.pdf
Ā 
đį»£t cįŗ„p bį»‡nh phį»•i tįŗÆc nghįŗ½n mįŗ”n tĆ­nh.pdf
đį»£t cįŗ„p bį»‡nh phį»•i tįŗÆc nghįŗ½n mįŗ”n tĆ­nh.pdfđį»£t cįŗ„p bį»‡nh phį»•i tįŗÆc nghįŗ½n mįŗ”n tĆ­nh.pdf
đį»£t cįŗ„p bį»‡nh phį»•i tįŗÆc nghįŗ½n mįŗ”n tĆ­nh.pdf
Ā 
khĆ³ thį»Ÿ.pdf
khĆ³ thį»Ÿ.pdfkhĆ³ thį»Ÿ.pdf
khĆ³ thį»Ÿ.pdf
Ā 
cĆ”c test chį»©c năng phį»•i.pdf
cĆ”c test chį»©c năng phį»•i.pdfcĆ”c test chį»©c năng phį»•i.pdf
cĆ”c test chį»©c năng phį»•i.pdf
Ā 
ngįŗ„t.pdf
ngįŗ„t.pdfngįŗ„t.pdf
ngįŗ„t.pdf
Ā 
rung nhĩ.pdf
rung nhĩ.pdfrung nhĩ.pdf
rung nhĩ.pdf
Ā 
Ä‘Ć”nh gia nguy cĘ” tim mįŗ”ch cho phįŗ«u thuįŗ­t.pdf
Ä‘Ć”nh gia nguy cĘ” tim mįŗ”ch cho phįŗ«u thuįŗ­t.pdfÄ‘Ć”nh gia nguy cĘ” tim mįŗ”ch cho phįŗ«u thuįŗ­t.pdf
Ä‘Ć”nh gia nguy cĘ” tim mįŗ”ch cho phįŗ«u thuįŗ­t.pdf
Ā 

Recently uploaded

(RIYA)šŸŽ„Airhostess Call Girl Jaipur Call Now 8445551418 Premium Collection Of ...
(RIYA)šŸŽ„Airhostess Call Girl Jaipur Call Now 8445551418 Premium Collection Of ...(RIYA)šŸŽ„Airhostess Call Girl Jaipur Call Now 8445551418 Premium Collection Of ...
(RIYA)šŸŽ„Airhostess Call Girl Jaipur Call Now 8445551418 Premium Collection Of ...TanyaAhuja34
Ā 
ā¤ļø Chandigarh Call Girlsā˜Žļø98151-579OOā˜Žļø Call Girl service in Chandigarh ā˜Žļø Ch...
ā¤ļø Chandigarh Call Girlsā˜Žļø98151-579OOā˜Žļø Call Girl service in Chandigarh ā˜Žļø Ch...ā¤ļø Chandigarh Call Girlsā˜Žļø98151-579OOā˜Žļø Call Girl service in Chandigarh ā˜Žļø Ch...
ā¤ļø Chandigarh Call Girlsā˜Žļø98151-579OOā˜Žļø Call Girl service in Chandigarh ā˜Žļø Ch...Rashmi Entertainment
Ā 
ANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptxANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptxSwetaba Besh
Ā 
Call Girls Bangalore - 450+ Call Girl Cash Payment šŸ’ÆCall Us šŸ” 6378878445 šŸ” šŸ’ƒ ...
Call Girls Bangalore - 450+ Call Girl Cash Payment šŸ’ÆCall Us šŸ” 6378878445 šŸ” šŸ’ƒ ...Call Girls Bangalore - 450+ Call Girl Cash Payment šŸ’ÆCall Us šŸ” 6378878445 šŸ” šŸ’ƒ ...
Call Girls Bangalore - 450+ Call Girl Cash Payment šŸ’ÆCall Us šŸ” 6378878445 šŸ” šŸ’ƒ ...gragneelam30
Ā 
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...Cara Menggugurkan Kandungan 087776558899
Ā 
Call Girl in Chennai | Whatsapp No šŸ“ž 7427069034 šŸ“ž VIP Escorts Service Availab...
Call Girl in Chennai | Whatsapp No šŸ“ž 7427069034 šŸ“ž VIP Escorts Service Availab...Call Girl in Chennai | Whatsapp No šŸ“ž 7427069034 šŸ“ž VIP Escorts Service Availab...
Call Girl in Chennai | Whatsapp No šŸ“ž 7427069034 šŸ“ž VIP Escorts Service Availab...amritaverma53
Ā 
Call Girls in Lucknow Just Call šŸ‘‰šŸ‘‰ 8875999948 Top Class Call Girl Service Ava...
Call Girls in Lucknow Just Call šŸ‘‰šŸ‘‰ 8875999948 Top Class Call Girl Service Ava...Call Girls in Lucknow Just Call šŸ‘‰šŸ‘‰ 8875999948 Top Class Call Girl Service Ava...
Call Girls in Lucknow Just Call šŸ‘‰šŸ‘‰ 8875999948 Top Class Call Girl Service Ava...Janvi Singh
Ā 
Chennai Call Girls Service {7857862533 } ā¤ļøVVIP ROCKY Call Girl in Chennai
Chennai Call Girls Service {7857862533 } ā¤ļøVVIP ROCKY Call Girl in ChennaiChennai Call Girls Service {7857862533 } ā¤ļøVVIP ROCKY Call Girl in Chennai
Chennai Call Girls Service {7857862533 } ā¤ļøVVIP ROCKY Call Girl in Chennaikhalifaescort01
Ā 
šŸ’°Call Girl In Bangaloreā˜Žļø63788-78445šŸ’° Call Girl service in Bangaloreā˜ŽļøBangalo...
šŸ’°Call Girl In Bangaloreā˜Žļø63788-78445šŸ’° Call Girl service in Bangaloreā˜ŽļøBangalo...šŸ’°Call Girl In Bangaloreā˜Žļø63788-78445šŸ’° Call Girl service in Bangaloreā˜ŽļøBangalo...
šŸ’°Call Girl In Bangaloreā˜Žļø63788-78445šŸ’° Call Girl service in Bangaloreā˜ŽļøBangalo...gragneelam30
Ā 
Cardiac Output, Venous Return, and Their Regulation
Cardiac Output, Venous Return, and Their RegulationCardiac Output, Venous Return, and Their Regulation
Cardiac Output, Venous Return, and Their RegulationMedicoseAcademics
Ā 
Guntur Call Girl Service šŸ“ž6297126446šŸ“žJust Call DivyašŸ“² Call Girl In Guntur No ...
Guntur Call Girl Service šŸ“ž6297126446šŸ“žJust Call DivyašŸ“² Call Girl In Guntur No ...Guntur Call Girl Service šŸ“ž6297126446šŸ“žJust Call DivyašŸ“² Call Girl In Guntur No ...
Guntur Call Girl Service šŸ“ž6297126446šŸ“žJust Call DivyašŸ“² Call Girl In Guntur No ...Call Girls in Nagpur High Profile Call Girls
Ā 
Call Girls in Lucknow Just Call šŸ‘‰šŸ‘‰8630512678 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call šŸ‘‰šŸ‘‰8630512678 Top Class Call Girl Service Avai...Call Girls in Lucknow Just Call šŸ‘‰šŸ‘‰8630512678 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call šŸ‘‰šŸ‘‰8630512678 Top Class Call Girl Service Avai...soniyagrag336
Ā 
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service AvailableCall Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service AvailableSteve Davis
Ā 
ANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptxANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptxSwetaba Besh
Ā 
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...dishamehta3332
Ā 
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service AvailableCall Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service AvailableJanvi Singh
Ā 
Russian Call Girls In Pune šŸ‘‰ Just CALL ME: 9352988975 āœ…ā¤ļøšŸ’Ælow cost unlimited ...
Russian Call Girls In Pune šŸ‘‰ Just CALL ME: 9352988975 āœ…ā¤ļøšŸ’Ælow cost unlimited ...Russian Call Girls In Pune šŸ‘‰ Just CALL ME: 9352988975 āœ…ā¤ļøšŸ’Ælow cost unlimited ...
Russian Call Girls In Pune šŸ‘‰ Just CALL ME: 9352988975 āœ…ā¤ļøšŸ’Ælow cost unlimited ...chanderprakash5506
Ā 
Call girls Service Phullen / 9332606886 Genuine Call girls with real Photos a...
Call girls Service Phullen / 9332606886 Genuine Call girls with real Photos a...Call girls Service Phullen / 9332606886 Genuine Call girls with real Photos a...
Call girls Service Phullen / 9332606886 Genuine Call girls with real Photos a...call girls hydrabad
Ā 
šŸ’ž Safe And Secure Call Girls CoimbatorešŸ§æ 6378878445 šŸ§æ High Class Coimbatore C...
šŸ’ž Safe And Secure Call Girls CoimbatorešŸ§æ 6378878445 šŸ§æ High Class Coimbatore C...šŸ’ž Safe And Secure Call Girls CoimbatorešŸ§æ 6378878445 šŸ§æ High Class Coimbatore C...
šŸ’ž Safe And Secure Call Girls CoimbatorešŸ§æ 6378878445 šŸ§æ High Class Coimbatore C...dilbirsingh0889
Ā 
Call Girls Service Jaipur {9521753030 } ā¤ļøVVIP BHAWNA Call Girl in Jaipur Raj...
Call Girls Service Jaipur {9521753030 } ā¤ļøVVIP BHAWNA Call Girl in Jaipur Raj...Call Girls Service Jaipur {9521753030 } ā¤ļøVVIP BHAWNA Call Girl in Jaipur Raj...
Call Girls Service Jaipur {9521753030 } ā¤ļøVVIP BHAWNA Call Girl in Jaipur Raj...Janvi Singh
Ā 

Recently uploaded (20)

(RIYA)šŸŽ„Airhostess Call Girl Jaipur Call Now 8445551418 Premium Collection Of ...
(RIYA)šŸŽ„Airhostess Call Girl Jaipur Call Now 8445551418 Premium Collection Of ...(RIYA)šŸŽ„Airhostess Call Girl Jaipur Call Now 8445551418 Premium Collection Of ...
(RIYA)šŸŽ„Airhostess Call Girl Jaipur Call Now 8445551418 Premium Collection Of ...
Ā 
ā¤ļø Chandigarh Call Girlsā˜Žļø98151-579OOā˜Žļø Call Girl service in Chandigarh ā˜Žļø Ch...
ā¤ļø Chandigarh Call Girlsā˜Žļø98151-579OOā˜Žļø Call Girl service in Chandigarh ā˜Žļø Ch...ā¤ļø Chandigarh Call Girlsā˜Žļø98151-579OOā˜Žļø Call Girl service in Chandigarh ā˜Žļø Ch...
ā¤ļø Chandigarh Call Girlsā˜Žļø98151-579OOā˜Žļø Call Girl service in Chandigarh ā˜Žļø Ch...
Ā 
ANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptxANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptx
Ā 
Call Girls Bangalore - 450+ Call Girl Cash Payment šŸ’ÆCall Us šŸ” 6378878445 šŸ” šŸ’ƒ ...
Call Girls Bangalore - 450+ Call Girl Cash Payment šŸ’ÆCall Us šŸ” 6378878445 šŸ” šŸ’ƒ ...Call Girls Bangalore - 450+ Call Girl Cash Payment šŸ’ÆCall Us šŸ” 6378878445 šŸ” šŸ’ƒ ...
Call Girls Bangalore - 450+ Call Girl Cash Payment šŸ’ÆCall Us šŸ” 6378878445 šŸ” šŸ’ƒ ...
Ā 
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Ā 
Call Girl in Chennai | Whatsapp No šŸ“ž 7427069034 šŸ“ž VIP Escorts Service Availab...
Call Girl in Chennai | Whatsapp No šŸ“ž 7427069034 šŸ“ž VIP Escorts Service Availab...Call Girl in Chennai | Whatsapp No šŸ“ž 7427069034 šŸ“ž VIP Escorts Service Availab...
Call Girl in Chennai | Whatsapp No šŸ“ž 7427069034 šŸ“ž VIP Escorts Service Availab...
Ā 
Call Girls in Lucknow Just Call šŸ‘‰šŸ‘‰ 8875999948 Top Class Call Girl Service Ava...
Call Girls in Lucknow Just Call šŸ‘‰šŸ‘‰ 8875999948 Top Class Call Girl Service Ava...Call Girls in Lucknow Just Call šŸ‘‰šŸ‘‰ 8875999948 Top Class Call Girl Service Ava...
Call Girls in Lucknow Just Call šŸ‘‰šŸ‘‰ 8875999948 Top Class Call Girl Service Ava...
Ā 
Chennai Call Girls Service {7857862533 } ā¤ļøVVIP ROCKY Call Girl in Chennai
Chennai Call Girls Service {7857862533 } ā¤ļøVVIP ROCKY Call Girl in ChennaiChennai Call Girls Service {7857862533 } ā¤ļøVVIP ROCKY Call Girl in Chennai
Chennai Call Girls Service {7857862533 } ā¤ļøVVIP ROCKY Call Girl in Chennai
Ā 
šŸ’°Call Girl In Bangaloreā˜Žļø63788-78445šŸ’° Call Girl service in Bangaloreā˜ŽļøBangalo...
šŸ’°Call Girl In Bangaloreā˜Žļø63788-78445šŸ’° Call Girl service in Bangaloreā˜ŽļøBangalo...šŸ’°Call Girl In Bangaloreā˜Žļø63788-78445šŸ’° Call Girl service in Bangaloreā˜ŽļøBangalo...
šŸ’°Call Girl In Bangaloreā˜Žļø63788-78445šŸ’° Call Girl service in Bangaloreā˜ŽļøBangalo...
Ā 
Cardiac Output, Venous Return, and Their Regulation
Cardiac Output, Venous Return, and Their RegulationCardiac Output, Venous Return, and Their Regulation
Cardiac Output, Venous Return, and Their Regulation
Ā 
Guntur Call Girl Service šŸ“ž6297126446šŸ“žJust Call DivyašŸ“² Call Girl In Guntur No ...
Guntur Call Girl Service šŸ“ž6297126446šŸ“žJust Call DivyašŸ“² Call Girl In Guntur No ...Guntur Call Girl Service šŸ“ž6297126446šŸ“žJust Call DivyašŸ“² Call Girl In Guntur No ...
Guntur Call Girl Service šŸ“ž6297126446šŸ“žJust Call DivyašŸ“² Call Girl In Guntur No ...
Ā 
Call Girls in Lucknow Just Call šŸ‘‰šŸ‘‰8630512678 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call šŸ‘‰šŸ‘‰8630512678 Top Class Call Girl Service Avai...Call Girls in Lucknow Just Call šŸ‘‰šŸ‘‰8630512678 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call šŸ‘‰šŸ‘‰8630512678 Top Class Call Girl Service Avai...
Ā 
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service AvailableCall Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Ā 
ANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptxANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptx
Ā 
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Ā 
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service AvailableCall Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
Ā 
Russian Call Girls In Pune šŸ‘‰ Just CALL ME: 9352988975 āœ…ā¤ļøšŸ’Ælow cost unlimited ...
Russian Call Girls In Pune šŸ‘‰ Just CALL ME: 9352988975 āœ…ā¤ļøšŸ’Ælow cost unlimited ...Russian Call Girls In Pune šŸ‘‰ Just CALL ME: 9352988975 āœ…ā¤ļøšŸ’Ælow cost unlimited ...
Russian Call Girls In Pune šŸ‘‰ Just CALL ME: 9352988975 āœ…ā¤ļøšŸ’Ælow cost unlimited ...
Ā 
Call girls Service Phullen / 9332606886 Genuine Call girls with real Photos a...
Call girls Service Phullen / 9332606886 Genuine Call girls with real Photos a...Call girls Service Phullen / 9332606886 Genuine Call girls with real Photos a...
Call girls Service Phullen / 9332606886 Genuine Call girls with real Photos a...
Ā 
šŸ’ž Safe And Secure Call Girls CoimbatorešŸ§æ 6378878445 šŸ§æ High Class Coimbatore C...
šŸ’ž Safe And Secure Call Girls CoimbatorešŸ§æ 6378878445 šŸ§æ High Class Coimbatore C...šŸ’ž Safe And Secure Call Girls CoimbatorešŸ§æ 6378878445 šŸ§æ High Class Coimbatore C...
šŸ’ž Safe And Secure Call Girls CoimbatorešŸ§æ 6378878445 šŸ§æ High Class Coimbatore C...
Ā 
Call Girls Service Jaipur {9521753030 } ā¤ļøVVIP BHAWNA Call Girl in Jaipur Raj...
Call Girls Service Jaipur {9521753030 } ā¤ļøVVIP BHAWNA Call Girl in Jaipur Raj...Call Girls Service Jaipur {9521753030 } ā¤ļøVVIP BHAWNA Call Girl in Jaipur Raj...
Call Girls Service Jaipur {9521753030 } ā¤ļøVVIP BHAWNA Call Girl in Jaipur Raj...
Ā 

cell surface actin remodeling

  • 1. Cell surface actin remodeling Thomas P. Stossel1 , Gabriel Fenteany2 and John H. Hartwig1 1 Hematology Division, Brigham and Womenā€™s Hospital, Boston, MA, 02115 USA 2 Department of Chemistry, University of Illinois, Chicago, IL, 60607 USA Authors for correspondence (e-mail: tstossel@rics.bwh.harvard.edu; fenteany@uic.edu; hartwig@rics.bwh.harvard.edu) Journal of Cell Science 119, 3261-3264 Published by The Company of Biologists 2006 doi:10.1242/jcs.02994 Actin ļ¬lament remodeling at cell surfaces is a fundamental aspect of cellular life. Except for minor sequence variations, actin proteins are structurally identical. They have similar self-association properties and ATPase activities that accommodate their assembly into polarized semi-ļ¬‚exible ļ¬laments. The ļ¬lament polarity deļ¬nes the direction myosin motors move on them (from the pointed end to the barbed end). The barbed end is both more thermodynamically favored for new addition of actin monomer and more kinetically dynamic (fast exchanging) in the presence of ATP hydrolysis, which drives conformational changes in the exchanging subunits (Kuhn and Pollard, 2005). What makes actin truly interesting, however, is the variety of lengths and spatial conformations conferred upon it by hundreds of actin-binding proteins (ABPs). These control linear elongation, shortening and architectural organization of actin ļ¬laments in response to signaling cascades set in motion by environmental cues. The resulting exquisite variety of actin ļ¬lament lengths and spatial conļ¬gurations accounts for the diverse morphologies of eukaryotic cells and their highly speciļ¬c changes in shape. The survival and motility, albeit sometimes abnormal, of cells lacking ABPs that have powerful effects on actin in vitro imply that no single mechanism can explain surface actin remodeling for all cell types and occasions. This complexity is not surprising because the same or similar ABPs in highly motile amoeboid cells lacking permanent surface features can hardly be doing the same work that they do in a brush-border microvillus (which has a stable architecture) or within oocytes or yeast (which undergo relatively slow morphological changes). Indeed it is the details of actin remodeling that confer so much variety on cell behaviors. The problem of cell surface (cortical) actin remodeling, however, is not hopelessly impenetrable. Four decades of research have revealed ļ¬ndings consistent with a nine-step cycle of 3261Cell Science at a Glance (See poster insert) Thomas P. Stossel, Gabriel Fenteany and John H. Hartwig Cell Surface Actin Remodeling Ā© Journal of Cell Science 2006 (119, pp. 3261-3264) jcs.biologists.org Monomer sequestration Thymosins and profilins 9 8b 8c 1 2 Initiation Elongation 2 Barbed-end capping 1a Barbed-end uncapping 4 Branching amplification Arp 2/3 complex 5 Filament crosslinking Ī±-Actinins, filamins, fimbrins, esprins Weak severing Accelerated pointed- end depolymerization ADF/Cofillins Barbed-end capping Cap(Z)/(G), Adducin, Hsp27/70, Eps8 3a Strong filament severing and barbed-end capping Gelsolin family 8a Membrane attachment Spectrins, FERMS, talin, filamins, Ī±-actinins, catenin 7 Motoring and contraction Myosins 6 Lateral stabilization Tropomyosins, caldesmons, tropomodulin 3c Polymerization promoters, barbed-end capping inhibitors Profilins, (M)ENA, Drebrin, VASP, Dia, Formins, Vinculin, WASPs, Spir, CARMIL 3b 6 2 3c 3b 4 1 5 7 6 8a 3c 3a 8b,c 1a PI3KY PAKS TESK1 LIMKS ADF/cofilin 14-13-3Ī¶ Cronophin Slingshots Other capping proteins Actin disassembly Actin contraction Gelsolin MLCK Ca2+Rho ROCK PI-4K RacSrc Nck Calmodulin cAMP Stabilizers Src Calcineurin cAMP Rac HS1 Cortactin Cdc42 Toca-1 PIP-5K-1Ī± D4 Phosphoinositides Filamin Capping proteins Profilin, Ena/VASP, Fermins etc Signals leading to actin filament nucleation, branching and elongation Signals leading to actin filament cross-linking and membrane attachment Signals leading to actin filament disassembly Signals leading to activation of myosin for actin filament contraction Signals leading to myosin inactivation CARMIL Aib Actin gelation, membrane attachment Actin elongation WASPs Arp 2/3 WIPs P P P P P P P P P P P P Uncapping FERMs Ī±-Actinin cAMP cGMP Myosin II MLCP ADF/cofilin Grey text depicts molecules in more than one pathway Myosin II JournalofCellScience
  • 2. 3262 functions manifested by ABPs that can adequately explain many aspects of cortical actin remodeling, each step being responsive to signaling cascades. Here, we brieļ¬‚y summarize the key features of this cycle and their regulation. Notice that the outline of actin remodeling provided is based on information obtained from studies with different cell types but predominantly mammalian platelets, leukocytes, ļ¬broblasts, epithelial cells, neuronal cells and tumor cells. Initiation Initiation (see poster, step 1) deļ¬nes where and when actin ļ¬lament elongation occurs at the cell surface. Cells have several strategies for initiating new actin polymerization, including de novo nucleation by the Arp2/3 complex, formins and Spir (Nicholson-Dykstra et al., 2005; Rafelski and Theriot, 2004). Polymerization of actin from newly exposed actin ļ¬lament barbed ends is also a compelling mechanism for initiating new ļ¬lament assembly. Free barbed ends elicit diffusion-limited polymerization of actin subunits bound to actin-monomer-sequestering proteins, the thymosins and proļ¬lins (step 9) (Yarmola and Bubb, 2004). Barbed-end exposure can result from uncapping ā€“ the removal of numerous barbed-end- capping proteins (gelsolin family, CapZ, Hsp70, ankyrins, Eps8) (step 1a) (Allen, 2003; Barkalow et al., 2003; Disanza et al., 2004) ā€“ or from the action of ABPs that sever actin ļ¬laments without capping them (step 7b) (DesMarais et al., 2005). One thing that makes these mechanisms attractive is the fact that half of the nearly millimolar actin in most eukaryotic non-muscle cells exists as short ļ¬laments, which provide ample barbed ends for rapid elongatation when uncapped and exposed to the large reservoir of sequestered actin monomers that cannot spontaneously nucleate. This mechanism is linked to signaling cascades that regulate ABPs to promote new polymerization from pre-existing barbed ends. Key participants in these are polyphosphoinositides, which remove all known capping proteins from barbed ends. Agonists that promote cortical actin assembly generally do so through activation of the small GTPases Rac, Rho and Cdc42 (Jaffe and Hall, 2005), that in turn stimulate enzymes leading to focal polyphosphoinositide accumulation and actin ļ¬lament assembly and rearrangement (Niggli, 2005; Yin and Janmey, 2003). Elongation Actin ļ¬lament barbed-end capping by factors that promote or inhibit capping (see below) regulates the extent of actin ļ¬lament elongation (see poster, step 2). Termination Degradation of polyphosphoinositides, activation of the barbed-end-capping activity of CapG by Ca2+ and activation of Hsp70 or CapZ-interacting protein by phosphorylation (During et al., 2005; Eyers et al., 2005) terminate actin ļ¬lament elongation (see poster, step 3a). By contrast, the capping protein inhibitors ENA, VASP, proļ¬lin, formins and CARMIL promote elongation even in the presence of active capping proteins (step 3b) (Barzik et al., 2005; Bubb et al., 2003; Higgs, 2005; Kovar, 2006; Yang et al., 2005). Actin-ļ¬lament-stabilizing proteins such as tropomyosins, caldesmons, calponins, and tropomodulin (which also caps pointed ends in the presence of tropomyosin) (Fischer and Fowler, 2003) also promote elongation by retarding subunit depolymerization and inhibiting actin-depolymerizing ABPs, as described below (step 3c) (Bakin et al., 2004; Eyers et al., 2005; Mirzapoiazova et al., 2005). Branching Nucleation and transient 70Ā° branching (see poster, step 4) of actin ļ¬laments mediated by the Arp2/3 complex (Pollard and Borisy, 2003; Stradal and Scita, 2006; Vicente-Manzanares et al., 2005) is essential for the intracellular movements of certain pathogens (Listeria monocytogenes, Shigella, Salmonella and Rickettsia species and poxviruses) (Gouin et al., 2005), some vesicles, and for the normal dynamics of adhesive podosomes and related structures (Linder and Kopp, 2005). A role for Arp2/3-mediated actin ļ¬lament branching in leading-edge actin elongation is less certain, given high- resolution images preserving three- dimensionality (Medalia et al., 2002; Small et al., 2002), the absence of Arp2/3 from the leading edges of certain cells (Gupton et al., 2005; Strasser et al., 2004), the lack of an effect of Arp2/3 on actin ļ¬lament network rigidity required for lamellar extension (Nakamura et al., 2002) and the results of experiments employing RNAi in ļ¬broblasts (Di Nardo et al., 2005). Actin ļ¬lament crosslinking Bivalent actin-ļ¬lament-crosslinking proteins either abet or repel the inherent parallel alignment of actin ļ¬laments promoted by thermodynamic and ionic factors (see poster, step 5). Relatively small globular or rod-like ABPs, such as ļ¬mbrin, scruin, ā£-actinins and espins, stabilize actin bundles, whereas larger ABPs that have inherent spring-like properties, such as the ļ¬lamins, instead promote high-angle (orthogonal) ļ¬lament organization (Gardel et al., 2006; Gardel et al., 2004). ā£-Actinins, ļ¬lamins and spectrins, a family of membrane- associated crosslinking proteins, also function as scaffolds for signaling intermediates that stimulate actin elongation; so they are well positioned to direct the orientation of elongating actin ļ¬laments (Broderick and Winder, 2005; Feng and Walsh, 2004). Actin ļ¬lament contraction, cargo motoring, and membrane binding Parallel bundles and orthogonal networks represent extremes of the highly complex actin ļ¬lament arrangements observable at the cell surface by electron microscopy and other high-resolution techniques. Actin ļ¬lament conļ¬gurations are susceptible to deformation by contractile forces generated by bipolar myosin ļ¬laments (predominantly myosin II) (Landsverk and Epstein, 2005), which act especially on actin networks attached to membranes. Unconventional myosins primarily move vesicles and other cargoes along actin ļ¬laments (ā€˜motoringā€™) (see poster, step 6). Signals contributing to actin elongation, such as polyphosphoinositides, also increase binding of actin ļ¬laments and intermediary ABPs, including talin, vinculin, ļ¬lamins, catenins, ā£-actinins, and zyxin to certain receptors, including integrins (Ginsberg et al., 2005), cadherins (Drees et al., 2005), and proteins of the FERM family (Cho and Stahelin, 2005) (step 7). This brings actin ļ¬lament barbed ends close to the same signals that promote their elongation, Journal of Cell Science 119 (16) JournalofCellScience
  • 3. 3263 potentially amplifying the mass of elongating actin at the surface. The linkage between actin ļ¬laments and membranes is important for mechanical traction against substrates and retraction of membranes for shape changes and locomotion in response to contractile forces. This linkage is also essential for localizing signaling factors to initiate the formation of cell-substratum and cell- cell adhesions, as well as other cellular processes. Actin ļ¬lament disassembly The most efficient way to break down a network dominated by thread-like elements is to cut the threads. This approach disperses lattices of long actin ļ¬laments immobilized by interpenetration of ļ¬laments and shorter ļ¬laments cross- linked by ABPs. Two ABP families accomplish this task. The most efficient are proteins of the gelsolin family, which disrupt the interactions between actin subunits in ļ¬laments in response to Ca2+ or phosphorylation by Src kinase and then tightly cap the barbed ends of the severed ļ¬laments (Kumar et al., 2004) (see poster, step 8a). Ca2+ can also interfere with binding of crosslinking ABPs and thus destabilize actin networks. Ca2+ works with calmodulin to inhibit binding of ļ¬lamin to actin (Nakamura et al., 2005) and directly inhibits the binding of some ā£-actinins (Broderick and Winder, 2005). The second major actin-ļ¬lament-severing ABPs are proteins of the actin- depolymerizing factor (ADF)/coļ¬lin family, which weakly sever but do not cap the barbed ends of actin ļ¬laments (step 8b) (Fass et al., 2004). Barbed ends generated by coļ¬lin either serve as initiation sites for new elongation or become capped (step 3a), depending upon the signals present. A coļ¬lin-binding protein, Aip1, enhances coļ¬lin activity (Okada et al., 2002), as do two families of phosphatases, the slingshots and cronophin. The adaptor protein 14-3-3āØ antagonizes this effect. Phosphorylation of coļ¬lin by LIM kinase, downstream of Rac activation, inactivates coļ¬lin (Huang et al., 2005; Nishita et al., 2005). Actin- ļ¬lament-stabilizing proteins, particularly tropomyosins, also inhibit severing of actin ļ¬laments by coļ¬lin but are less effective against gelsolin family members, and different tropomyosin isoforms generated by alternative mRNA splicing confer subtlety on this inhibition (Gunning et al., 2005). Polyphosphoinositides strongly inhibit actin ļ¬lament severing by both protein families, which is consistent with their general propensity to promote actin ļ¬lament assembly. Although efficient at breaking down actin networks and providing more ļ¬lament ends, actin ļ¬lament severing does not directly contribute to maintenance of an actin monomer pool required for new ļ¬lament assembly. However, the coļ¬lin proteins, by accelerating subunit dissociation from pointed ends (ā€˜nibblingā€™) (step 8c) are the major drivers for this (Carlier et al., 1999). Monomer sequestration Proļ¬lins and, in mammalian cells, thymosins bind to actin monomers (see poster, step 9), preventing them from spontaneous nucleation. References Allen, P. (2003). Actin ļ¬lament uncapping localizes to ruffling lamellae and rocketing vesicles. Nat. Cell Biol. 5, 972-979. Bakin, A., Saļ¬na, A., Rinehart, C., Daroqui, C., Darbary, H. and Helfman, D. (2004). A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol. Biol. Cell 15, 4682-4694. Barkalow, K., Italiano, J., Jr, Chou, D., Matsuoka, Y., Bennett, V. and Hartwig, J. (2003). a-Adducin dissociates from F-actin and spectrin during platelet activation. J. Cell Biol. 161, 557-570. Barzik, M., Kotova, T., Higgs, H., Hazelwood, L., Hanein, D., Gertler, F. and Shafer, D. (2005). Ena/VASP proteins enhance actin polymerization in the presence of barbed end capping proteins. J. Biol. Chem. 280, 28653- 28662. Broderick, M. and Winder, S. (2005). Spectrin, alpha- actinin, and dystrophin. Adv. Protein Chem. 70, 203-246. Bubb, M., Yarmola, E., Gibson, B. and Southwick, F. (2003). Depolymerization of actin ļ¬laments by proļ¬lin. Effects of proļ¬lin on capping protein function. J. Biol. Chem. 278, 24629-24635. Carlier, M.-F., Ressad, F. and Pantaloni, D. (1999). Control of actin dynamics in cell motility. Role of ADF/Coļ¬lin. J. Biol. Chem. 274, 33827-33830. Cho, W. and Stahelin, R. (2005). Membrane-protein interactions in cell signaling and membrane trafficking. Annu. Rev. Biophys. Biomol. Struct. 34, 119-151. DesMarais, V., Ghosh, M., Eddy, R. and Condeelis, J. (2005). Coļ¬lin takes the lead. J. Cell Sci. 118, 19-26. Di Nardo, A., Cicchetti, G., Falet, H., Hartwig, J., Stossel, T. and Kwiatkowski, D. (2005). Arp2/3 complex-deļ¬cient mouse ļ¬broblasts are viable and have normal leading-edge structure and function. Proc. Natl. Acad. Sci. USA 102, 16263-16268. Disanza, A., Carlier, M.-F., Stradal, T., Didry, D., Frittoli, E., Confalonieri, S., Croce, A., Wehland, J., DiFiore, P. and Scita, G. (2004). Eps8 controls actin- based motility by capping the barbed ends of actin ļ¬laments. Nat. Cell Biol. 6, 1180-1188. Drees, F., Pokutta, S., Yamada, S., Nelson, S. and Weis, W. (2005). a-Catenin is a molecular switch that binds E- cadherin-ā¤-catenin and regulates actin-ļ¬lament assembly. Cell 123, 903-915. During, R., Li, W., Hao, B., Koenig, J., Stephens, D., Quinn, C. and Southwick, F. (2005). Anthrax lethal toxin paralyzes neutrophil actin-based motility. J. Infect. Dis. 192, 837-845. Eyers, C., McNeill, H., Knebel, A., Morrice, N., Arthur, S., Cuenda, A. and Cohen, P. (2005). The phosphorylation of CapZ-interacting protein (CapZIP) by stress-activated protein kinases triggers its dissociation from CapZ. Biochem. J. 389, 127-135. Fass, J., Gehler, S., Sarmiere, P., Letourneau, P. and Bamburg, J. (2004). Regulating ļ¬lopodial dynamics through actin-depolymerizing factor/coļ¬lin. Anat. Sci. Int. 79, 173-183. Feng, Y. and Walsh, C. (2004). The many faces of ļ¬lamin: a versatile molecular scaffold for cell motility and signalling. Nat. Cell Biol. 6, 1034-1038. Fischer, R. and Fowler, V. (2003). Tropomodulins: life at the slow end. Trends Cell Biol. 13, 593-601. Gardel, M., Shin, J., MacKintosh, F., Madhadevan, L., Matsudaira, P. and Weitz, D. (2004). Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301-1305. Gardel, M., Nakamura, F., Hartwig, J., Crocker, J., Stossel, T. and Weitz, D. (2006). Pre-stressed F-actin networks cross-linked by hinged ļ¬lamins replicate mechanical properties of cells. Proc. Natl. Acad. Sci. USA 103, 1762-1767. Ginsberg, M., Partridge, A. and Shattil, S. (2005). Integrin regulation. Curr. Opin. Cell Biol. 17, 509-516. Gouin, E., Welch, M. and Cossart, P. (2005). Actin- based motility of intracellular pathogens. Curr. Opin. Microbiol. 8, 35-45. Gunning, P., Schevzov, G., Kee, A. and Hardeman, E. (2005). Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol. 15, 333-341. Gupton, S., Anderson, K., Kole, T., Fischer, R., Ponti, A., Hitchcock-DeGregori, S., Danuser, G., Fowler, V., Wirtz, D., Hanein, D. et al. (2005). Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. J. Cell Biol. 168, 619-631. Higgs, H. (2005). Formin proteins: a domain-based approach. Trends Biochem. Sci. 30, 342-352. Huang, T., Dermardirossian, C. and Bokoch, G. (2005). Coļ¬lin phosphatases and regulation of actin dynamics. Curr. Opin. Cell Biol. 18, 26-31. Jaffe, A. and Hall, A. (2005). Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247-269. Kovar, D. (2006). Molecular details of formin-mediated actin assembly. Curr. Opin. Cell Biol. 18, 11-17. Kuhn, J. and Pollard, T. (2005). Real-time measurements of actin ļ¬lament polymerization by total internal reļ¬‚ection ļ¬‚uorescence microscopy. Biophys. J. 88, 1387-1402. Kumar, N., Tomar, A., Parrill, A. and Khurana, S. (2004). Functional dissection and molecular characterization of calcium-sensitive actin-capping and actin-depolymerizing sites in villin. J. Biol. Chem. 279, 45036-45046. Landsverk, M. and Epstein, H. (2005). Genetic analysis of myosin II assembly and organization in model organisms. Cell. Mol. Life Sci. 62, 2270-2282. Linder, S. and Kopp, P. (2005). Podosomes at a glance. J. Cell Sci. 118, 2079-2082. Medalia, O., Weber, I., Frangakis, A., Nicastro, D., Gerisch, G. and Baumeister, W. (2002). Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 1209-1213. Mirzapoiazova, T., Kolosova, I., Romer, L., Garcia, J. and Verin, A. (2005). The role of caldesmon in the regulation of endothelial cytoskeleton and migration. J. Cell Physiol. 203, 520-528. Nakamura, F., Osborn, E., Janmey, P. and Stossel, T. (2002). Comparison of ļ¬lamin A-induced cross-linking and Arp2/3 complex-mediated branching on the mechanics of actin ļ¬laments. J. Biol. Chem. 277, 9148-9154. Nakamura, F., Hartwig, J., Stossel, T. and Syzmanski, P. (2005). Ca2+ and calmodulin regulate binding of ļ¬lamin A to actin ļ¬laments. J. Biol. Chem. 280, 32426-32433. Nicholson-Dykstra, S., Higgs, H. N. and Harris, E. S. Journal of Cell Science 119 (16) JournalofCellScience
  • 4. 3264 (2005). Actin dynamics: growth from dendritic branches. Curr. Biol. 15, R346-R357. Niggli, V. (2005). Regulation of protein activities by phosphoprotein phosphates. Annu. Rev. Cell Dev. Biol. 21, 57-80. Nishita, M., Tomizawa, C., Yamamoto, M., Horita, Y., Ohashi, K. and Mizuno, K. (2005). Spatial and temporal regulation of coļ¬lin activity by LIM kinase and Slingshot is critical for directional cell migration. J. Cell Biol. 171, 349-359. Okada, K., Blanchoin, L., Abe, H., Chen, H., Pollard, T. and Bamburg, J. (2002). Xenopus actin-interacting protein 1 (XAip1) enhances coļ¬lin fragmentation of ļ¬laments by capping ļ¬lament ends. J. Biol. Chem. 277, 43011-43016. Pollard, T. and Borisy, G. (2003). Cellular motility driven by assembly and disassembly of actin ļ¬laments. Cell 112, 453-465. Rafelski, S. and Theriot, J. (2004). Crawling toward a uniļ¬ed model of cell motiility: spatial and temporal regulation of actin dynamics. Annu. Rev. Biochem. 73, 209-239. Small, J., Stradal, T., Vignal, E. and Rottner, K. (2002). The lamellipodium: where motility begins. Trends Cell Biol. 12, 112-120. Stradal, T. and Scita, G. (2006). Protein complexes regulating Arp2/3-mediated actin assembly. Curr. Opin. Cell Biol. 18, 4-10. Strasser, G., Rahim, N., VanderWaal, K., Gertler, F. and Lanier, L. (2004). Arp2/3 is a negative regulator of growth cone translocation. Neuron 43, 81-94. Vicente-Manzanares, M., Webb, D. and Horwitz, A. (2005). Cell migration at a glance. J. Cell Sci. 118, 4917- 4919. Yang, C., Pring, M., Wear, M., Huang, M., Cooper, J., Svitkina, T. and Zigmond, S. (2005). Mammalian CARMIL inhibits actin ļ¬lament capping by capping protein. Dev. Cell 9, 209-221. Yarmola, E. and Bubb, M. (2004). Effects of proļ¬lin and thymosin ā¤4 on the critical concentration of actin demonstrated in vitro and in cell extracts with a novel direct assay. J. Biol. Chem. 279, 33519-33527. Yin, H. and Janmey, P. (2003). Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 65, 761-789. Journal of Cell Science 119 (16) Cell Science at a Glance on the Web Electronic copies of the poster insert are available in the online version of this article at jcs.biologists.org. The JPEG images can be downloaded for printing or used as slides. Commentaries JCS Commentaries highlight and critically discuss recent exciting work that will interest those working in cell biology, molecular biology, genetics and related disciplines. These short reviews are commissioned from leading ļ¬gures in the ļ¬eld and are subject to rigorous peer-review and in-house editorial appraisal. Each issue of the journal usually contains at least two Commentaries. JCS thus provides readers with more than 50 Commentaries over the year, which cover the complete spectrum of cell science. The following are just some of the Commentaries appearing in JCS over the coming months. Roles of the centrosome Michel Bornens Spir proteins R. Dyche Mullins Non-apoptotic functions of caspases Bruce Hay Golgi fragmentation Jennifer Lippincott-Schwartz Mechanotransduction Chris Chen Nuclear actin Pavel Hozak Dorsal closure Daniel Kiehart p120 catenin Albert Reynolds Cargo-selective adaptors Linton Traub Non-centrosomal MT networks Greg Gundersen Filopodia Richard Cheney p53 outputs Karen Vousden Cancer stem cells Max Wicha Endomembrane evolution Joel Dacks Although we discourage submission of unsolicited Commentaries to the journal, ideas for future articles ā€“ in the form of a short proposal and some key references ā€“ are welcome and should be sent to the Executive Editor at the address below. Journal of Cell Science, Bidder Building, 140 Cowley Rd, Cambridge, CB4 0DL, UK E-mail: jcs@biologists.com; http://jcs.biologists.org JournalofCellScience