SlideShare a Scribd company logo
1 of 14
Download to read offline
 
 
 
“MULTI-PHASE FLOW IN WELLS” 
 
CREATED BY
TAREK AL-SAATI
 
1
2
   
Multiphase Flow in Wells
     Multiphase flow (the simultaneous flow of two or more phases of fluid) will occur in almost all the oil production 
wells, in many gas production wells, and in some types of injection wells. In an oil well, whenever the pressure drops 
below the bubble point, gas will evolve, and from that point to the surface, gas‐liquid flow will occur. Thus even in a well 
producing from an undersaturated reservoir, unless the surface pressure is above the bubble point, two‐phase flow will 
occur in the wellbore and/or tubing. Many oil wells also produce significant amounts of water, resulting in oil‐water 
flow or oil‐water‐gas three‐phase flow. 
 
     Two‐phase flow behavior depends strongly on the distribution of the phases in the pipe, which in turn depends on 
the direction of flow relative to the gravitational field. In this paper we will describe the upward two‐phase vertical flow 
in terms of predicting the flow regimes and calculating the pressure drops in gas‐liquid two‐phase flow in wells.
• Holdup Behavior 
 
     In two‐phase flow, the amount of the pipe occupied by a phase is often different from its proportion of the total 
volumetric flow rate. When two or more phases occur in a pipe, they tend to flow at different in‐situ velocities. These in‐
situ velocities depend on the density and viscosity of the phase. Typically, in upward two‐phase flow, the lighter phase 
will be moving faster than the denser phase. This causes a “slip” or holdup effect. Thus, because of this fact, called the 
holdup phenomena, the in‐situ volume fraction of the denser phase will be greater than the input volume fraction of 
the denser phase. That is, the denser phase is "held up" in the pipe relative to the lighter phase. 
 
     One measure of the holdup phenomenon that is commonly used in production log interpretation is the “slip 
velocity”. Slip velocity is defined as the difference between the average in‐situ velocities of the two phases. It is not an 
independent property from holdup, but is simply another way to represent the holdup phenomenon. In order to show 
the relation between holdup and slip velocity, the definition of the superficial velocity must be introduced.  
 
     The superficial velocity of a phase is defined as the volumetric flow rate of the phase divided by the cross‐sectional 
area of the pipe (as though that phase alone is flowing through the pipe). In other words, the superficial velocity of a 
phase would be the average in‐situ velocity of the phase filled the entire pipe; that is, if it were single‐phase flow. In two‐
phase flow, the superficial velocity is not a real velocity that physically occurs, but simply a convenient parameter.  
 
     The average in‐situ velocity of a phase is the superficial velocity of that phase divided by its holdup. Correlations 
for holdup are generally used in two‐phase pressure gradient calculations; the slip velocity is usually used to represent 
holdup behavior in production log interpretation. 
 
• Two‐Phase Flow Regimes 
     The manner in which the two phases are distributed in the pipe significantly affects other aspects of two‐phase flow, 
such as slippage between phases and the pressure gradient. The “flow regime” or flow pattern is a quantitative 
description of the phase distribution. In gas‐liquid, vertical, upward flow, four flow regimes are now generally agreed 
upon in the two phase literature: bubble, slug, churn, and annular flow. These occur as a progression with 
increasing gas rate for a given liquid rate. A brief description of these flow regimes is as follows. 
1. UBubble flowU: Dispersed bubbles of gas in a continuous liquid phase. 
 
2. USlug flowU: At higher gas rates, the bubble coalesce into larger bubbles, called Taylor bubbles, that eventually fill 
the entire pipe cross section. Between the large gas bubbles are slugs of liquid that contain smaller bubbles of gas 
entrained in the liquid. 
 
3. UChurn FlowU: With a further increase in gas rate, the larger gas bubbles become unstable and collapse, resulting 
in churn flow, a highly turbulent flow pattern with both phases dispersed. Churn flow is characterized by 
oscillatory, up and down motions of a liquid. 
 
4. UAnnular FlowU: At higher gas rates, gas becomes the continuous phase, with liquid flowing in an annuals coating 
the surface the surface of the pipe and with liquid droplets entrained in the gas phase.
 
The flow regime in gas‐liquid vertical flow can be predicted with a flow regime map, a plot relating flow regime to 
flow rates of each phase, fluid properties, and pipe size. One such map that is used for flow regime discrimination in 
some pressure drop correlations is that of Taitel and Dukler (1963). This map is based on a theoretical analysis of the 
flow regime transitions and must be generated for particular gas and liquid properties and for a particular pipe size. In 
fact, this map identifies five possible flow regimes: bubble, dispersed bubble (a bubble regime in which the bubbles are 
small enough that no slippage occurs), slug, churn, and annular. The slug/churn transition is significantly different 
than that of other flow regime maps in that churn flow is thought to be an entry phenomenon leading to slug flow in the 
Taitel‐Dukler theory. The D line show how many pipe diameters from the pipe entrance churn flow is expected to 
occur before slug flow develops.  
 
For example, 
  
IF the flow conditions fell on the D line labeled LE/D = 100,  
 
 ; is predicted to occurUchurn flowU, U from the pipe entrancepipe diameters100 or a distance of FU 
 
. is the predicted flow regimeUlug flowsU, U this distanceeyondBU 
3
4
In this paper we will consider correlations used to calculate the pressure drop in gas‐liquid two‐phase, 
vertical, flow in wells. Since the flow properties may change significantly along the pipe (mainly the gas 
density and velocity) in gas‐liquid flow, we must calculate the pressure gradient for a particular location in 
the pipe; the overall pressure drop is then obtained with a pressure traverse calculation procedure.  
 
One of the most commonly used two‐phase correlations is the modified Hagedorn and Brown method 
(Brown, 1977), and the Beggs and Brill method (Beggs and Brill, 1973). The first of these was developed for 
vertical, upward flow and is recommended only for near‐vertical wellbores; the Beggs and Brill Correlation can 
be applied for any wellbore inclination and flow direction.
  
TThhee  MMooddiiffiieedd  HHaaggeeddoorrnn  aanndd  BBrroowwnn  MMeetthhoodd    
The modified Hagedorn and Brown method (mH‐B) is an empirical two‐phase flow correlation based on the 
original work of Hagedorn and Brown (1965). This method is a correlation for liquid holdup; the 
modifications of the original method include using the no‐slip holdup when the original empirical correlation 
predicts a liquid holdup value less than the no‐slip holdup and the use of the Griffith correlation for the bubble flow 
regime. 
These correlations are selected based on the flow regime as follows:
usedisexistsFlowBubble
usedisexistNOTDOESFlowBubble
ncorrelatio
ncorrelatio
Griffith
)BmH(
13.02218.0071.1
2
⇒
⇒
⇒
−⇒
≥⎟
⎠
⎞
⎜
⎝
⎛
−=
λ
λ
gB
gB
B
L
L
L
IF
IF
D
um
p
f
AND 
 
 
LB is greater or equal to 0.13. 
                 IF the calculated value of LB is less than 0.13, LB is set to 0.13.
The input volume fractions, λl and λg, are parameters used in describing two‐phase flow. They are defined 
as
GasofctionFraInputThe
LiquidofctionFraInputThe
=
=
=
=
u
u
u
u
m
sg
g
m
s
λ
λ l
l
The mixture velocity used in H‐B is the sum of the superficial velocities,
VelocityMixtureThe
VelocitylSuperficiaGas
VelocitlSuperficiaLiquid y
=+
=
=
=
=
=
uuu
q
u
q
u
sgsm
g
sg
s
A
A
l
l
l
TTwwoo––PPhhaassee  PPrreessssuurree  GGrraaddiieenntt  MMooddeellss  
5
    FFllooww  RReeggiimmeess  ootthheerr  tthhaann  bbuubbbbllee  ffllooww::  
  
TThhee  OOrriiggiinnaall  HHaaggeeddoorrnn‐‐BBrroowwnn  CCoorrrreellaattiioonn
The liquid holdup, and hence, the average density, is obtained from a series of charts using four 
dimensionless numbers.
Where:
NumberViscosityLiquid
NumberDiameterPipe
NumberVelocityGas
NumberVelocityLiquid
4 3
4
4
115726.0
872.120
938.1
938.1
=
=
=
=
=
=
=
=
σρ
σ
ρ
ρ
σ
ρ
μ
σ
l
l
l
l
l
ll
N
N
uN
uN
L
D
sggv
sv
D
D = inside pipe diameter (ft)
usl = superficial liquid velocity (ft/s)
usg = superficial gas velocity (ft/s)
µL = liquid viscosity (cp)
ρL = liquid density (lb/ftP
3
P)
σ =                 gas / liquid surface tension (dynes/cm)
Various combinations of these parameters are then plotted against each other to determine the liquid holdup. 
The first curve provides a value for CNL. This CNL value is then used to calculate the dimensionless group, 
.
 can then be obtained from a plot 
)(
1.0575.0
1.0
Davg
vl
NPN
CNPN L
ψ
l
y .vs
yl
ψ
)(
1.0575.0
1.0
Davg
vl
NPN
CNPN L
14.2
380.0
N
NN
D
Lvg.vsψFinally, the third curve is a plot of 
 
 
 
 
 
Therefore, the in‐situ liquid volume fraction, which is denoted by ψ, is calculated by:
ψ
ψ
⎟
⎠
⎞
⎜
⎝
⎛
= l
l
y
y
ONCE AGAIN 
First, CNL is obtained from the following figure 
 
 
6
Then the following group is calculated 
 
From the following figure 
 
 
 
HHaaggeeddoorrnn aanndd BBrroowwnn CCoorrrreellaattiioonn ffoorr CCNNLL ((11996655))
)(
1.0575.0
1.0
Davg
vl
NPN
CNPN L
 
Then the following group is calculated  
 pressure. catmospheri the is
a
 and
  wanted,isgradient  pressure  wherelocation theat  pressure obsolute the is  Here.    
p
p
ψ
l
y
get  we
 
 
14.2
380.0
N
NN
D
Lvg
Figure.thefromreadisFinally, )( fornCorrelatioBrownandHagedorn ψψ
then is up  The hold liquid
ψ
ψ
⎟
⎠
⎞
⎜
⎝
⎛
= l
l
y
y
equation following the from calculated then is  The density mixture
lll yy ρρρ )1( g +−=
as defined , 
 using  a on based is  The
number Reynolds mixture a
factor friction fanninggradient pressure frictional
)1(Re
μμ
ρ
y
g
y
l
ll
muD
N −
=
OR, in terms of mass flow rate and using field units,
102.2
)1(
2
Re
μμ y
g
y
l
ll
D
m
N −
−
×
=
&
 
 
7
 
 
The fanning friction factor is obtained from the following (Moody Friction Factor) diagram
An explicit equation   for the friction factor with similar accuracy to the Colebrook‐White equation     
(Gregory and Fogarasi, 1985) is the Chen equation (Chen, 1979): 
Finally, the form of the mechanical energy balance equation used in the Hagedorn‐Brown 
Correlation is
8
GradientPressureoverallThe
KEPETotal
=⎟
⎠
⎞
⎜
⎝
⎛
+⎟
⎠
⎞
⎜
⎝
⎛
+⎟
⎠
⎞
⎜
⎝
⎛
=⎟
⎠
⎞
⎜
⎝
⎛
dz
dp
dz
dp
dz
dp
dz
dp
F
Where:
( ) GradientPressureEnergyKineticThe
GradientPressureFrictionalThe
GradientPressureEnergyPotentialThesin
2
2
2
2
KE
PE
=
=
=
Δ
Δ=
=
=
⎟
⎠
⎞
⎜
⎝
⎛
⎟
⎠
⎞
⎜
⎝
⎛
⎟
⎠
⎞
⎜
⎝
⎛
z
gu
dz
dp
g
f
dz
dp
g
g
dz
dp
cm
D
c
m
c
u
F
ρ
ρ
ρ θ
Gas‐Liquid Flow through Chokes
 
     The flow rate from almost all flowing wells is controlled with a wellhead choke, a device that places a restriction in 
the flow line (Fig. A). A variety of factors may make it desirable to restrict the production rate from a flowing well, 
including the prevention of coning or sand production, satisfying production rate limits set by regulatory authorities, 
and meeting limitations of rate or pressure imposed by surface equipment.
Figure A
 
 
 
 
 
9
 
     When gas or gas‐liquid mixtures flow through a choke, the fluid may be accelerated sufficiently to reach sonic 
velocity in the throat of the choke. When this condition occurs, the flow is called "critical," and changes in the pressure 
downstream of the choke do not affect the flow rate, because pressure disturbances cannot travel upstream faster than 
the sonic velocity. (Note: Critical flow is not related to the critical point of the fluid.) Thus, to predict the flow rate‐
pressure drop relationship for compressible fluids flowing through a choke, we must determine whether or not the flow 
is critical.
         
     In fact, there are two types of flow behavior across chokes, namely, critical and sub‐critical. From the 
aforementioned, the critical flow occurs when the fluid velocity at the smallest cross section in the restriction is equal to 
the velocity of sound (sonic velocity) at that medium. But when the fluid velocity is less than the velocity of sound, 
sub‐critical flow occurs. If the flow is sub‐critical, the flow rate is related to the pressure drop across the restriction.  On 
the other hand, if the flow is critical, the rate is only related to the upstream pressure, thus reduction in downstream 
pressure does not affect the rate since the reduction can never be transmitted upstream. 
  
     Figure B shows the dependence of flow rate through a choke on the ratio of the downstream to 
upstream pressure for a compressible fluid, with the rate being independent of the pressure ratio when the 
flow is critical. 
 
Figure B 
     Predicting the flow pattern, critical/sub‐critical boundary, as well as the flow rate across the 
choke is crucial for well productivity and optimization. 
 
     In this section, we will examine the flow of liquid, gas, and gas liquid mixtures through chokes.           
 
10
 
 
Single‐Phase Liquid Flow 
 
     The flow through a wellhead choke will rarely consist of single‐phase liquid, since the flowing tubing pressure is 
almost always below the bubble point. However, when this does occur, the flow rate is related to the pressure drop 
across the choke by 
 
ρ
pg
ACq
cΔ
=
2
 
Where:                                        C = the flow coefficient of the choke 
                                                        A = the cross‐sectional area of the choke 
  
     The flow coefficient through for flow through nozzles is given in Crane’s Figure (Crane, 1957) as a function of 
e Reynolds number in the choke and the ratio of the choke diameter to the pipe diameter.   th
      
The top equation is derived by assuming that the pressure drop through the choke is equal to the kinetic energy 
pressure drop divided by the square of a drag coefficient. This equation applies for Sub‐critical flow, which will usually 
be the case for single‐phase liquid flow. 
 
     For oilfield units, the Single‐Phase Liquid Flow Equation becomes 
 
( )
ρ
p
DCq
Δ
= 2
2
800,22 
Where q is in bbl/d, D2 is the choke diameter in inches, Δp is in psi, and ρ is in lbm/ft^3. The choke 
diameter is often referred to as the “bean size,” because the device in the choke that restricts the flow is called the 
bean. Bean sizes are usually given in 64P
th
P of an inch.   
 
 
Single‐Phase Gas Flow 
 
     When a compressible fluid passes through a restriction, the expansion of the fluid is important factor. For isentropic 
flow of an ideal gas through a choke, the rate is related to the pressure ratio, p2/p1, by (Szilas, 1975) 
 
 
( )
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
⎟
⎠
⎞
⎜
⎝
⎛
−⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
+
p
p
p
p
T
Rg
p
T
pDq
g
c
sc
sc
g
1
2
1
2
12
1
1
2
2
197.28
2
4
γ
γ
γ
γ
γ
γ
α
π
 
 
 
Which can be expressed in oil field units as 
  
 
( )
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
⎟
⎠
⎞
⎜
⎝
⎛
−⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
=
+
p
p
p
p
Tp
p
Dq
gsc
g
1
2
1
2
12
1
12
64
1
1
505.3
γ
γ
γ
γ
γ
γ
α 
 
11
 
Where qg is in MSCF/d, D46 is the choke diameter (bean size) in 64ths of inches, 
Δp is in psi, T1 is the temperature upstream of the choke in °R, γ is the heat capacity ratio, Cp/ Cv, α 
is the flow coefficient of the choke, γg is the gas gravity, psc is the standard pressure, and p1 and p2 are 
the pressure upstream and downstream of the choke, respectively. 
 
     The Single‐Phase Gas Flow Equations apply when the pressure ratio is equal to or greater than the critical 
pressure ratio, given by 
 
( )
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+
=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛ −
1
2 1
1
2
γ
γ
γ
p
p
c
 
  
     When the pressure ratio is less than the critical pressure ratio, p2/p1 should be set to (p2/p1) c  
 
and the single gas flow equation is used, since the flow rate is insensitive to the downstream pressure whenever the flow 
is critical. For air and other diatomic gases, γ is approximately 1.4, and the critical  
 
pressure ratio is 0.53. 
 
     In petroleum engineering operations, it is commonly assumed that flow through a choke is critical 
whenever the downstream pressure is less than about half of the upstream pressure.  
 
 
 
 
 
 
 
  
 
Gas‐Liquid Flow 
 
     Two phase flow through a choke has not been described well theoretically. To determine the flow rate of two phases 
through a choke, empirical correlations for critical flow are generally used. Some of these correlations for critical flow 
are generally used. Some of these correlations are claimed to be valid up to pressure ratios of 0.7 (Gilbert, 1954). 
One means of estimating the conditions for critical two‐phase flow through a choke is to compare the velocity in the 
choke with the two‐phase sonic velocity, given by Wallis (1969) for homogeneous mixtures as 
 
[ ]
⎪⎭
⎪
⎬
⎫
⎪⎩
⎪
⎨
⎧
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
++=
−
vv
v
lcl
l
gcg
g
llggc 22
2
1
ρ
λ
ρ
λ
ρλρλ
Where vc is the sonic velocity of the two‐phase mixture and vgc and v         lc are the sonic velocities of the gas 
and liquid, respectively. 
  
     The empirical correlations of Gilbert (1954) and Ros (1960) have the same form, namely, 
 
  
( )
D
GLRqA
p C
B
l
64
1
= 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
 
 
 
 
 
 
 
 
 
 
differing only in the empirical constants A, B, C, given in the bottom table. The upstream pressure, p1, is in psig 
in the Gilbert correlation and psia in Ros’s correlation. In these correlations, ql, is the liquid rate in bbl/d, 
GLR is the producing gas‐liquid ratio in SCF/bbl, and D46 is the choke diameter in 64P
th
P of an inch. 
 
 
 
     When a well is being produced with critical flow through a choke, the relationship between the wellhead pressure 
and the flow rate is controlled by the choke, since down‐stream pressure disturbances (such as a change in separator 
pressure) do not affect the flow performance through the choke. Thus, the attainable flow rate from a well for a given 
choke can be determined by matching the choke performance with the well performance, as determined by a 
combination of the well IPR and the vertical lift performance. The choke performance curve is a plot of the 
flowing tubing pressure versus the liquid flow rate, and can be obtained from the two‐phase choke 
correlations, assuming that the flow is critical.  
 
 
     Example: Using the Gilbert correlation, we would like to construct performance curves for 16/64‐, 
 16/64‐, and 16/64‐in. chokes for a well with a GLR of 500.  
 
     Solution:  The Gilbert correlation predicts that the flowing tubing pressure is a linear function of the liquid 
flow rate, with an intercept at the origin. Using the empirical correlation of Gilbert (1954), we find 
 
 
chokefor
chokefor
chokefor
6432
6424
6416
43.0
73.0
57.1
in./
in./
in./
qp
qp
qp
ltf
ltf
ltf
−
−
−
=
=
=
 
 
 
These relationships are plotted in Fig. C, along with a well performance curve. The intersections of the choke 
performance curves with the well performance curve are the flow rates that would occur with these choke sizes. Note 
that the choke correlation is valid only when the flow through the choke is critical. For each choke, there will be a flow 
rate below which flow through a choke is sub‐critical. This region is indicated by the dashed portions of the choke 
performance curves—the predictions are not valid for these conditions.  
 
 
 
 
13
 
 
 
 
 
 
Figure B 
 
 
 
 
THE END 
 
14

More Related Content

What's hot

Q922+re2+l10 v1
Q922+re2+l10 v1Q922+re2+l10 v1
Q922+re2+l10 v1AFATous
 
Tubing Performance Relation (TPR)
Tubing Performance Relation (TPR)Tubing Performance Relation (TPR)
Tubing Performance Relation (TPR)James Craig
 
Q913 re1 w4 lec 13
Q913 re1 w4 lec 13Q913 re1 w4 lec 13
Q913 re1 w4 lec 13AFATous
 
Production optimization using gas lift technique
Production optimization using gas lift techniqueProduction optimization using gas lift technique
Production optimization using gas lift techniqueJarjis Mohammed
 
Q921 re1 lec7 v1
Q921 re1 lec7 v1Q921 re1 lec7 v1
Q921 re1 lec7 v1AFATous
 
Applied reservoir eng
Applied reservoir engApplied reservoir eng
Applied reservoir engmohamad1286
 
Q913 re1 w5 lec 17
Q913 re1 w5 lec 17Q913 re1 w5 lec 17
Q913 re1 w5 lec 17AFATous
 
Reservoir simulation (april 2017)
Reservoir simulation (april 2017)Reservoir simulation (april 2017)
Reservoir simulation (april 2017)NghiaHuynh47
 
Reservoir simulation (april 2017)
Reservoir simulation (april 2017)Reservoir simulation (april 2017)
Reservoir simulation (april 2017)MichaelDang47
 
Productivity index
Productivity indexProductivity index
Productivity indexNabeelshykh
 
Hydrocarbon Phase Behaviour
Hydrocarbon Phase BehaviourHydrocarbon Phase Behaviour
Hydrocarbon Phase BehaviourM.T.H Group
 
Q921 re1 lec10 v1
Q921 re1 lec10 v1Q921 re1 lec10 v1
Q921 re1 lec10 v1AFATous
 
Well Test Analysis in Horizontal Wells
Well Test Analysis in Horizontal WellsWell Test Analysis in Horizontal Wells
Well Test Analysis in Horizontal WellsSohil Shah
 
140717 artificial lift
140717 artificial lift140717 artificial lift
140717 artificial liftAli Okasha
 
Production optimization using prosper
Production optimization using prosperProduction optimization using prosper
Production optimization using prosperMd. Shahadot Hossain
 
Water coning in oil wells and DWS technology
Water coning in oil wells and DWS technologyWater coning in oil wells and DWS technology
Water coning in oil wells and DWS technologyshubhamsaxena2329
 
Petroleum Artificial Lift Overview
Petroleum Artificial Lift OverviewPetroleum Artificial Lift Overview
Petroleum Artificial Lift OverviewAndi Anriansyah
 
A Study Of Production Optimization Of An Oil Copy
A Study Of Production Optimization Of An Oil   CopyA Study Of Production Optimization Of An Oil   Copy
A Study Of Production Optimization Of An Oil Copyaadrish
 

What's hot (20)

Q922+re2+l10 v1
Q922+re2+l10 v1Q922+re2+l10 v1
Q922+re2+l10 v1
 
Tubing Performance Relation (TPR)
Tubing Performance Relation (TPR)Tubing Performance Relation (TPR)
Tubing Performance Relation (TPR)
 
Q913 re1 w4 lec 13
Q913 re1 w4 lec 13Q913 re1 w4 lec 13
Q913 re1 w4 lec 13
 
Production optimization using gas lift technique
Production optimization using gas lift techniqueProduction optimization using gas lift technique
Production optimization using gas lift technique
 
Q921 re1 lec7 v1
Q921 re1 lec7 v1Q921 re1 lec7 v1
Q921 re1 lec7 v1
 
Applied reservoir eng
Applied reservoir engApplied reservoir eng
Applied reservoir eng
 
Q913 re1 w5 lec 17
Q913 re1 w5 lec 17Q913 re1 w5 lec 17
Q913 re1 w5 lec 17
 
Reservoir simulation (april 2017)
Reservoir simulation (april 2017)Reservoir simulation (april 2017)
Reservoir simulation (april 2017)
 
Reservoir simulation (april 2017)
Reservoir simulation (april 2017)Reservoir simulation (april 2017)
Reservoir simulation (april 2017)
 
Gas lift design
Gas lift designGas lift design
Gas lift design
 
Productivity index
Productivity indexProductivity index
Productivity index
 
Hydrocarbon Phase Behaviour
Hydrocarbon Phase BehaviourHydrocarbon Phase Behaviour
Hydrocarbon Phase Behaviour
 
Q921 re1 lec10 v1
Q921 re1 lec10 v1Q921 re1 lec10 v1
Q921 re1 lec10 v1
 
Well Test Analysis in Horizontal Wells
Well Test Analysis in Horizontal WellsWell Test Analysis in Horizontal Wells
Well Test Analysis in Horizontal Wells
 
140717 artificial lift
140717 artificial lift140717 artificial lift
140717 artificial lift
 
Production optimization using prosper
Production optimization using prosperProduction optimization using prosper
Production optimization using prosper
 
Water coning in oil wells and DWS technology
Water coning in oil wells and DWS technologyWater coning in oil wells and DWS technology
Water coning in oil wells and DWS technology
 
Analisis nodal
Analisis nodalAnalisis nodal
Analisis nodal
 
Petroleum Artificial Lift Overview
Petroleum Artificial Lift OverviewPetroleum Artificial Lift Overview
Petroleum Artificial Lift Overview
 
A Study Of Production Optimization Of An Oil Copy
A Study Of Production Optimization Of An Oil   CopyA Study Of Production Optimization Of An Oil   Copy
A Study Of Production Optimization Of An Oil Copy
 

Similar to Theories of Multiphase Flow in Wells

Two Phase Flow Research
Two Phase Flow ResearchTwo Phase Flow Research
Two Phase Flow ResearchRex Liu
 
dispalcement presseur.pptx
dispalcement presseur.pptxdispalcement presseur.pptx
dispalcement presseur.pptxssuser0c4fb4
 
Ch#1 ADVANCED OPEN CHANNEL HYDRAULICS.pdf
Ch#1 ADVANCED OPEN CHANNEL HYDRAULICS.pdfCh#1 ADVANCED OPEN CHANNEL HYDRAULICS.pdf
Ch#1 ADVANCED OPEN CHANNEL HYDRAULICS.pdfHadiqa Qadir
 
Non mechanical valves
Non mechanical valvesNon mechanical valves
Non mechanical valvesRaju Gupta
 
Reservoir fluid flow types
Reservoir fluid flow typesReservoir fluid flow types
Reservoir fluid flow typesNouh Almandhari
 
Q922+re2+l02 v1
Q922+re2+l02 v1Q922+re2+l02 v1
Q922+re2+l02 v1AFATous
 
Seminar on water influx and well testing
Seminar on water influx and well testingSeminar on water influx and well testing
Seminar on water influx and well testingRupam_Sarmah
 
Low pressure system in anaesthesia machine
Low pressure system in anaesthesia machineLow pressure system in anaesthesia machine
Low pressure system in anaesthesia machineSwadheen Rout
 
Introduction Effective Permeability & Relative Permeability
Introduction Effective Permeability & Relative PermeabilityIntroduction Effective Permeability & Relative Permeability
Introduction Effective Permeability & Relative PermeabilityM.T.H Group
 

Similar to Theories of Multiphase Flow in Wells (20)

Two Phase Flow Research
Two Phase Flow ResearchTwo Phase Flow Research
Two Phase Flow Research
 
Presentacion aquiferos
Presentacion aquiferosPresentacion aquiferos
Presentacion aquiferos
 
Gas absorbtion
Gas absorbtionGas absorbtion
Gas absorbtion
 
Control valve-sizing
Control valve-sizingControl valve-sizing
Control valve-sizing
 
Hydroelectric power plants (chapter 5)
Hydroelectric power plants   (chapter 5)Hydroelectric power plants   (chapter 5)
Hydroelectric power plants (chapter 5)
 
dispalcement presseur.pptx
dispalcement presseur.pptxdispalcement presseur.pptx
dispalcement presseur.pptx
 
Ch#1 ADVANCED OPEN CHANNEL HYDRAULICS.pdf
Ch#1 ADVANCED OPEN CHANNEL HYDRAULICS.pdfCh#1 ADVANCED OPEN CHANNEL HYDRAULICS.pdf
Ch#1 ADVANCED OPEN CHANNEL HYDRAULICS.pdf
 
FlowTypesRE.pdf
FlowTypesRE.pdfFlowTypesRE.pdf
FlowTypesRE.pdf
 
Non mechanical valves
Non mechanical valvesNon mechanical valves
Non mechanical valves
 
Continuous Distillation with Reflux Ratio
Continuous Distillation with Reflux RatioContinuous Distillation with Reflux Ratio
Continuous Distillation with Reflux Ratio
 
Reservoir fluid flow types
Reservoir fluid flow typesReservoir fluid flow types
Reservoir fluid flow types
 
Capillary Rise
Capillary RiseCapillary Rise
Capillary Rise
 
SAGD process at pore scale
SAGD process at pore scaleSAGD process at pore scale
SAGD process at pore scale
 
Q922+re2+l02 v1
Q922+re2+l02 v1Q922+re2+l02 v1
Q922+re2+l02 v1
 
Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
 
Seminar on water influx and well testing
Seminar on water influx and well testingSeminar on water influx and well testing
Seminar on water influx and well testing
 
Low pressure system in anaesthesia machine
Low pressure system in anaesthesia machineLow pressure system in anaesthesia machine
Low pressure system in anaesthesia machine
 
Shrink and swell
Shrink and swellShrink and swell
Shrink and swell
 
Introduction Effective Permeability & Relative Permeability
Introduction Effective Permeability & Relative PermeabilityIntroduction Effective Permeability & Relative Permeability
Introduction Effective Permeability & Relative Permeability
 
Flumping
FlumpingFlumping
Flumping
 

Recently uploaded

power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 

Recently uploaded (20)

power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 

Theories of Multiphase Flow in Wells