SlideShare a Scribd company logo
1 of 67
Download to read offline
PANEPISTHMIO PATRWN
TMHMA MAJHMATIKWN
DIARMONIKES UPOPOLLAPLOTHTES THS
SFAIRAS S3
STELLA SEREMETAKH
MAJHMATIKOS
ErgasÐa gia metaptuqiakì dÐplwma eidÐkeushc
sta Jewrhtikˆ Majhmatikˆ
Epiblèpwn : Lèktorac Andrèac Arbanitoge¸rgoc
PATRA 2006
EuqaristÐec
Jewr¸ kaj kon, na ekfrˆsw tic eilikrineÐc kai pio jermèc mou euqaristÐec
ston epiblèponta Lèktora Andrèa Arbanitogèwrgo kaj¸c kai kai sta ˆl-
la dÔo mèlh thc TrimeloÔc Sumbouleutik c Epitrop c, Kajhght  BasÐleio
PapantwnÐou kai Kajhght  Ajanˆsio Kotsi¸lh gia th sumbol  touc sthn
teleiopoÐhsh aut c thc metaptuqiak c ergasÐac.
Jewr¸ epÐshc upoqrèws  mou na euqarist sw thn oikogèneiˆ mou gia thn
hjik  kai oikonomik  upost rixh pou mou prìsferan katˆ th diˆrkeia twn
spoud¸n mou.
Stèlla Seremetˆkh
Pˆtra, Septèmbrioc 2006
Perieqìmena
Prìlogoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
1 Basikèc 'Ennoiec 1
2 Logismìc twn metabol¸n 13
2.1 Eisagwg  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Armonikèc kai diarmonikèc apeikonÐseic 23
3.1 Armonikèc apeikonÐseic . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Diarmonikèc apeikonÐseic . . . . . . . . . . . . . . . . . . . . . 38
4 Diarmonikèc Upopollaplìthtec 41
4.1 Eisagwg  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Diarmonikèc kampÔlec sthn S3
. . . . . . . . . . . . . . . . . . 42
4.3 Diarmonikèc epifˆneiec sthn S3
. . . . . . . . . . . . . . . . . 49
bibliografÐa 61
i
ii PERIEQŸOMENA
Prìlogoc
Skopìc thc ergasÐac aut c eÐnai h anaz thsh twn diarmonik¸n upopol-
laplot twn Mm
, m = 1, 2, thc sfaÐrac S3
.
H mèjodoc pou efarmìzoume sundèetai me thn arq  logismoÔ twn metabol¸n
wc mia mèjodoc sullog c twn bèltistwn antikeimènwn apì ènan q¸ro X me
ton ex c trìpo:
(1) Sullègoume ìla ta antikeÐmena sto q¸ro X.
(2) Epilègoume mia katˆllhlh sunˆrthsh E ston X. Tìte ta mègista  
elˆqista thc sunˆrthshc eÐnai ta bèltista antikeÐmena pou anazhtˆme.
Pio sugkekrimèna, ja parousiˆsoume me ekten  trìpo apotelèsmata apì tic
ergasÐec [6] , [8] twn R. Caddeo, S. Montaldo, C. Oniciuc, oi opoÐec aforoÔn
diarmonikèc upopollaplìthtec thc sfaÐrac S3
.
Analutikìtera, h diˆrjrwsh thc ergasÐac èqei ¸c ex c:
Sto kefˆlaio 1 parousiˆzontai sunoptikˆ orismoÐ kai ènnoiec apì th jewrÐa
pollaplot twn pou apaitoÔntai gia thn parousÐash thc metaptuqiak c er-
gasÐac.
Sto kefˆlaio 2 parousiˆzetai o sun jhc trìpoc prosèggishc tou logismoÔ
twn metabol¸n kaj¸c kai kˆpoiec gnwstèc jewrÐec pou phgˆzoun apì tic
mejìdouc metabol¸n.
Sto kefˆlaio 3 orÐzontai oi ènnoiec thc armonik c kai diarmonik c apeikì-
nishc metaxÔ duo pollaplot twn Riemann kai dÐnontai paradeÐgmata tètoiwn
apeikonÐsewn.
Sto kefˆlaio 4 anazhtoÔme tic diarmonikèc kampÔlec kai tic diarmonikèc epifˆneiec
thc sfaÐrac S3
. Oi kentrikèc mac anaforèc eÐnai oi ergasÐec [8] , [11] twn R.
Caddeo, S. Montaldo, C. Oniciuc kai J. Eells, L. Lemaire.
Kefˆlaio 1
Basikèc 'Ennoiec
Orismìc 1.1. Onomˆzoume topologik  pollaplìthta diˆstashc
n ènan sunektikì topologikì q¸ro tou Hausdorff me thn idiìthta se kˆje
shmeÐo tou na upˆrqei perioq  omoiomorfik  me èna anoiktì uposÔnolo tou
Rn
.
Tètoia pollaplìthta gia parˆdeigma eÐnai o q¸roc Rn
.
Orismìc 1.2. Topikìc qˆrthc pˆnw se mia n-diˆstath topologik  pol-
laplìthta M lègetai kˆje duˆda (U, φ) ìpou φ eÐnai h omoiomorfik  apeikì-
nish φ : U ⊆ Mn
→ V ⊆ Rn
, ìpou U eÐnai èna anoiktì uposÔnolo thc Mn
kai V èna anoiktì uposÔnolo tou EukleÐdiou q¸rou Rn
.
JewroÔme èna qˆrth (U, φ) miac topologik c pollaplìthtac Mn
. Tìte kˆje
shmeÐo p ∈ U kajorÐzetai apì tic suntetagmènec {x1(p), x2(p), ..., xn(p)} tou
shmeÐou φ(p) ∈ Rn
. Dhlad , xi(p) = xi(φ(p)) = (xi ◦ φ)(p), i = 1, 2, ..., n.
An to sÔnolo U eÐnai sunektikì, tìte oi arijmoÐ xi(p) lègontai topikèc
suntetagmènec tou shmeÐou p wc proc to qˆrth (U, φ) kai h n-ˆda twn
sunart sewn
xi : U ⊆ M → R
1
2 KEFŸALAIO 1. BASIKŸES ŸENNOIES
p → xi(p) = (φ(p))i , i = 1, 2, ..., n
lègetai sÔsthma topik¸n suntetagmènwn sto U wc proc to qˆrth
(U, φ), ìpou h i-suntetagmènh tou p eÐnai h i-suntetagmènh tou φ(p).
Epomènwc kˆje topikìc qˆrthc thc M orÐzei èna topikì sÔsthma suntetag-
mènwn aut c.
Orismìc 1.3. Onomˆzoume ˆtlanta diˆstashc n kai klˆshc Cr
pˆn-
w se mia n-diˆstath topologik  pollaplìthta M, mia oikogèneia topik¸n
qart¸n Uα = {, Uαφα}α∈I (ìpou I eÐnai èna sÔnolo deikt¸n), pou ikanopoieÐ
ta parakˆtw axi¸mata :
(1) Ta sÔnola Uα kalÔptoun thn topologik  pollaplìthta M, dhlad 
α∈I
Uα = M
(2) An Uα ∩ Uβ = ∅, oi omoiomorfismoÐ φα kai φβ eÐnai tètoioi ¸ste o o-
moiomorfismìc
φβ ◦ φ−1
α : φα(Uα ∩ Uβ) ⊆ Rn
→ φβ(Uα ∩ Uβ) ⊆ Rn
na eÐnai amfidiaforÐsimoc klˆshc Cr
.
Orismìc 1.4. Oi qˆrtec c1 = (Uα, φα) kai c2 = (Uβ, φβ) klˆshc
Cr
, pˆnw se mia n-diˆstath topologik  pollaplìthta M, onomˆzonai Cr
-
sumbibastoÐ, an
(1) Uα ∩ Uβ = ∅,   efìson Uα ∩ Uβ = ∅,
(2) h apeikìnish
φβ ◦ φ−1
α : φα(Uα ∩ Uβ) ⊆ Rn
→ φβ(Uα ∩ Uβ) ⊆ Rn
na eÐnai klˆshc Cr
.
3
Orismìc 1.5. DÔo Cr
-ˆtlantec U1,U2 diˆstashc n miac topologik c pol-
laplìthtac M onomˆzontai Cr
-sumbibastoÐ, an
(1) U1 ∪ U2 eÐnai pˆli ènac Cr
-ˆtlantac thc M kai
(2) An c1 ∈ U1 kai c2 ∈ U2 eÐnai dÔo tuqaÐoi qˆrtec, tìte oi qˆrtec autoÐ
eÐnai Cr-sumbibastoÐ.
Orismìc 1.6. DiaforÐsimh pollaplìthta diˆstashc n kai klˆshc
Cr
, onomˆzoume kˆje n-diˆstath topologik  pollaplìthta M, efodiasmènh
me mia klˆsh isodÔnamwn Cr
-sumbibast¸n atlˆntwn pˆnw sth M.
Upojètoume ìti M eÐnai mia diaforÐsimh pollaplìthta diˆstashc n, tˆxhc
diaforisimìthtac r(  klˆshc Cr
) kai ìti A eÐnai èna anoiktì uposÔnolo thc
M.
Orismìc 1.7. H sunˆrthsh f : A ⊆ M → R onomˆzetai diaforÐsimh
tˆxhc r (  klˆshc Cr
) pˆnw sto A an h sunˆrthsh
f ◦ φ−1
: φ(U ∩ A) ⊆ Rn
→ R
eÐnai diaforÐsimh gia kˆpoio qˆrth (U, φ) pˆnw sth M.
To sÔnolo twn diaforÐsimwn sunart sewn klˆshc Cr
, pou orÐzontai sth n-
diˆstath pollaplìthta M klˆshc Cr
, sumbolÐzetai me Dr
(M), en¸ to sÔnolo
twn diaforÐsimwn sunart sewn pou orÐzontai sthn pollaplìthta M, klˆshc
C∞
, sumbolÐzetai me D0
(M).
4 KEFŸALAIO 1. BASIKŸES ŸENNOIES
Orismìc 1.8. H apeikìnish f : A ⊆ Mn
→ Nm
onomˆzetai dia-
forÐsimh klˆshc Cr
sto shmeÐo p ∈ A, an gia kˆje qˆrth (U, φ) thc M
kai (V, ψ) thc N tètoio ¸ste p ∈ U kai f(p) ∈ V , h apeikìnish
F = ψ ◦ f ◦ φ−1
: φ(U ∩ f−1
(V )) ⊆ Rn
→ Rm
na eÐnai diaforÐsimh klˆshc Cr
sto shmeÐo φ(p) ∈ Rn
.
'Estw to sÔnolo Dr
(M, p) ìlwn twn diaforÐsimwn sunart sewn klˆshc Cr
sto shmeÐo p ∈ M. To sÔnolo Dr
(M, p) apoteleÐ dianusmatikì q¸ro, o
opoÐoc gÐnetai ˆlgebra an orÐsoume wc deÔtero nìmo eswterik c sÔnjeshc
ton pollaplasiasmì sunart sewn.
Orismìc 1.9. An p eÐnai èna tuqaÐo shmeÐo thc n-diˆstathc pollaplìthtac
M kai X = (X1
, X2
, ..., Xn
) èna diˆnusma sto shmeÐo p, onomˆzoume
Efaptìmeno diˆnusma sto shmeÐo p thc n-diˆstathc pollaplìthtac M
thn apeikìnish
Xp : Dr
(M, p) → R
me tim 
Xp(φ) =
n
i
(
∂φ
∂xi
)Xi
p
pou ikanopoieÐ tic parakˆtw sunj kec :
(1) Xp(λf + µg) = λXpf + µXpg
(2) Xp(fg) = f(p)Xg(f) + g(p)Xp(f),
gia kˆje f, g ∈ Dr
(M, p), λ, µ ∈ R
To sÔnolo twn efaptìmenwn dianusmˆtwn sto shmeÐo p miac diaforÐsimhc pol-
laplìthtac M, apoteleÐ dianusmatikì q¸ro. Ton dianusmatikì autì q¸ro ton
5
lème efaptìmeno q¸ro thc M sto shmeÐo p kai ja ton sumbolÐzoume
me TpM.
Orismìc 1.10. O duikìc q¸roc tou TpM eÐnai o grammikìc q¸roc pou
apoteleÐtai apì to sÔnolo twn grammik¸n apeikonÐsewn me pedÐo orismoÔ to
q¸ro TpM kai timèc sto sÔnolo R. O q¸roc autìc sumbolÐzetai me T∗
p M,
eÐnai isomorfikìc me ton TpM kai onomˆzetai sunefaptìmenoc q¸roc thc M
sto p. H sullog  ìlwn twn efaptìmenwn (sunefaptìmenwn) q¸rwn thc M
se kˆje shmeÐo aut c sumbolÐzetai me TM (T∗
M antÐstoiqa) kai lègetai e-
faptìmenh dèsmh (sunefaptìmenh dèsmh antÐstoiqa),
TM =
p∈M
TpM = (p, Xp); p ∈ M, Xp ∈ TpM
kai
T∗
M =
p∈M
T∗
p M
Orismìc 1.11. Mia diaforik  morf  pr¸thc tˆxhc   diaforik  1-morf 
epÐ thc diaforÐsimhc pollaplìthtac M onomˆzetai h apeikìnish
ω : M →
p∈M
T∗
p M
h opoÐa se kˆje shmeÐo p ∈ M antistoiqeÐ to sunefaptìmeno diˆnusma ωp
tou sunefaptìmenou q¸rou T∗
p M. Dhlad  gia kˆje p ∈ M h antÐstoiqh di-
aforik  1-morf  eÐnai mia grammik  morf  pˆnw ston TpM, (ωp : TpM → R).
Ean D1
(M) eÐnai to sÔnolo twn dianusmatik¸n pedÐwn epÐ thc M kai D1(M)
to duikì tou sÔnolo, tìte wc diaforÐsimec 1-morfèc orÐzontai ta stoiqeÐa tou
6 KEFŸALAIO 1. BASIKŸES ŸENNOIES
D1(M) ìpou D1(M) = ω; ω : D1
(M) → D0
(M) kai h ω eÐnai diaforÐsimh
grammik  apeikìnish en¸ D0
(M) eÐnai o q¸roc twn diaforÐsimwn sunart sewn.
'Estw M, N dÔo diaforÐsimec pollaplìthtec kai φ mia apeikìnish apì th
M sth N.
Orismìc 1.12. H apeikìnish
dφp : TpM → Tφ(P)N
me tim 
dφp : Xp → dφp(Xp)
onomˆzetai diaforikì thc apeikìnishc φ : M → N sto shmeÐo p. Sum-
bolÐzetai epÐshc kai me φ∗p kai eÐnai mia grammik  apeikìnish tou efaptìmenou
q¸rou TpM ston efaptìmeno q¸ro Tφ(p)N, ìpou,
dφp(Xp) : D0
(N) → R
dφp(Xp) : g → dφp(Xp)g = Xp(g ◦ ϕ)
Orismìc 1.13. An φ : M → N eÐnai mÐa diaforÐsimh apeikìnish, to
diaforikì dφp thc φ sto p ∈ M eÐnai mÐa grammik  apeikìnish
dφp : TpM → R
me tim  pou orÐzetai mèsw thc apeikìnishc
dφp : Xp → dφp(Xp)
7
kai exaitÐac thc isomorfik c taÔtishc Tφ(p)R ≡ R èqoume
dφp(Xp) = Xp(φ)
Orismìc 1.14. 'Estw φ : M → N mia diaforÐsimh apeikìnish metaxÔ twn
pollaplot twn M kai N kai èstw ω ∈ T∗
M. Onomˆzoume apeikìnish
epistrof c (pull back) thc ω mèsou thc φ thn apeikìnish
φ∗
ω : Tφ(p)N → TpM
me tim 
φ∗
ω(u1, u2, u3) = ω(φ∗(u1), ..., φ∗(un))
gia kˆje ui ∈ TpM, i = 1, 2, ..., n kai p ∈ M.
Orismìc 1.15. O metrikìc tanust c Riemann eÐnai ènac sunalloÐ-
wtoc tanust c tÔpou (0,2), tètoioc ¸ste se kˆje shmeÐo p ∈ M antistoiqeÐ
thn apeikìnish
, : TpM × TpM → R
me tic akìloujec idiìthtec:
1. (i) vp + wp, zp kai (ii) λvp, wp = λ vp, wp
2. vp, wp = wp, vp
3. vp, vp ≥ 0 me vp, vp = 0 an kai mìno an vp = 0,
gia kˆje vp, wp, zp ∈ TpM.
Orismìc 1.16. Kˆje pollaplìthta M efodiasmènh me mia metrik  Riemann
, , lègetai pollaplìthta Riemann.
Orismìc 1.17. Sunoq    sunalloÐwth parˆgwgo se mia C∞
−
pollaplìthta M kaloÔme thn apeikìnish :
: D1
(M) × D1
(M) → D1
(M)
8 KEFŸALAIO 1. BASIKŸES ŸENNOIES
(X, Y ) → XY
pou ikanopoieÐ tic akìloujec sunj kec :
(1) X(Y + Z) = XY + XZ
(2) X+Y Z = XZ + Y Z
(3) fXY = f XY
(4) X(fX) = (Xf)Y + f XY
gia kˆje f ∈ C∞
(M) kai X, Y ∈ D1
(M)
(me D1
(M) sumbolÐzoume to sÔnolo ìlwn twn dianusmatik¸n pedÐwn epÐ thc
M.)
Orismìc 1.18. Gia kˆje dianusmatikì pedÐo X, Y ∈ D1
(M) to diaforÐsimo
dianusmatikì pedÐo thc M,
[X, Y ] = XY − Y X
pou dra sto q¸ro D0
(M) twn diaforÐsimwn sunart sewn thc M me tim 
[X, Y ]f = X(Y f) − Y (Xf)
pou eÐnai epÐshc mia diaforÐsimh sunˆrthsh, gia kˆje f ∈ D0
(M), lègetai
agkÔlh tou Lie twn dianusmatik¸n pedÐwn X, Y tou D1
(M).
Je¸rhma 1.1. 'Estw (M, g) mia C∞
− pollaplìthta Riemann diˆstashc
n. H sunoq  pou ikanopoieÐ th sqèsh
2g( XY, Z) = X(g(Y, Z))+Y (g(Z, X))−Z(g(X, Y ))+g(Z, [X, Y ])+g(Y, [Z, X])−g(X, [Y, Z])
gia kˆje X, Y, Z ∈ D1
(M), kaleÐtai Levi-Civita
Epiplèon h sunoq  Levi-Civita ikanopoieÐ tic sunj kec
(1) X(g(Y, Z)) = g( XY, Z) + g(Y, XZ)
(2) XY − Y X = [X, Y ]
Antistrìfwc, kˆje sunoq  pou ikanopoieÐ tic (1) kai (2) eÐnai Levi-Civita.
9
Orismìc 1.19. Tanustikì pedÐo kampulìthtac R miac pol-
laplìthtac M efodiasmènhc me mia sÔndesh kaleÐtai to tanustikì pedÐo
tÔpou (1,3) me tim 
R(X, Y )Z = X Y Z − Y XZ − [X,Y ]Z, gia kˆje X, Y, Z ∈ D1
(M).
To tanustikì pedÐo kampulìthtac ikanopoieÐ tic akìloujec sqèseic:
(1) R(X, Y )Z = −R(Y, X)Z
(2) R(X1 + X2, Y ) = R(X1, Y ) + R(X2, Y )
(3) R(X, Y1 + Y2) = R(X, Y1) + R(X, Y2)
(4) R(fX, gY )hZ = fghR(X, Y )Z
Eˆn h sunoq  eÐnai summetrik , tìte isqÔoun oi tautìthtec
(5) R(X, Y )Z + R(Y, Z)X + R(Z, X)Y = 0
(6) ( XR)(Y, Z)W + ( Y R)(Z, X)W + ( ZR)(X, Y )W = 0
gia kˆje X, Y, Z ∈ D1
(M) kai f, g, h ∈ D0
(M).
Oi tautìthtec (5) kai (6) kaloÔntai pr¸th kai deÔterh tautìthta tou Bianchi
antÐstoiqa.
Orismìc 1.20. SunalloÐwto tanustikì pedÐo twn Cristoffel-
Riemann lègetai h tetragrammik  apeikìnish
R : D1
(M) × D1
(M) × D1
(M) × D1
(M) → D0
(M) me tim 
R(X, Y, Z, W) = g(R(X, Y )Z, W) gia kˆje X, Y, Z, W ∈ D1
(M).
To sunalloÐwto tanustikì pedÐo twn Cristoffel-Riemann ikanopoeÐ tic akìlou-
jèc idiìthtec:
(1) R(X, Y, Z, W) = −R(Y, X, Z, W) = −R(X, Y, W, Z) = R(Y, X, Z, W)
10 KEFŸALAIO 1. BASIKŸES ŸENNOIES
(2) R(X, Y, Z, W) + R(X, Z, W, Y ) + R(X, W, Y, Z) = 0
(3) ( XR)(Y, Z, W, V ) + ( Y R)(Z, X, W, V ) + ( ZR)(X, Y, W, V ) = 0
'Ena ˆllo tanustikì pedÐo pou orÐzetai apì to tanustikì pedÐo twn Cristoffel-
Riemann , eÐnai to tanustikì pedÐo tou Ricci kai gia kˆje shmeÐo thc
pollaplìthtac M o antÐstoiqoc tanust c tou Ricci.
'Estw p ∈ M tuqaÐo shmeÐo thc pollaplìthtac M kai TpM o efaptìmenoc
q¸roc aut c sto shmeÐo p. JewroÔme thn apeikìnish
R(−, X)Y : TpM → TpM
me tim 
R(−, X)Y : Z → R(Z, X)Y
Orismìc 1.20. O tanust c tou Ricci orÐzetai wc to Ðqnoc thc apeikìni-
shc, R(−, X)Y , gia kˆje X, Y ∈ TpM, kai sumbolÐzetai me S(X, Y )   Ric(X, Y ).
Me th bo jeia topikoÔ sust matoc suntetagmènwn {xi}n
i=1, o tanust c tou
Ricci grˆfetai wc èxhc:
S(X, Y ) = Ric(X, Y ) =
n
i=1
g(R(ei, X)Y, ei) =
n
i=1
R(ei, X, Y, ei)
ìpou X, Y ∈ TpM kai {e1, e2, ..., en} eÐnai mia orjokanonik  bˆsh tou TpM wc
proc to topikì sÔsthma suntetagmènwn {xi}n
i=1.
Orismìc 1.21. Metasqhmatismìc tou Ricci   telest c kampu-
lìthtac tou Ricci sto shmeÐo p ∈ M, wc proc to efaptìmeno diˆnusma
X ∈ TpM, lègetai h apeikìnish
Sx = R(−, X)X : TpM → TpM
me tim 
Sx : Y → Sx(Y ) = R(Y, X)X
11
Orismìc 1.22. Bajmwt  kampulìthta thc pollaplìthtac (M, g)
lègetai h sunˆrthsh sg h opoÐa orÐzetai apì th sustol  twn deikt¸n tou
tanustikoÔ pedÐou tou Ricci kai dÐnetai apì th sqèsh
sg =
n
i,j=1
gij
Sij =
n
i=1
Ric(ei, ei) =
n
i=1
g(Qei, ei)
ìpou Q = n
i=1 R(−, ei)ei eÐnai o metasqhmatismìc tou Ricci kai {e1, e2, ..., en}
eÐnai mia orjokanonik  bˆsh tou TpM.
Orismìc 1.23. Gia dÔo grammik¸c anexˆrthta dianÔsmata u, v tou
efaptìmenou q¸rou TpM sto p thc pollaplìthtac Riemann (M, g) o arijmìc
K(u, v) =
g(R(u, v)v, u)
g(u, u)g(v, v) − g(u, v)2
lègetai kampulìthta tom c thc (M, g) wc proc to zeÔgoc u, v . H
(M, g) èqei jetik  (arnhtik ) kampulìthta tom c eˆn gia kˆje p ∈ M kai
gia duo grammik¸c anexˆrthta dianÔsmata u, v tou TpM, K(u, v) ≥ 0,
(K(u, v) ≤ 0).
12 KEFŸALAIO 1. BASIKŸES ŸENNOIES
Kefˆlaio 2
Logismìc twn metabol¸n
2.1 Eisagwg 
O logismìc twn metabol¸n eÐnai mia jewrÐa pou basÐzetai sthn idèa ìti eÐnai
dunatìn na ermhneujoÔn pollˆ fainìmena sta majhmatikˆ kai sth fusik  wc
krÐsima shmeÐa sunarthsoeid¸n. Sto kefˆlaio autì ja parousiˆsoume merikèc
shmantikèc jewrÐec twn majhmatik¸n kai thc fusik c, oi opoÐec proèrqontai
apì mejìdouc tou logismoÔ metabol¸n (variational methods) kaj¸c kai pa-
radeÐgmata twn mejìdwn aut¸n. H arq  tou logismoÔ twn metabol¸n eÐnai mia
mèjodoc sullog c twn bèltistwn apì mia sullog  majhmatik¸n antikeimènwn
me ton ex c trìpo:
(1) Sullègoume ìla ta antikeÐmena apì èna q¸ro X.
(2) Epilègoume mia katˆllhlh sunˆrthsh E ston X. Ta mègista   ta
elˆqista thc sunˆrthshc aut c eÐnai ta bèltista antikeÐmena pou anazhtoÔme.
ArketoÐ epist monec, ìpwc oi I. Newton, G.W. Leibnitz, P.L. Maupertuis, L.
Euler kai J.L. Lagrange asqol jhkan me to logismì metabol¸n.
13
14 KEFŸALAIO 2. LOGISMŸOS TWN METABOLŸWN
O sunhjismènoc trìpoc prosèggishc tou logismoÔ twn metabol¸n eÐnai o
ex c:
(1) Sto q¸ro X jewr¸ to diaforikì E thc sunˆrthshc E.
(2) Eˆn to x ∈ X eÐnai èna apì ta bèltista majhmatikˆ antikeÐmena tìte
autì epitugqˆnei thn elaqistopoÐhsh   th megistopoÐhsh thc sunˆrthshc E.
Epomènwc h parˆgwgoc thc E mhdenÐzetai sto x, dhlad  E (x) = 0.
(3) To shmeÐo x pou ikanopoieÐ th sqèsh E (x) = 0 kaleÐtai krÐsimo
shmeÐo. H parapˆnw sqèsh antistoiqeÐ sthn exÐswsh twn Euler-Lagrange.
(4) Skopìc eÐnai na lujeÐ h exÐswsh aut .
Kˆpoiec forèc sqediˆzoume thn antÐstrofh diadikasÐa:
(1) Jèloume na lÔsoume tic diaforikèc exis¸seic kˆpoiou problhmatìc mac
(2) Gia na pragmatopoihjeÐ autì, jewroÔme ènan q¸ro X kai mia sunˆrthsh
E ston X ètsi ¸ste h exÐswsh twn Euler-Lagrange na antistoiqeÐ sthn exÐsw-
sh tou problhmatìc mac.
(3) ArkeÐ tìte na brejeÐ èna elˆqisto   mègisto thc sunˆrthshc E ston X.
Sto mèso thc dekaetÐac tou 1960, oi R. Palais kai S. Smale dieukrÐnhsan kˆtw
apì poièc sunjhkèc h sunˆrthsh E èqei elˆqista. H sunj kh aut  kaleÐtai
sunj kh twn Palais-Smale (P-S) kai perigrˆfetai wc ex c : Upojètoume ìti
(M, g) eÐnai mia Ck+1
-pollaplìthta Riemann kai f : M → N mia Ck+1
-
sunˆrthsh ( k ≥ 1) kai èstw S èna uposÔnolo thc M. H f ikanopoieÐ th
sunj kh (P-S) eˆn isqÔoun ta ex c:
(1) H f eÐnai fragmènh sto S kai
(2) inf f(x) : x ∈ S = 0
Tìte upˆrqei shmeÐo x sth j kh ¯S tou S, ètsi ¸ste to x na eÐnai krÐsimo
shmeÐo thc f, dhlad  fx= 0. ( f : M → fx ∈ TxM gia kˆje x ∈ M).
2.1. EISAGWGŸH 15
Gia na exhg soume th sunj kh (P-S) jewroÔme to ex c parˆdeigma :
'Estw duo sunart seic f kai g ston M = R me tÔpouc,
(1) f(x) = x2
, −∞ < x < ∞
(2) g(x) = ex3
, −∞ < x < ∞
Kai oi duo sunart seic èqoun infima mhdèn. H pr¸th èqei elˆqisto sto
shmeÐo (0, 0), en¸ h deÔterh den èqei elˆqisto.
PoÔ ofeÐletai to parapˆnw fainìmeno;
H apˆnthsh eÐnai ìti h sunˆrthsh f(x) ikanopoieÐ th sunj kh (P-S), en¸
h sunˆrthsh g(x) ìqi. SumbaÐnei wstìso, gia kˆpoia probl mata pou den
ikanopoioÔn th sunj kh (P-S) h sunˆrthsh E na èqei elˆqisto.
1.1. Mèjodoc twn metabol¸n kai jewrÐec pedÐou
H mèjodoc twn metabol¸n brÐskei efarmog  sth fusik , kurÐwc stic jew-
rÐec pedÐou (field theories). Se aut n th parˆgrafo ja d¸soume mia eikìna
twn armonik¸n apeikonÐsewn kai ˆllwn jewri¸n pedÐou. EÐnai gnwstì ìti
sth fÔsh upˆrqoun tessˆrwn eid¸n dunˆmeic, h barÔthta (gravitation), h h-
lektromagnhtik  dÔnamh (electromagnetism), h asjènhc allhlepÐdrash (weak
interaction) kai h isqur  allhlepÐdrash (strong interaction). Eqoun gÐnei
prospˆjeiec na sumperilhfjoÔn oi dunˆmeic autèc se mia enwpoihmènh jewrÐa
pedÐou. H barÔthta èqei perigrafeÐ apì th jewrÐa sqetikìthtac tou Einstein
kai o hlektromagnhtismìc apì th jewrÐa tou Maxwell. Autèc oi tèsseric
dunˆmeic èqoun katagrafeÐ apì touc fusikoÔc wc jewrÐec bajmÐdac.
Ja perigrˆyoume tic jewrÐec autèc ìpwc phgˆzoun apì tic mejìdouc metabol¸n.
Metrikèc tou Einstein
'Estw M mia pollaplìthta diˆstas c m kai X o q¸roc ìlwn twn metrik¸n
Riemann g sth M pou èqoun ìgko monˆda. 'Estw E h sunˆrthsh ston X,
16 KEFŸALAIO 2. LOGISMŸOS TWN METABOLŸWN
pou dÐdetai apì th sqèsh
E(g) =
M
Sgvg, g ∈ X,
ìpou Sg h bajmwt  kampulìthta thc g kai vg to stoiqeÐo ìgkou pou dÐnetai
apì th sqèsh vg = det(gij).dx1...dxm
H sunˆrthsh E onomˆzetai sunarthsoeidèc olik c kampulìthtac.
JewroÔme mia tuqaÐa metabol  (deformation) gt , (− < t < ) , g0 = g thc g.
Tìte h g eÐnai krÐsimo shmeÐo thc E ston X an kai mìno an
d
dt t=0
E(gt) = 0
to opoÐo apodeiknÔetai ìti isodunameÐ me thn exÐswsh
Ric(g) = cg
ìpou Ric(g) eÐnai o tanust c Ricci thc g kai c mia stajerˆ.
Mia metrik  g pou ikanopoieÐ th parapˆnw exÐswsh kaleÐtai metrik  tou Ein-
stein.
Sunoqèc Yang - Mills (Yang - Mills Connections)
Estw E mia dianusmatik  dèsmh se mia sumpag  pollaplìthta Riemann
(M, g). JewroÔme to q¸ro X ìlwn twn sunoq¸n thc dianusmatik c dèsmhc
E kai th sunˆrthsh E ston X me tÔpo
E( ) =
1
2 M
R
2
vg, ∈ X
O R eÐnai o tanust c kampulìthtac thc sunoq c sth dianusmatik 
dèsmh E. JewroÔme mia metabol  (deformation) t , (− < t < ), 0 =
thc .
Tìte h sunoq  apoteleÐ krÐsimo shmeÐo thc E an kai mìno an
d
dt t=o
E( t) = 0
2.1. EISAGWGŸH 17
Ta krÐsima shmeÐa tou parapˆnw sunarthsoeidoÔc kaloÔntai sunoqèc Yang-
Mills.
Armonikèc apeikonÐseic
'Estw dÔo sumpageÐc pollaplìthtec Riemann (M, g) kai (N, h) kai èstw
to sÔnolo X ìlwn twn leÐwn apeikonÐsewn apì th M sth N, dhlad  X =
C∞
(M, N). 'Estw h sunˆrthsh E ston X pou dÐnetai apì th sqèsh
E(φ) =
1
2 M
|dφ|2
vg, φ ∈ X
ìpou h apeikìnish dφ : TM → TN eÐnai to diaforikì thc φ.
'Estw mia tuqoÔsa metabol  φt , (− < t < ) , φ0 = φ , thc φ.
(Bl. sq ma 2.1)
Tìte, h φ eÐnai armìnikh apeikìnish an kai mìno an eÐnai krÐsimo shmeÐo
thc E, dhlad  an kai mìno an
d
dt t=0
E(φt) = 0
Parˆdeigma : Kleistèc gewdaisiakèc sth sfaÐra
'Estw mia kleist  diaforÐsimh kampÔlh φ(x) = (φ1(x), φ2(x), φ3(x)), x ∈
[0, 2π] ston R3
me perÐodo 2π. (Periodikìthta shmaÐnei ìti: φ(x+2π) = φ(x),
dhlad  φi(x + 2π) = φi(x), i = 1, 2, 3). AnazhtoÔme tic kampÔlec ekeÐnec pou
apoteloÔn krÐsima shmeÐa tou sunarthsoeidoÔc thc enèrgeiac
E(φ) =
1
2
2π
0
3
i=1
dφi
dx
2
dx
'Estw φε(x) = (φε,1(x), φε,2(x), φε,3(x)), x ∈ [0, 2π] mia metabol  thc φ me
φ0 = φ kai φε(x + 2π) = φε(x), x ∈ [0, 2π]
'Eqoume ìti
d
dε ε=0
E(φε) =
1
2
2π
0
d
dε ε=0
3
i=1
dφε,i
dx
2
dx =
2π
0
3
i=1
d
dε ε=0
dφε,i(x)
dx
dφi(x)
dx
dx
18 KEFŸALAIO 2. LOGISMŸOS TWN METABOLŸWN
=
3
i=1
d
dε ε=0
φε,i(x)
dφi(x)
dx
x=2π
x=0
−
2π
0
3
i=1
d
dε ε=0
φε,i(x)
d2
φi(x)
dx2
dx
Epeid  oi φε,i kai φi eÐnai periodikèc me perÐodo 2π o pr¸toc ìroc tou deÔterou
mèlouc mhdenÐzetai, opìte prokÔptei ìti
d
dε ε=0
E(φε) =
2π
0
3
i=1
d
dε ε=0
φε,i(x)
d2
φε,i(x)
dx2
dx
Epiplèon, epeid  h φε(x) = (φε,1(x), φε,2(x), φε,3(x)) eÐnai mia leÐa metabol 
thc φ tìte kai h
d
dε ε=0
φε(x) =
d
dε ε=0
φε,1(x),
d
dε ε=0
φε,2(x),
d
dε ε=0
φε,3(x)
eÐnai leÐa periodik  apeikìnish .
Epomènwc h φ eÐnai krÐsimo shmeÐo thc enèrgeiac an kai mìno an
d
dε ε=0
E(φε) = 0,
  isodÔnama
d2
φi(x)
dx2
= 0, i = 1, 2, 3
H lÔsh twn exis¸sewn eÐnai
φi(x) = Bix + Ai, i = 1, 2, 3
ìpou ta Ai, Bi eÐnai stajerèc. ExaitÐac thc periodikìthtac twn φi(x) èqoume
ìti (x + 2π)Bi + Ai = xBi + Ai,dhlad  Bi = 0, opìte φi(x) = Ai gia kˆje
x ∈ [0, 2π]. Epeid  oi lÔseic pou lambˆnoume sth perÐptwsh aut  eÐnai mìno
oi tetrimmènec, eisˆgoume ton ex c periorismì: ApaitoÔme oi kampÔlec φ na
brÐskontai sth monadiaÐa sfaÐra S2
= (y1, y2, y3) ∈ R3
; y2
1 + y2
2 + y2
3 = 1 kai
anazhtoÔme ta krÐsima shmeÐa thc E, metaxÔ twn kampul¸n aut¸n.
2.1. EISAGWGŸH 19
Me ton Ðdio trìpo pou perigrˆyame parapˆnw, jewroÔme mia metabol  φε(x)
thc φ , x ∈ [0, 2π] . Tìte h φ ∈ S2
eÐnai krÐsimo shmeÐo an kai mìno an
d
dε ε=0
E(φε) = 0
  isodÔnama
2π
0
3
i=1
d
dε ε=0
φε,i(x)
d2
φi(x)
dx2
= 0
Sto shmeÐo autì prèpei na lˆboume upìyhn to periorismì φε(x) ∈ S2
, x ∈
[0, 2π]. Gia to lìgo autì, jewroÔme ton efaptìmeno q¸ro
TyS2
= V ∈ R3
; V, y = 0 thc S2
se èna y ∈ S2
, pou eÐnai to kˆjeto
epÐpedo sto diˆnusma y.
Kˆje diˆnusma V ∈ R3
mporeÐ na analujeÐ se duo sunist¸sec, mia sto kˆ-
jeto q¸ro (TyS2
)
⊥
kai mia ston TyS2
, dhlad  V = V, y y + (V − V, y y)
ExaitÐac thc sunj khc φε(x) ∈ S2
gia kˆje x ∈ [0, 2π], to φε(x), φε(x) = 1.
ParagwgÐzontac th teleutaÐa sqèsh sto ε = 0 kai lambˆnontac upìyh ìti
φ0(x) = φ(x) èqoume ìti
(
d
dε
)
ε=0
φε(x), φε(x) = 0
dhlad 
(
d
dε
)
ε=0
φε(x) ∈ Tφ(x)S2
Lìgw thc sqèshc V = V, y y + (V − V, y y) to diˆnusma
d2
φ
dx
=
d2
φ1
dx2
,
d2
φ2
dx2
,
d2
φ3
dx2
analÔetai wc ex c :
d2
φ
dx2
=
d2
φ(x)
dx2
, φ(x) φ(x) +
d2
φ(x)
dx2
−
d2
φ(x)
dx2
, φ(x) φ(x)
kai epeid  o deÔteroc ìroc an kei ston Tφ(x)S2
autìc eÐnai mhdèn.
'Ara,
d2
φ(x)
dx2
=
d2
φ(x)
dx2
, φ(x) φ(x)
20 KEFŸALAIO 2. LOGISMŸOS TWN METABOLŸWN
ParagwgÐzoume th sqèsh φ(x), φ(x) = 1 gia kˆje x sto [0, 2π] kai èqoume
dφ(x)
dx
, φ(x) = 0
ParagwgÐzontac xanˆ paÐrnoume
d2
φ(x)
d2(x)
, φ(x) +
dφ(x)
dx
,
dφ(x)
dx
= 0
  isodÔnama
d2
φ(x)
dx2
, φ(x) = −
dφ(x)
dx
,
dφ(x)
dx
ExaitÐac thc teleutaÐac sqèshc h
d2
φ(x)
dx2
=
d2
φ(x)
dx2
, φ(x) φ(x)
paÐrnei th morf 
d2
φ(x)
d2(x)
+
dφ(x)
dx
,
dφ(x)
dx
φ(x) = 0
Sth sunèqeia paragwgÐzoume to eswterikì ginìmeno
dφ(x)
dx
,
dφ(x)
dx
kai èqoume
d
dx
dφ(x)
dx
,
dφ(x)
dx
= 2
d2
φ(x)
dx2
,
dφ(x)
dx
.
Lìgw thc
d2
φ(x)
dx2
=
d2
φ(x)
dx2
, φ(x) φ(x)
h parapˆnw sqèsh gÐnetai
d
dx
dφ(x)
dx
,
dφ(x)
dx
= 2
d2
φ(x)
dx2
,
dφ(x)
dx
= −2
dφ(x)
dx
,
dφ(x)
dx
φ(x),
dφ(x)
dx
kai lìgw thc
dφ(x)
dx
, φ(x) = 0
2.1. EISAGWGŸH 21
èqoume telikˆ ìti
d
dx
dφ(x)
dx
,
dφ(x)
dx
= 2
d2
φ(x)
dx2
,
dφ(x)
dx
= −2
dφ(x)
dx
,
dφ(x)
dx
φ(x),
dφ(x)
dx
=
−2
dφ(x)
dx
,
dφ(x)
dx
φ(x),
dφ(x)
dx
= 0
Epomènwc to eswterikì ginìmeno
dφ(x)
dx
,
dφ(x)
dx
eÐnai stajerì gia kˆje x ∈ [0, 2π]. Jètoume
dφ(x)
dx
,
dφ(x)
dx
= c2
, c > 0
kai h sqèsh
d2
φ(x)
d2(x)
+
dφ(x)
dx
,
dφ(x)
dx
φ(x) = 0
gÐnetai
d2
φ(x)
dx2
+
dφ(x)
dx
,
dφ(x)
dx
φ(x) = 0
IsodÔnama
d2
φi(x)
dx2
+ c2
φi = 0, i = 1, 2, 3
H genik  lÔsh tou sust matoc eÐnai
φi(x) = Ai cos(cx) + Bi sin(cx) ⇔ φ(x) = A cos(cx) + B sin(cx)
ìpou ta A kai B eÐnai dianÔsmata ston R3
.
Ikan  kai anagkaÐa sunj kh ¸ste h kampÔlh φ(x), x ∈ [0, 2π] na eÐnai
periodik  me perÐodo 2π, na keÐtai sth sfaÐra S2
kai na apoteleÐ krÐsimo shmeÐo
thc E eÐnai : A, A = B, B = 1, A, B = 0 kai c = m (akèraioc) Mia tètoia
kampÔlh eÐnai ènac mègistoc kÔkloc thc sfaÐrac S2
kai diagrˆfetai m forèc
kaj¸c to x metabˆletai apì to 0 èwc to 2π. (Eˆn to m eÐnai arnhtikì o kÔkloc
diagrˆfetai sthn antÐjeth kateÔjunsh ).
22 KEFŸALAIO 2. LOGISMŸOS TWN METABOLŸWN
Sumpèrasma : Apì ìlec tic leÐec periodikèc kampÔlec
φ(x) = (φ1(x), φ2(x), φ3(x)), x ∈ [0, 2π] me perÐodo 2π, oi opoÐec brÐskontai
sth sfaÐra
S2
= (y1, y2, y3) ∈ R3
; y2
1 + y2
2 + y2
3 = 1 ta krÐsima shmeÐa thc
E(φ) =
1
2
2π
0
3
i=1
dφi
dx
2
dx
eÐnai oi lÔseic thc diaforik c exÐswshc
d2
φ(x)
dx
+
dφ(x)
dx
,
dφ(x)
dx
φ(x) = 0
Autèc oi lÔseic eÐnai mègistoi kÔkloi thc S2
pou diagrˆfontai m forèc kaj¸c
to x metabˆletai apì to 0 èwc to 2π.
Kefˆlaio 3
Armonikèc kai diarmonikèc
apeikonÐseic
3.1 Armonikèc apeikonÐseic
Orismìc 3.1.1. Mia leÐa apeikìnish φ ∈ C∞
(M, N) metaxÔ duo pol-
laplot twn Riemann (M, g) kai (N, h) kaleÐtai armonik  an kai mìno an
eÐnai krÐsimo shmeÐo tou sunarthsoeidoÔc thc enèrgeiac
E(φ) =
1
2 M
|dφ|2
vg
H apeikìnish dφ : TM → TN eÐnai to diaforikì thc φ ∈ C∞
(M, N) kai
vg = det(gij)dx1dx2...dxm to stoiqeÐo ìgkou thc metrik c g.
H φ eÐnai krÐsimo shmeÐo thc E eˆn gia opoiad pote leÐa apeikìnish
F : (−ε, ε) × M → N me tim  F(t, x) = φt(x), gia kˆje t ∈ (−ε, ε) kai gia
kˆje x ∈ M me F(0, x) = φ0(x) = φ(x) isqÔei h sqèsh
d
dt t=0
E(φt) = 0
23
24 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS
Orismìc 3.1.2. Mia C1
−kampÔlh γ : I → M thc pollapìthtac M
onomˆzetai gewdaisiak  an γ γ = 0, gia kˆje shmeÐo tou anoiqtoÔ di-
ast matoc I.
'Estw èna topikì sÔsthma suntetagmènwn {xi}n
i=1 thc M.
Tìte, γ(t) = (γ1(t), γ2(t), ..., γn(t)) kai γ (t) = n
i=1 γi(t) ∂
∂xi γ(t)
Epomènwc h sqèsh γ γ = 0 isodÔnama gÐnetai
d2
γi
dt2
+
n
j,k=1
Γi
jk
dγj
dt
dγk
dt
= 0, i = 1, 2, ..., n.
Jètoume ξi = dγi
dt
kai katal goume sto ex c sÔsthma diaforik¸n exis¸sewn:
dξi
dt
= −
n
j,k=1
Γi
jkξjξk, i = 1, 2, ..., n.
Eˆn dojoÔn oi arqikèc timèc γ(0) = (γ1(0), γ2(0), ..., γn(0)) kai
dγ
dt
(0) = dγ1
dt
(0), dγ2
dt
(0), ..., dγn
dt
(0) gia t = 0 to sÔsthma èqei monadik  lÔsh
gia ìla ta t sthn perioq  tou mhdenìc. Autì shmaÐnei ìti gia opoiod pote
shmeÐo p thc M kai gia opoiod pote efaptìmeno diˆnusma u sto shmeÐo p tou
efaptìmenou q¸rou TM pou ikanopoioÔn tic sunj kec
(1) γ(0) = p kai
(2)γ (0) = u
upˆrqei monadik  gewdaisiak  γ(t) gia t kontˆ sto mhdèn.
SumbolÐzoume γ(t) = expp(tu) kai dÐnoume ton parakˆtw orismì.
Orismìc 3.1.3. Ekjetik  apeikìnish sto shmeÐo p miac pollaplìthtac
M, lègetai h apeikìnish expp : TpM → M me tim  ekeÐno to shmeÐo thc M
pou orÐzetai apì to γ(1), dhlad 
γ(1) = expp u
gia kˆje u ∈ TpM kai tètoio ¸ste na orÐzetai to γ(1). Autì shmaÐnei ìti to
mètro tou efaptìmenou dianusmatoc u prèpei na eÐnai arketˆ mikrì, dhlad  to
3.1. ARMONIKŸES APEIKONŸISEIS 25
t na paÐrnei timèc se mia perioq  tou mhdenìc sto q¸ro TpM.
Orismìc 3.1.4. 'Estw mia tuqoÔsa C∞
− apeikìnish V : M → TN
me V (x) ∈ Tφ(x)N, x ∈ M kai φt : M → N h ekjetik  C∞
− apeikìnish
me tim  φt(x) = expφ(x)(tV (x)), x ∈ M. Onomˆzoume to dianusmatikì pedÐo
V (x) = d
dt t=0
φt(x) dianusmatikì pedÐo metabol c katˆ m koc thc φ
(variation vector field along φ).
Antistrìfwc eˆn jewr soume mia tuqoÔsa leÐa metabol  φt ∈ C∞
(M, N) thc
φ, ( < t < ) kai φ0 = φ, jètontac V (x) = d
dt t=0
φt(x) orÐzetai mia C∞
−
apeikìnish V apì thn pollaplìthta M sthn efaptìmenh dèsmh TN me tim 
V (x) ∈ Tφ(x)N, x ∈ M.
Orismìc 3.1.5. 'Estw duo Ck
− pollaplìthtec E kai N kai π : E → N
mia Ck
− apeikìnish. H π : E → N onomˆzetai Ck
−dianusmatik  dèsmh
epÐ thc N eˆn :
(1) Gia kˆje x ∈ N o q¸roc π−1
(x) = Ex o kaloÔmenoc n ma epÐ tou x eÐnai
dianusmatikìc q¸roc diˆstashc k
(2) upˆrqei anoiqt  geitoniˆ U thc N sto x, kai ènac diaforomorfismìc
φ : π−1
(U) → U × Rk
tou opoÐou o periorismìc sto π−1
(ψ) eÐnai ènac i-
somorfismìc epÐ tou ψ × Rk
gia kˆje ψ ∈ U.
Orismìc 3.1.6. DÐnetai mia Ck
dianusmatik  dèsmh p : E → N kai mi-
a Ck
− apeikìnish φ : M → N metaxÔ duo Ck
− pollaplot twn M kai N.
Kataskeuˆzoume thn dianusmatik  dèsmh π : E → M, ìpou E = (p , u) ∈
M × E; φ(p ) = π(u) , π ((p , u)) = p . SumbolÐzw th dianusmatik  dèsmh E
me φ∗
E   φ−1
E kai thn onomˆzw epag¸menh dianusmatik  dèsmh thc
dianusmatik c dèsmhc E mèsw thc φ.
26 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS
Sqhmatikˆ èqoume to diˆgramma:
φ−1
E //
π

E
π

M
φ
// N
'Estw h C∞
− dianusmatik  dèsmh π : TN → N me π(u) = φ(x) gia kˆje
x ∈ M. OrÐzoume thn epag¸menh dèsmh φ−1
TN thc efaptìmenhc dèsmhc TN
mèsw thc φ wc to sÔnolo
φ−1
TN = (x, u) ∈ M × TN; π(u) = φ(x), x ∈ M = x∈M Tφ(x)N
H sqhmatik  parˆstash èqei wc ex c:
φ−1
TN //
π

TN
π

M
φ
// N
ìpou π : (M, TN) → M eÐnai h C∞
− dianusmatik  dèsmh me π (x, u) = x, x ∈
M.
Orismìc 3.1.7. Mia C∞
−tom  (section) thc epag¸menhc dèsmhc φ−1
TN
mèsw thc φ : M → N eÐnai h C∞
− apeikìnish V : M → TN me V (x) ∈
Tφ(x)N, x ∈ M.
SumbolÐzoume to sÔnolo ìlwn twn C∞
−tom¸n me
Γ(φ−1
TN) = V ∈ C∞
(M, TN), V (x) ∈ Tφ(x)N, x ∈ M .
ParathroÔme ìti to sÔnolo Γ(φ−1
TN) eÐnai to sÔnolo ìlwn twn dianus-
matik¸n pedÐwn metabol c katˆ m koc thc φ.
Gia kˆje f ∈ C∞
(M) ,V, V1, V2 ∈ Γ(φ−1
TN) kai x ∈ M orÐzoume sto sÔnolo
φ−1
TN touc ex c nìmouc :
+ : Γ(E) × Γ(E) → Γ(E)
(V1, V2) → V1 + V2
3.1. ARMONIKŸES APEIKONŸISEIS 27
me tim 
(V1 + V2)(x) = V1(x) + V2(x)
ìpou E = φ−1
TN kai
· : C∞
(M) × Γ(E) → Γ(E)
(f, V ) → f.V
me tim 
(f.V )(x) = f(x).V (x)
Me ton prosjetikì nìmo (+) to Γ(E) kajÐstatai abelian  omˆda. Epiplèon,
isqÔoun oi ex c idiìthtec :
(1) ((f + g)V )(x) = (fV )(x) + (gV )(x)
(2) ((f.g)V )(x) = (f.(g.V ))(x)
(3) (f.(V1 + V2))(x) = (f.V1)(x) + (f.V2)(x)
Me tic parapˆnw idiìthtec h abelian  omˆda (Γ(E), +) kajÐstatai èna prìtupo
(module) epÐ thc C∞
(M).
Prin d¸soume ton orismì thc epag¸menhc sunoq c sthn epag¸menh dèsmh
φ−1
TN thc efaptìmenhc dèsmhc TN mèsw thc φ, dÐnoume touc epìmenouc
orismoÔc.
Orismìc 3.1.8. H apeikìnish σ : R → M me tim  σ(t) ∈ M gia kˆje t ∈ R
eÐnai mia C1
− kampÔlh thc M. Gia t = 0 èqoume
(1) σ(0) = x kai
(2) σ (0) = Xx ⇔ d
dt t=0
σ(t) = Xx
ìpou Xx ∈ TxM kai h kampÔlh σt me tim  σt(s) = σ(s) eÐnai o periorismìc thc
σ ìtan to 0 ≤ s ≤ t.
Orismìc 3.1.9. To dianusmatikì pedÐo X lègetai parˆllhlo katˆ m koc
thc C1
− kampÔlhc γ : [a, b] ⊂ R → M an ta dianÔsmata tou pedÐou X se
28 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS
opoiad pote dÔo diaforetikˆ shmeÐa thc kampÔlhc eÐnai parˆllhla metaxÔ touc,
dhlad 
γ X = 0
'Estw èna topikì sÔsthma suntetagmènwn {xi}n
i=1 se mia perioq  U thc M.
Tìte, grˆfoume X(t) = n
i=1 ξi(t) ∂
∂xi γ(t)
, ìpou X(t) ∈ Tγ(t)M, gia kˆje
t ∈ [a, b] kai γ(t) = (γ1(t), γ2(t), ..., γn(t)), opìte γ (t) = n
i=1 γi(t) ∂
∂xi γ(t)
.
Epomènwc, apì th sqèsh
γ X = 0
isodÔnama èqoume
dξi(t)
dt
+
n
j,k=1
Γi
jk(γ(t))
dγj(t)
dt
ξk(t) = 0, i = 1, 2, ...n.
Eˆn dojeÐ h kampÔlh γ(t) kai dojeÐ h arqik  tim  (ξ1(α), ξ2(α), ..., ξn(α)) sto
shmeÐo p = γ(α) tìte ta ξi eÐnai monadikˆ orismèna, efìson to sÔsthma twn
diaforik¸n exis¸sewn èqei monadik  lÔsh.
Epomènwc, h tim  (ξ1(b), ξ2(b), ..., ξn(b)) sto q = γ(b) kai katˆ sunèpeia to
X(b) orÐzontai monadikˆ. 'Eqoume dhlad  thn antistoiqÐa
Tγ(α)M X(α) → X(b) ∈ Tγ(b)M.
Orismìc 3.1.10. Onomˆzoume thn apeikìnish
Pγ : Tγ(α)M → Tγ(b)M
parˆllhlh metaforˆ katˆ m koc thc kampÔlhc γ wc proc th Levi-Civita
sunoq  sth pollaplìthta (M, g).
H apeikìnish Pγ eÐnai ènac grammikìc isomorfismìc kai epiplèon,
gγ(b) (Pγ(u), Pγ(v)) = gγ(α) (u, v) , u, v ∈ Tγ(α)M.
3.1. ARMONIKŸES APEIKONŸISEIS 29
SumbolÐzoume me kai N
tic sunoqèc Levi-Civita stic pollaplìthtec
(M, g) kai (N, h) antÐstoiqa, kai dÐnoume ton akìloujo orismì.
Orismìc 3.1.11. Gia kˆje C∞
− dianusmatikì pedÐo X thc M onomˆzoume
epag¸menh sunoq  sthn epag¸menh dèsmh φ−1
TN thc efaptìmenhc
dèsmhc TN mèsw thc f, thn apeikìnish
X : N
P−1
φ◦σt
V (σ(t))Γ(φ−1
TN) → Γ(φ−1
TN)
V → XV
gia kˆje V ∈ Γ(φ−1
TN), me tim 
XV (x) = N
φ∗X
V =
d
dt t=0
, x ∈ M
H ikanopoieÐ tic ex c idiìthtec :
(1) fX+gY V = f XV + g Y V
(2) X(V1 + V2) = XV1 + 2V2
(3) X(fV ) = X(f)V + f XV
gia kˆje f, g ∈ C∞
(M) gia kˆje X, Y ∈ D1
(M) kai V, V1, V2 ∈ Γ(φ−1
TN).
H apeikìnish N
Pφ◦σt : Tφ(x)N → Tφ(σ(t))N eÐnai h kaloÔmenh parˆllhlh
metaforˆ katˆ m koc thc C1
−kampÔlhc φ ◦ σt wc proc th Levi-Civita
sunoq  N sth pollaplìthta (N, h).
Sth sunèqeia ja apodeÐxoume endeiktikˆ thn trÐth katˆ seirˆ apì tic idiìthtec
thc epag¸menhc sÔnoq c . Ja apodeÐxoume dhlad  ìti
X(fV ) = X(f)V + f XV
30 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS
Apìdeixh
Gia kˆje x ∈ M èqoume
X(fV )(x) =
d
dt t=0
N
P−1
φ◦σt
(f(σ(t))V (σ(t)))
=
d
dt t=0
f(σ(t)) N
P−1
φ◦σt
(V (σ(t))) + f(x)
d
dt
N
P−1
φ◦σt
V (σ(t))
= Xx(f)V (x) + f(x)( XV )(x)
H epag¸menh dèsmh φ−1
TN epidèqetai èna eswterikì ginìmeno proerqìmeno
apì th metrik  h sth pollaplìthta N pou sumbolÐzetai me hφ(x) kai eÐnai h
apeikìnish
hφ(x) : Tφ(x)N × Tφ(x)N → R
Lambˆnontac upìyh thn isometrik  diìthta :
hϕ(σ(t))(V1(σ(t)), V2(σ(t)) = hφ(x)(N
P−1
φ◦σt
V1(σ(t)), N
P−1
φ◦σt
V2(σ(t)) = hφ(x)(V1(x), V2(x))
thc apeikìnishc
N
P−1
φ◦σt
V (σ(t)) : Tϕ(σ(t))N → Tφ(x)N
ja deÐxoume ìti h epag¸menh sunoq  eÐnai sumbat  me th metrik  hφ(x) ìpwc
thn orÐsame parapˆnw.
Prˆgmati,
Xxhφ(x)(V1, V2) =
d
dt t=0
hφ(σ(t))(V1(σ(t)), V2(σ(t))
=
d
dt t=o
hφ(x)(N
P−1
φ◦σt
V1(σ(t)), N
P−1
φ◦σt
V2(σ(t))
= hφ(x)
d
dt t=0
N
P−1
φ◦σt
V1(σ(t)), V2(x) +hφ(x) V1(x),
d
dt t=o
N
P−1
φ◦σt
V2(σ(t))
= hφ(x)( Xx V1, V2) + hφ(x)(V1, Xx V2)
gia kˆje X ∈ D1
(M), V1, V2 ∈ Γ(φ−1
TN) kai x ∈ M.
3.1. ARMONIKŸES APEIKONŸISEIS 31
O H. Urakawa sto biblÐo tou [25] anafèrei to parakˆtw je¸rhma metabo-
l c:
Je¸rhma 3.1.1.
'Estw φ ∈ C∞
(M, N) kai φt mia tuqaÐa leÐa metabol  thc φ, ìpou −  t 
, φ0 = φ kai V (x) = d
dt t=0
φt(x), x ∈ M to C∞
− dianusmatikì pedÐo
metabol c katˆ m koc thc φ.
Tìte
d
dt t=0
E(φt) = −
M
h(V, τ(φ))vg
ìpou to τ(φ) eÐnai stoiqeÐo tou Γ(φ−1
TN) pou kaleÐtai pedÐo èntashc thc
φ (tension field) kai dÐdetai apì th sqèsh
τ(φ) =
m
i=1
( ei
dφ(ei) − dφ( ei
ei)
Sumpèrasma: h φ ∈ C∞
(M, N) eÐnai armonik  an kai mìno an
d
dt t=0
E(φt) = 0 ⇔ τ(φ) = 0
H exÐswsh τ(φ) = 0 kaleÐtai exÐswsh twn Euler-Lagrange.
ParadeÐgmata armonik¸n apeikonÐsewn
(1) Stajerèc apeikonÐseic
'Estw dÔo sumpageÐc pollaplìthtec Riemann (M, g) kai (N, h) kai q ∈ N
èna stajerì shmeÐo. Kˆje stajer  apeikìnish φ : M → N me tim  φ(x) =
q, x ∈ M, eÐnai armonik  kai antistrìfwc.
Apìdeixh
H φ eÐnai stajer  an kai mìno an to sunarthsoeidèc thc puknìthtac
thc enèrgeiac e(φ) = 1
2
|dφ|2
thc φ eÐnai mhdèn, dhlad  an kai mìno an
e(φ) = 0. 'Omwc to sunarthsoeidèc thc enèrgeiac thc φ dÐnetai apì th sqèsh
E(φ) = M
e(φ)vg.
Epomènwc, e(φ) = 0 ⇔ E(φ) = 0 ⇔ d
dt t=o
E(φ) = 0 ⇔ τ(φ) = 0
32 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS
Dhlad  h φ eÐnai stajer  an kai mìno an eÐnai armonik .
(2) Kleistèc gewdaisiakèc sth sfaÐra S2
'Estw mia kleist  diaforÐsimh kampÔlh φ(x) = (φ1(x), φ2(x), φ3(x)), x ∈
[0, 2π] ston R3
me perÐodo 2π, dhlad  φ(x + 2π) = φ(x)   φi(x + 2π) =
φi(x), i = 1, 2, 3. AnazhtoÔme tic kampÔlec pou apoteloÔn krÐsima shmeÐa thc
enèrgeiac
E(φ) =
1
2
2π
0
3
i=1
(
dφi
dx
)2
dx
kai brÐskontai sth monadiaÐa sfaÐra
S2
= (y1, y2, y3); y2
1 + y2
2 + y2
3 = 1
Autèc oi kampÔlec eÐnai mègistoi kÔkloi thc sfaÐrac S2
pou strèfontai m
forèc kaj¸c to x metabˆletai apì to 0 èwc to 2π.
(Analutik  parousÐash ègine sthn parˆgrafo 2.2.)
Sth sunèqeia ja sundèsoume thn armonikìthta me tic pollaplìthtec elˆqi-
sthc èktashc.
3.1. ARMONIKŸES APEIKONŸISEIS 33
Orismìc 3.1.12. 'Estw duo diaforÐsimec pollaplìthtec (M, g) kai
(N, h). Mia leÐa apeikìnish φ : M → N onomˆzetai isometrik  embˆ-
ptish (isometric immersion) eˆn :
(1) to diaforikì thc φ sto p ∈ M, dhlad  h apeikìnish dφp : TpM → Tφ(p)N
eÐnai 1 − 1 gia kˆje x ∈ M,
(2) xp, yp M = dφ(xp), dφ(yp) N gia kˆje xp, yp ∈ TpM.
Orismìc 3.1.13. 'Otan mia embˆptish φ : M → N eÐnai 1 − 1, tìte h
φ lègetai emfÔteush thc M sthn N . Sthn perÐptwsh aut  lème ìti h
pollaplìthta M eÐnai emfuteumènh mèsa sth N mèsou thc φ,   ìti h M eÐnai
mia emfuteumènh upopollaplìthta thc N.
Orismìc 3.1.14. Mia m−diˆstath pollaplìthta M onomˆzetai upopol-
laplìthta thc n−diˆstathc pollaplìthtac N ìtan :
(1) M ⊂ N (h M eÐnai topologikìc upìqwroc thc N.)
(2) H tautotik  apeikìnish i : M → N eÐnai mia emfÔteush thc pollaplìthtac
M sthn pollaplìthta N.
Eˆn dimN − dimM = 1, tìte h M lègetai uperepifˆneia thc N.
'Estw M mia m− diˆstath upopollaplìthta thc n− diˆstathc pollaplìth-
tac Riemann N (m  n).
An h eÐnai h metrik  Riemann thc N, tìte h epag¸menh metrik  thc M
eÐnai h g = i∗
h, ìpou
(1) h i : M → N eÐnai leÐa
(2) h i : M → N eÐnai tautotik  me tim  i(x) = x
(3) h i : M → N eÐnai 1-1
(4) h di : TpM → Ti(p)N eÐnai èna proc èna kai tautotik .
H M efodiasmènh me th g kajistˆ thn i : M → N isometrik  : g(xp, yp) =
34 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS
i∗
h(x, y) = h(di(xp), di(yp)) gia kˆje xp, yp ∈ TpM.
'Ena diˆnusma ξp ∈ TpN, x ∈ M lègetai kˆjeto sthn M sto shmeÐo p an
h(ξp, xp) = 0 gia kˆje xp ∈ TpM. An TM⊥
eÐnai to sÔnolo ìlwn twn kˆjetwn
dianusmˆtwn se kˆje shmeÐo p ∈ M tìte
TN = TM ⊕ TM⊥
'Estw X, Y duo dianusmatikˆ pedÐa thc M kai X, Y oi epektˆseic aut¸n sthn
pollaplìthta N, dhlad  ta dianusmatikˆ pedÐa thc N ta opoÐa ìtan perior-
isjoÔn sthn pollaplìthta M eÐnai ta dianusmatikˆ pedÐa X, Y antÐstoiqa.
'Estw h sunoq  thc pollaplìthtac Riemann N. Tìte h tim  tou dianus-
matikoÔ pedÐou XY sto p ∈ M den exartˆtai apì tic epektˆseic X, Y twn
X, Y antÐstoiqa kai to dianusmatikì pedÐo [X, Y ] thc N eÐnai epèktash tou
dianusmatikoÔ pedÐou [X, Y ] thc M. 'Etsi grˆfoume XY antÐ XY kai
analÔoume autì to dianusmatikì pedÐo thc N se duo sunist¸sec, mia efap-
tìmenh thc M, thn XY kai mia kˆjeth sth M, thn B(X, Y ). 'Epomènwc,
XY = XY + B(X, Y )
O tÔpoc autìc onomˆzetai tÔpoc tou Gauss. H apeikìnish
: TM × TM → TM
(X, Y ) → XY
orÐzei mia sunoq  sth M pou lègetai epag¸menh sunoq  sthn upopol-
laplìthta M. EpÐshc h apeikìnish
B : TM × TM → TM⊥
(X, Y ) → B(X, Y )
eÐnai summetrik , digrammik  kai legetai deÔterh jemeli¸dhc morf 
(second fundamental form) thc upopollaplìthtac M.
3.1. ARMONIKŸES APEIKONŸISEIS 35
'Estw ξ èna dianusmatikì pedÐo thc N kˆjeto sth M. To dianusmatikì pedÐo
Xξ analÔetai se mia efaptìmenh sunist¸sa thn −AξX kai mia kˆjeth thn
⊥
Xξ opìte isqÔei o akìloujoc tÔpoc tou Weingarten
Xξ = −AξX + ⊥
Xξ
H apeikìnish
⊥
: TM × TM⊥
→ TM⊥
(X, ξ) → ⊥
Xξ
èqei tic idiìthtec miac sunoq c kai lègetai kˆjeth sunoq  (normal conne-
ction) thc upopollaplìthtac M.
H apeikìnish
Aξ : TM → TM
X → AξX
eÐnai grammik  wc proc X kai ξ kai autosuzug c, dhlad , gia kˆje X, Y ∈ TM
isqÔei: AξX, Y M = X, AξY M kai kaleÐtai telest c sq matoc (shape
operator)   deÔterh jemeli¸dhc morf  sth kˆjeth dieÔjunsh
ξ ∈ TM⊥
(the second fundamental form in the normal direction ξ).
Jewr¸ th diaforÐsimh kampÔlh a : I ⊂ R → M sthn pollaplìthta M me
tim  a(t) ∈ M pou ikanopoieÐ tic sunj kec a(t0) = p kai a (t0) = xp ∈ TpM.
To AξX = −( xp ξ) = −(ξ ◦ a) (t0) metrˆei thn allag  kateÔjunshc tou ξ
kaj¸c autì dièrqetai apì to p katˆ m koc thc kampÔlhc a. O efaptìmenoc
q¸roc Ta(t)M thc M sto a(t) strèfetai kaj¸c to kˆjeto diˆnusma ξ strèfe-
tai. 'Epomènwc to AξX ekfrˆzei èna mètro strof c tou efaptìmenou q¸rou
thc M sto p kaj¸c to ξ dièrqetai apì to p katˆ m koc thc a. 'Ara o telest c
sq matoc mac dÐnei plhroforÐec gia to sq ma thc M.
36 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS
Prìtash 3.1.1. Gia kˆje dianusmatikì pedÐo ξ thc N kˆjeto sth M
kai gia X, Y ∈ TM èqoume
AξX, Y M = B(X, Y ), ξ M
Apìdeixh
X ξ, Y M = Xξ, Y M + ξ, XY M ⇔
0 = Xξ + ⊥
Xξ, Y M + ξ, XY + B(X, Y ) M ⇔
0 = −AξX, Y M + ⊥
Xξ, Y M + ξ, XY )M + ξ, B(X, Y ) M ⇔
AξX, Y M = B(X, Y ), ξ M
Gia èna monadiaÐo kˆjeto diˆnusma ξ thc M sto p o telest c sq matoc Aξ
eÐnai grammikìc kai autosuzug c opìte mporoÔme na epilèxoume orjokanonik 
bˆsh e1, e2, ..., em thc M ìpou ta stoiqeÐa thc na apoteloÔn idiodianÔsmata
tou Aξ, dhladh Aξ(ei) = λiei, i = 1, 2, ..., m. Ta λi ∈ R kaloÔntai kÔriec
kampulìthtec (principal curvatures) thc M wc proc thn kˆjeth dieÔjunsh
ξ kai ta idiodianÔsmata ei kaloÔntai kÔriec dieujÔnseic (principal directions).
Oi kÔriec kampulìthtec mac dÐnoun mia perigraf  tou topikoÔ telest  sq -
matoc thc emfuteumènhc pollaplìthtac M.
Orismìc 3.1.15. 'Estw φ : Mm
→ Nn
mia isometrik  embˆptish metaxÔ
duo pollaplot twn M kai N. To dianusmatikì pedÐo mèshc kampulìth-
tac H thc φ eÐnai h apeikìnish
H : M → TM⊥
x → H(x) ∈ TxM⊥
me tim 
H(x) =
1
m
m
i=1
B(ei, ei) ⇔ H(x) =
1
m
traceB
3.1. ARMONIKŸES APEIKONŸISEIS 37
ìpou ei
m
i=1
mia orjokanonik  bˆsh tou q¸rou TxM.
'Estw ξa
m
a=1
mia orjokanonik  bˆsh tou TM⊥
sto x. Tìte
traceB =
a,i
B(ei, ei), ξa M
kai lìgw thc sqèshc AξX, Y M = B(X.Y ), ξ M èqoume
traceB =
a,i
Aξa (ei), ei M =
a
traceAξa
'Ara to dianusmatikì pedÐo mèshc kampulìthtac gÐnetai wc ex c:
H(x) =
1
m a
traceAξa ⇔ H(x) =
1
m
(traceA)ξ
Orismìc 3.1.16. H φ kaleÐtai elˆqisth isometrik  embˆptish kai
h upopollaplìthta M elaqÐsthc èktashc (minimal submanifold) eˆn
H = 0.
Apì to tÔpo tou Gauss èqoume
XY = XY + B(X, Y )
gia kˆje X, Y ∈ TM. Gia X = Y = ei ∈ TM, i = 1, 2, ..., m o tÔpoc gÐnetai
wc ex c:
ei
ei = ei
ei + B(ei, ei) ⇔
B(ei, ei) = ei
ei − ei
ei
ìpou eÐnai h sÔndesh sthn epag¸menh dèsmh φ−1
TN thc efaptìmenhc dèsmh-
c TN.
Epomènwc to dianusmatikì pedÐo mèshc kampulìthtac
H =
1
m
m
i=1
B(ei, ei)
38 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS
gÐnetai wc ex c:
H =
1
m
m
i=1
( ei
ei − ei
ei)
'Omwc
τ(φ) =
m
i=1
( ei
dφ(ei) − dφ( ei
ei)
Lìgw tou tautotikoÔ isomorfismoÔ Tφ(x)N ∼= Nφ(x) èqoume
H =
1
m
τ(φ)
Sunep¸c H = 0 an kai mìno an τ(φ) = 0
Prìtash 3.1.2. An h φ : M → N eÐnai isometrik  embˆptish tìte h M eÐnai
elˆqisthc èktashc an kai mìno an to pedÐo èntashc τ(φ) thc φ mhdenÐzetai.
3.2 Diarmonikèc apeikonÐseic
Orismìc 3.2.1. MÐa leÐa apeikìnish φ ∈ C∞
(M, N) metaxÔ duo pol-
laplot twn Riemann (M, g) kai (N, h) kaleÐtai diarmonik  an kai mìno an
eÐnai krÐsimo shmeÐo tou sunarthsoeidoÔc thc enèrgeiac deÔterhc tˆxhc
(bienergy)
E2(φ) =
1
2 M
|τ(φ)|2
vg
H φ eÐnai krÐsimo shmeÐo thc E2 an gia opoiad pote metabol  φt ∈ C∞
(M, N)
(−  t  ), φ0 = φ thc φ isqÔei h sunj kh
d
dt t=0
E2(φt) = 0
Stic ergasÐec [14] , [15] o J. Jiang èdwse gia thn pr¸th metabol  tou sunarth-
soeidoÔc E2 ton akìloujo tÔpo
d
dt t=0
E2(φt) = −
M
h(τ2(φ), V )vg
3.2. DIARMONIKŸES APEIKONŸISEIS 39
Je¸rhma 3.2.1. 'Estw φ ∈ C∞
(M, N) kai φt mia tuqaÐa leÐa metabol 
thc φ, ìpou (−  t  ), φ0 = φ kai V (x) = d
dt
|t=0φt(x), x ∈ M to C∞
−
dianusmatikì pedÐo metabol c katˆ m koc thc φ.
Tìte,
d
dt t=0
E2(φt) = −
M
h(τ2(φ), V )vg
ìpou τ2(φ) = Jφ(τ(φ)) eÐnai to pedÐo tˆshc deÔterhc tˆxhc kai Jφ eÐnai ènac au-
tosuzug c, diaforikìc telest c pou dra sto sÔnolo twn dianusmatik¸n pedÐ-
wn metabol c katˆ m koc thc φ, onomˆzetai telest c tou Jacobi(Jacobi
operator) kai orÐzetai wc ex c :
Jφ = ¯ φ − Rφ
O diaforikìc telest c ¯ φ onomˆzetai Laplasian  (rough Laplacian), dra
sta dianusmatikˆ pedÐa metabol c katˆ m koc thc φ kai orÐzetai wc ex c :
¯ φV = −
m
i=1
( ei ei
− ei ei
)V
ìpou V ∈ Γ(φ−1
TN), ei
m
i=1
orjokanonik  bˆsh wc proc th metrik  g sth
M kai (m = dimM).
Tèloc o diaforikìc telest c Rφ dra epÐshc sta dianusmatikˆ pedÐa metabol c
katˆ m koc thc φ kai dÐnetai apì th sqèsh
RφV =
m
i=1
N
R(V, dφ(ei))dφ(ei)
ìpou V ∈ Γ(φ−1
TN) kai N
R eÐnai to tanustikì pedÐo kampulìthtac thc suno-
q c N
sthn pollaplìthta (N, h).
Sumpèrasma : H φ ∈ C∞
(M, N) eÐnai diarmonik  an kai mìno an
d
dt t=0
E(φt) = 0 ⇔ τ2(φ) = 0 ⇔ J(τ(φ)) = 0
H exÐswsh τ2(φ) = 0 kaleÐtai diarmonik  exÐswsh.
40 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS
Idiìthtec twn diarmonik¸n apeikonÐsewn
Prìtash 3.2.1. H φ eÐnai diarmonik  an kai mìno an to τ(φ) an kei ston
pur na tou telest  Jφ, dhlad  an kai mìno an τ(φ) ∈ KerJφ.
Apìdeixh
KerJφ = V ∈ Γ(φ−1
TN); Jφ(V ) = 0
τ(φ) ∈ KerJφ ⇔ Jφ(τ(φ)) = 0 ⇔ τ2(φ) = 0, dhlad  h φ eÐnai diarmonik .
Prìtash 3.2.2. Eˆn h φ ∈ C∞
(M, N) eÐnai armonik  tìte eÐnai kai diar-
monik .
Apìdeixh
Jèlw na deÐxw ìti h φ eÐnai diarmonik , dhlad  ìti d
dt t=0
E2(φt) = 0 gia kˆje
leÐa metabol  φt, (−  t  ), φ0 = φ thc φ, ìpou E2(φ) = 1
2 M
|τφ)|2
vg
to sunarthsoeidèc thc enèrgeiac deÔterhc tˆxhc (bienergy). Apì thn upì-
jesh èqw pwc h φ eÐnai diarmonik , dhlad  τ(φ) = 0, ˆra E2(φ) = 0, ˆra
d
dt t=0
E2(φt) = 0, ˆra h φ eÐnai diarmonik .
Prìtash 3.2.3. Mia armonik  apeikìnish elaqistopoieÐ to sunarthsoeidèc
E2(φ) = 1
2 M
|τ(φ)|2
vg .
Apìdeixh
H φ eÐnai armonik , dhlad  τ(φ) = 0. Epomènwc E2(φ) = 0.
Kefˆlaio 4
Diarmonikèc
Upopollaplìthtec
4.1 Eisagwg 
O B.Y. Chen sthn ergasÐa tou [4] anafèrei thn ex c eikasÐa:
EikasÐa tou Chen
Kˆje diarmonik  upopollaplìthta tou eukleÐdeiou q¸rou En
eÐnai armonik ,
dhlad  eÐnai elˆqisthc èktashc.
Eˆn o q¸roc den eÐnai eukleÐdeioc h eikasÐa tou Chen genikˆ den epalhjeÔetai.
'Ena antiparˆdeigma anafèrei o G.Y. Jiang sthn ergasÐa tou [15] kai prìkeitai
gia to genikeumèno tìro tou Clifford Sp
( 1√
2
) × Sq
( 1√
2
) ⊂ Sm+1
me p + q = m
kai p = q.
Orismìc 4.1.1. Tìroc tou Clifford lègetai h eikìna f(S1
× S1
) thc
apeikìnishc f : S1
× S1
→ R4
me tim  f(u, v) = (cosu, sinu, cosv, sinv). O
tìroc T2
= S1
×S1
diagrˆfetai apì thn peristrof  tou kÔklou S1
me exÐswsh
(x1 − a)2
+ x2
3 = r2
, r  a sto epÐpedo x10x3 gÔrw apì ton ˆxona x3.
41
42 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES
Sth sunèqeia oi G.Y. Jiang kai C. Oniciuc stic ergasÐec touc [7] kai [21]
apèdeixan tic parakˆtw protˆseic:
Prìtash 4.1.1. Eˆn M eÐnai mia sumpag c upopollaplìthta Riemann
miac pollaplìthtac N me kampulìthta tom c RiemN
≤ 0, tìte h φ : M → N
eÐnai diarmonik  an kai mìno an eÐnai armonik , dhlad  elˆqisthc èktashc.
Prìtash 4.1.2. Eˆn h φ : M → N eÐnai isometrik  embˆptish me |τ(φ)|
stajerì kai h kampulìthta tom c thc pollaplìthtac N eÐnai RiemN
≤ 0,
tìte h φ eÐnai diarmonik  an kai mìno an eÐnai armonik , dhlad  elˆqisthc èk-
tashc.
Oi parapˆnw protˆseic mac odhgoÔn sth genikeumènh eikasÐa tou Chen.
Genikeumènh eikasÐa tou Chen
Oi mìnec diarmonikèc upopollaplìthtec miac pollaplìthtac N me kampulìth-
ta tom c RiemN
≤ 0 eÐnai oi elˆqisthc èktashc, dhlad  oi armonikèc.
Stìqoc mac eÐnai na anazht soume tic diarmonikèc kampÔlec kai tic diarmonikèc
epifˆneiec thc sfaÐrac S3
. Oi kentrikèc mac anaforèc eÐnai oi ergasÐec [3],[4]
twn R. Caddeo, S. Montaldo, C. Oniciuc kai h ergasÐa [11] twn J. Eells, L.
Lemaire.
4.2 Diarmonikèc kampÔlec sthn S3
Arqikˆ ja anazht soume tic diarmonikèc kampÔlec miac trisdiˆstathc pol-
laplìthtac M.
Jewr¸ (M3
, g) mia tridiˆstath pollaplìthta Riemann me stajer  kampulìth-
ta tom c K kai mia diaforÐsimh kampÔlh γ : I ⊂ R → (M3
, g) parametrikopoih-
mènh wc proc to m koc tìxou thc. 'Estw T, N, B èna orjokanonikì pedÐo
4.2. DIARMONIKŸES KAMPŸULES STHN S3
43
plaisÐwn efaptìmeno sthn M3
katˆ m koc thc γ, ìpou :
• T = γ eÐnai to monadiaÐo dianusmatikì pedÐo efaptìmeno sth γ
• N to monadiaÐo kˆjeto dianusmatikì pedÐo sth dieÔjunsh tou T T
• B to dianusmatikì pedÐo kˆjeto sta T kai N epÐ thc γ epilegmèno ¸ste
h T, N, B na apoteleÐ jetikˆ prosanatolismènh bˆsh.
KaloÔme to T, N, B paidÐo plaisÐwn tou Frenet epÐ thc γ. Eˆn h
kampÔlh γ eÐnai monadiaÐac taqÔthtac, dhlad  |γ (t)| = 1,tìte kg = | T T| =
|τ(γ)|. H kg onomˆzetai gewdaisiak  kampulìthta kai ekfrˆzei thn
taqÔthta metabol c thc dieÔjunshc tou efaptomenikoÔ pedÐou sth kampÔlh
anˆ monˆda m kouc tìxou. H sunˆrthsh τg pou perilambˆnetai stouc parakˆtw
tÔpouc onomˆzetai gewdaisiak  strèyh kai ekfrˆzei thn taqÔthta metabo-
l c thc dieÔjunshc tou dianusmatikoÔ pedÐou B. IsqÔoun oi parakˆtw exis¸-
seic tou Frenet :
T T = kgN
T N = −kgT + τgB
T B = −τgN
H kampÔlh γ eÐnai diarmonik  an kai mìno an
τ2(γ) = 0 ⇔ 3
T T − R(T, kgN)T = 0 ⇔
(−3kgkg)T + (kg − k3
g − kgτ2
g + kgK)N + (2kgτg + kgτg)B = 0
ìpou
K = K(T, N) =
g(R(T, N)N, T)
g(T, T)g(N, N) − g(T, N)2
=
g(R(T, N)N, T) = R(T, N, N, T) = −R(T, N, T, N)
44 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES
eÐnai h kampulìthta tom c thc M3
wc proc to zeÔgoc T, N , h opoÐa èqoume
upojèsei ìti eÐnai stajer .
Epomènwc h kampÔlh γ eÐnai diarmonik  an kai mìno an τ2(γ) = 0.
IsodÔnama
(1) kgkg = 0
(2) kg − k3
g − kgτ2
g + kgK = 0
(3) 2kgτg + kgτg = 0
AnazhtoÔme diarmonikèc mh gewdaisiakèc kampÔlec, dhlad  diarmonikèc
kampÔlec me gewdaisiak  kampulìthta kg = 0. 'Eqontac wc upìjesh ìti
kg = 0 èqw ta ex c :
Apì thn exÐswsh (1) sunepˆgetai ìti kg = c1, ìpou h c1 eÐnai mia mh mhdenik 
pragmatik  stajerˆ.
Apì thn (2) sunepˆgetai ìti k2
g + τ2
g = K.
Apì thn (3) sunepˆgetai ìti τg = c2, ìpou h c2 eÐnai mia mh mhdenik  prag-
matik  stajerˆ.
Epomènwc katal goume sth parakˆtw prìtash.
Prìtash 4.2.1 Oi diarmonikèc mh gewdaisiakèc kampÔlec thc pollaplìth-
tac M eÐnai ekeÐnec pou èqoun stajer  gewdaisiak  kampulìthta kai strèyh
kai pou ikanopoioÔn th sunj kh k2
g + τ2
g = K.
Sthn perÐptwsh pou h kampulìthta tom c eÐnai mikrìterh   Ðsh tou mhdenìc
(K ≤ 0) h sunj kh k2
g + τ2
g = K den mporeÐ na isqÔei parˆ mìno ìtan
kg = τg = 0. Tìte h γ eÐnai gewdaisiak , dhlad  elˆqisthc èktashc (mini-
mal). Epomènwc epibebai¸netai h genikeumènh eikasÐa tou Chen .
4.2. DIARMONIKŸES KAMPŸULES STHN S3
45
Sth sunèqeia ja anazht soume diarmonikèc mh gewdaisiakèc kampÔlec sth
sfaÐra S3
. Oi kentrik  mac anaforˆ eÐnai h ergasÐa [6].
Prìtash 4.2.2. 'Estw γ : I → S3
⊂ R4
mia mh gewdaisiak  diarmonik 
kampÔlh parametrikopoihmènh wc proc to m koc tìxou thc. Tìte isqÔei h
exÐswsh
γIV
+ 2γ + (1 − k2
g)γ = 0
Apìdeixh
PaÐrnoume th sunalloÐwth parˆgwgo wc proc T thc exÐswshc
T N = −kgT + τgB
tou Frenet kai èqoume
2
T N = T ( T N) = −kg T T + τg T B
ExaitÐac kai twn upoloÐpwn exis¸sewn tou Frenet, h parapˆnw sqèsh gÐnetai
2
T N = −kg(kgN) + τg(−τgN) = −(k2
g + τ2
g )N = −KN
Epeid  h kampulìthta tom c thc sfaÐrac eÐnai K = 1, h parapˆnw sqèsh
gÐnetai
2
T N = −N ⇔ 2
T + N = 0
H exÐswsh tou Gauss gia tuqaÐo dianusmatikì pedÐo X thc S3
katˆ m koc thc
γ èqei wc ex c :
T X = X + T, X γ
Efarmìzontac thn parapˆnw sqèsh gia to dianusmatikì pedÐo N èqoume
T N = N + T, N γ
46 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES
Epomènwc,
2
T N = T ( T N) = T (N + T, N γ) = T N =
N + T, N γ = N + T, T N γ = N + T, −kgT + τgB γ =
N + (−kg T, T + τg T, B )γ = N − kgγ ⇔ 2
T N = N − kgγ
'Omwc
N =
T
kg
ìpou
T = T T = T γ = γ + T, T γ γ ⇔
T = γ + γ , γ γ
Epeid  h kampÔlh γ èqei monadiaÐa taqÔthta, dhlad  |γ | = 1 ⇔ γ , γ = 1
èqoume telikˆ ìti
T = γ + γ
Opìte
N =
γ + γ
kg
ParagwgÐzoume thn parapˆnw sqèsh kai paÐrnoume
N =
γ + γ
kg
ParagwgÐzoume xanˆ
N =
γIV
+ γ
kg
Apì tic sqèseic
2
T N + N = 0
2
T N = N − kgγ
4.2. DIARMONIKŸES KAMPŸULES STHN S3
47
N =
γIV
+ γ
kg
èqoume telikˆ
γIV
+ 2γ + (1 − k2
g)γ = 0.
'Ara oi mh gewdaisiakèc diarmonikèc kampÔlec thc S3
eÐnai lÔseic thc diafori-
k c exÐswshc γIV
+ 2γ + (1 − kg)γ = 0.
ApodeÐxame prohgoumènwc ìti isqÔoun oi sunj kec
kg = σταθ. = 0
τg = σταθ. = 0
k2
g + τ2
g = K
gia tic mh gewdaisiakèc diarmonikèc kampÔlec γ : I → (M3
, g).
Ean h pollaplìthta M eÐnai h sfaÐra S3
tìte h kampulìthta tom c isoÔtai
me th monˆda, dhlad  K = 1, opìte h trÐth sunj kh gÐnetai
k2
g + τ2
g = 1
Apì th teleutaÐa sqèsh sunepˆgetai ìti kg ≤ 1.
Je¸rhma 4.2.1. 'Estw mia mh gewdaisiak  diarmonik  kampÔlh γ : I → S3
parametrikopoihmènh wc proc to m koc tìxou thc. IsqÔoun ta ex c :
(1) Eˆn kg = 1, tìte h γ eÐnai kÔkloc aktÐnac 1√
2
(2) Eˆn 0  kg  1, tìte h γ eÐnai gewdaisiak  tou tìrou tou Clifford
S1
( 1√
2
) × S1
( 1√
2
)
Apìdeixh
Pr¸th perÐptwsh :
H sqèsh γIV
+ 2g + (1 − k2
g)γ = 0 ìtan to kg = 1 gÐnetai
γIV
+ 2γ = 0
48 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES
H exÐswsh eÐnai grammik , tètarthc tˆxhc, omogen c, me stajeroÔc sunte-
lestèc. To qarakthristikì polu¸numo eÐnai f(ρ) = ρ4
+ 2ρ2
kai oi rÐzec tou
eÐnai oi ρ = 0 (dipl  pragmatik ), ρ1 = i
√
2, ρ2 = −i
√
2. 'Ara h genik  lÔsh
thc diaforik c exÐswshc eÐnai h
γ(t) = e0t
(c1 cos(
√
2t) + c2 sin(
√
2t) + c3t + c4 ⇔
γ(t) = c1 cos(
√
2t) + c2 sin(
√
2t) + c3t + c4
GnwrÐzontac ìti |γ|2
= 1 kai |γ |2
= 1 kai me efarmog  twn sqèsewn tou
Frenet, èqoume c3 = 0, |c1|2
= |c2|2
= |c4|2
= 1
2
.
Epomènwc, h genik  lÔsh eÐnai h
γ(t) =
1
√
2
cos(
√
2t),
1
√
2
sin(
√
2t), 0,
1
√
2
  isodÔnama
γ(t) =
1
√
2
cos(
√
2t),
1
√
2
sin(
√
2t), d1, d2
ìpou d2
1 + d2
2 = 1
2
'Ara h kampÔlh γ eÐnai kÔkloc aktÐnac ρ = 1√
2
DeÔterh perÐptwsh :
LÔnoume th diaforik  exÐswsh γIV
+ 2γ + (1 − k2
g)γ = 0 ìtan to 0  kg  1
Aut  eÐnai grammik , tètarthc tax c, omogen c, me stajeroÔc suntelestèc.
To qarakthristikì polu¸numo eÐnai f(ρ) = ρ4
+ 2ρ2
+ (1 − k2
g). Oi rÐzec
tou eÐnai oi ρ1 = i 1 + kg, ρ2 = −i 1 + kg kai oi ρ3 = i 1 − kg, ρ4 =
−i 1 − kg.
Epomènwc, h genik  lÔsh thc diaforik c exÐswshc eÐnai h
γ(t) = e0t
c1 cos( 1 + kg)t+c2 sin( 1 + kg)t +e0t
c3 cos( 1 − kg)t+c4 sin( 1 − kg)t
4.3. DIARMONIKŸES EPIFŸANEIES STHN S3
49
  isodÔnama
γ(t) = c1 cos( 1 + kg)t+c2 sin( 1 + kg)t+c3 cos( 1 − kg)t+c4 sin( 1 − kg)t
GnwrÐzontac ìti |γ|2
= |γ |2
= 1 kai me efarmog  twn tÔpwn tou Frenet, èqw
ìti |ci|2
= 1
2
gia kˆje i = 1, 2, 3, 4.
Epomènwc, h lÔsh eÐnai h
γ(t) =
1
√
2
cos(At),
1
√
2
sin(At),
1
√
2
cos(Bt),
1
√
2
sin(Bt)
ìpou A = 1 + kg kai B = 1 − kg
H parapˆnw kampÔlh γ eÐnai gewdaisiak  tou tìrou tou Clifford
S1
( 1√
2
) × S1
( 1√
2
) ⊂ S3
⊂ R4
4.3 Diarmonikèc epifˆneiec sthn S3
Prin anaferjoÔme stic diarmonikèc epifˆneiec thc sfaÐrac S3
ja parousiˆ-
soume kˆpoia genikˆ apotelèsmata pou aforoÔn upopollaplìthtec sth sfaÐra
Sn
.
'Estw (M, , ) mia upopollaplìthta diˆstashc m thc Sn
kai i : M → Sn
h
apeikìnish ègklishc. SumbolÐzoume me:
• B th deÔterh jemeli¸dh morf  thc M
• A to telest  sq matoc thc M
• H to dianusmatikì pedÐo mèshc kampulìthtac thc M
• ⊥
thn orjog¸nia sÔndesh, dhlad  th sÔndesh sthn orjog¸nia dèsmh
TM⊥
thc M
50 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES
• ⊥
th Laplasian  sthn orjog¸nia dèsmh TM⊥
thc M
Je¸rhma 4.3.1. H apeikìnish ègklishc i : M → Sn
eÐnai diarmonik  an kai
mìno an
(1) − ⊥
H − traceB(−, AH−) + mH = 0
(2) 2traceA ⊥
(−)
H(−) + m
2
grad(|H|2
) = 0
Apìdeixh
GnwrÐzoume ìti
traceRSn
(di, τ(i))di = trace Sn
di , Sn
τ(i) di − Sn
[di,τ(i)]di = −mτ(i)
H apeikìnish i eÐnai diarmonik  an kai mìno an τ2(i) = 0. 'Omwc
τ2(i) = J(τ(i)) = − (τ(i)) − traceRSn
(di, τ(i))di = trace dτ(i) + mτ(i)
'Ara h i eÐnai diarmonik  an kai mìno an
τ2(i) = trace dτ(i) + mτ(i) = 0.
Gia mia isometrik  emfÔteush i èqoume
H =
1
m
τ(i) ⇒
1
m
dτ(i) = dH ⇒
1
m
dτ(i) = dH ⇒
1
m
trace dτ(i) = trace dH ⇒
trace dτ(i) = mtrace dH
Apì tic duo teleutaÐec sqèseic èqoume
τ2(i) = mtrace dH+mτ(i) = mtrace dH+m.mH = m trace dH+mH = 0
'An xi m
i=1
eÐnai èna sÔsthma orjog¸niwn suntetagmènwn sth perioq  tou
tuqaÐou shmeÐou p ∈ M kai ei = ∂
∂xi
m
i=1
èna orjog¸nio sÔsthma suntetag-
mènwn ston efaptìmeno q¸ro TpM thc M tìte
trace dH =
m
i=1
Sn
ei
Sn
ei
H
4.3. DIARMONIKŸES EPIFŸANEIES STHN S3
51
Apì ton tÔpo tou Weingarten èqoume ìti
trace dH =
i=1
m Sn
ei
−AH(ei) + ⊥
ei
H
ìpou
⊥
ei
: TM⊥
→ TM⊥
H → ⊥
ei
H ∈ TM⊥
kai
−AH(ei) ∈ TM
Apì to tÔpo tou Gauss
Sn
ei
AH(ei) = ei
AH(ei) + B(ei, AH(ei))
ìpou
Sn
ei
AH(ei) ∈ TSn
ei
AH(ei) ∈ TM
B(ei, AH(ei)) ∈ TM⊥
kai apì ton tÔpo tou Weingarten
Sn
ei
( ⊥
ei
H) = −A ⊥
ei
H(ei) + ⊥
ei
( ⊥
ei
H)
ìpou
Sn
ei
( ⊥
ei
H) ∈ TSn
−A ⊥
ei
H(ei) ∈ TM
⊥
ei
( ⊥
ei
H) ∈ TM⊥
Epomènwc,
trace dH =
m
i=1
Sn
ei
−AH(ei) + ⊥
ei
H =
52 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES
m
i=1
⊥
ei
( ⊥
ei
H) − A ⊥
ei
H(ei) − ei
AH(ei) − B(ei, AH(ei))
'Omwc
⊥
H = −
m
i=1
⊥
ei
( ⊥
ei
H) − ⊥
⊥
ei
ei
H = −
m
i=1
⊥
ei
⊥
ei
H
'Ara,
trace dH = − ⊥
H − traceB(−, AH−) −
m
i=1
A ⊥
ei
H(ei) + ei
AH(ei)
Sth sunèqeia ja apodeÐxoume mia prìtash pou mac eÐnai qr simh sthn olokl -
rwsh thc apìdeixhc tou jewr matoc.
JewroÔme ton mousikì isomorfismì : TM → T∗
M mèsw tou opoÐou
tautÐzontai ta dianusmatikˆ pedÐa me tic 1-morfèc. H apeikìnish aut  orÐze-
tai wc ex c: 'Estw V ∈ TM kai V ∗
oi 1-morfèc sto q¸ro T∗
M ètsi ¸ste
V ∗
(X) = V, X gia kˆje X ∈ TM.
Prìtash
'Estw V ∈ TM kai V ∗
oi 1-morfèc sto q¸ro T∗
M ètsi ¸ste V ∗
(X) = V, X
gia kˆje X ∈ TM.
Tìte h apeikìnish : TM → T∗
M eÐnai ènac isomorfismìc.
Apìdeixh
Gia na deÐxoume ìti h apeikìnish eÐnai isomorfismìc prèpei na deÐxoume ìti aut 
eÐnai 1-1 kai epÐ.
Gia na deÐxoume ìti eÐnai 1-1 arkeÐ na deÐxoume ìti an V ∗
(X) = W∗
(X) gia
kˆje X ∈ TM tìte V = W. 'H isodÔnama an V, X = W, X gia kˆje
X ∈ TM tìte V = W. Prˆgmati, èstw U = V − W. ArkeÐ na deÐxw ìti eˆn
Up, Xp = 0 gia kˆje p ∈ M kai X ∈ TM tìte U = 0. Autì ìmwc isqÔei
apì ton orismì tou metrikoÔ tanust  Riemann.
4.3. DIARMONIKŸES EPIFŸANEIES STHN S3
53
Gia na deÐxoume ìti eÐnai epÐ, prèpei na deÐxoume ìti dojeÐshc miac 1-morf c
θ ∈ T∗
M upˆrqei monadikì dianusmatikì pedÐo V ∈ TM tètoio ¸ste θ(X) =
V, X gia kˆje X ∈ TM.
Prˆgmati, jewroÔme èna topikì sÔsthma suntetagmènwn {xi}m
i=1 kai mia to-
pik  orjokanonik  bˆsh {∂i}m
i=1 tou q¸rou TM, kai {dxi}m
i=1 thn antÐstoiqh
orjokanonik  bˆsh tou duikoÔ q¸rou T∗
M.
Tìte, h 1-morf  θ kai to dianusmatikì pedÐo V grˆfontai wc ex c :
θ = i θidxi kai V = i,j gij
θi∂j.
Tìte, èqoume
V, ∂k M = i,j gij
θi∂j, ∂k
M
= i,j gij
θi ∂j, ∂k M = i,j θigij
gjk = i θiδik =
θk = θ(∂k).
Epomènwc, gia kˆje X = i Xi
∂i ìpou X ∈ TM èqoume
V, X M = V, i Xi
∂i M = i Xi
V, ∂i M = i Xi
θ(∂i) = θ i Xi
∂i =
θ(X).
Sth sunèqeia ja deÐxoume ìti to dianusmatikì pedÐo V ∈ TM tètoio ¸ste
θ(X) = V, X gia kˆje X ∈ TM eÐnai monadikì.
Prˆgmati, jewroÔme èna ˆllo dianusmatikì pedÐo W ∈ TM tètoio ¸ste
θ(X) = W, X gia kˆje X ∈ TM. Tìte, èqoume V, X = W, X gia
kˆje X ∈ TM. Autì shmaÐnei ìti V = W.
Epistrèfoume sthn apìdeixh tou jewr matoc 4.3.1. kai èqoume
trace dH = − ⊥
H − traceB(−, AH−) −
m
i=1
A ⊥
ei
H(ei) + ei
AH(ei)
'Omwc
m
i=1
A ⊥
ei
H(ei) + ei
AH(ei) = 2
m
i=1
A ⊥
ei
H(ei) +
m
2
(d|H|2
) =
2traceA ⊥
(−)
H(−) +
m
2
grad(|H|)2
)
54 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES
ìpou
d(|H|)2
→ (d(|H|)) ≡ grad(|H|2
) ∈ TM
Anakefalai¸noume lègontac ìti h apeikìnish i eÐnai diarmonik  an kai mìno an
τ2(i) = 0. Jètoume th tim  tou trace dH sth sqèsh τ2(i) = m trace dH +
mH = 0 kai èqoume
− ⊥
H − traceB(−, AH−) + mH = 2traceA ⊥
(−)
H(−) +
m
2
grad(|H|2
)
Efìson to aristerì mèloc thc sqèshc an kei sto kˆjeto q¸ro thc M kai to
dexiì mèloc thc sqèshc ston efaptìmeno q¸ro thc M, èqoume
− ⊥
H − traceB(−, AH−) + mH = 0
2traceA ⊥
(−)
H(−) +
m
2
grad(|H|2
) = 0
kai to je¸rhma èqei apodeiqjeÐ.
Pìrisma 4.3.1. 'Estw M mia upopollaplìthta thc Sn
me ⊥
H = 0.
Tìte h apeikìnish ègklishc i : M → Sn
eÐnai diarmonik  an kai mìno an
mH = traceB(−, AH−).
Apìdeixh
Apì thn upìjesh gnwrÐzw ìti ⊥
H = 0, dhlad  h sunˆrthsh ègklishc
i : M → Sn
èqei parˆllhlo dianusmatikì pedÐo mèshc kampulìthtac kai katˆ
sunèpeia to |H| eÐnai stajerì katˆ m koc thc M. Sto prohgoÔmeno je¸rhma
apodeÐxame pwc h i eÐnai diarmonik  an kai mìno an isqÔoun ta ex c:
(1) − ⊥
H − traceB(−, AH−) + mH = 0
(2) 2traceA ⊥
(−)
H(−) + m
2
grad(|H|2
) = 0
Epeid  ⊥
H = 0 h pr¸th sqèsh gÐnetai
traceB(−, AH−) = mH
4.3. DIARMONIKŸES EPIFŸANEIES STHN S3
55
kai to pìrisma apedeÐqjhke.
Prìtash 4.3.1. 'Estw M mia uperepifˆneia thc Sn
. Tìte h apeikìnish
ègklishc i : M → Sn
eÐnai diarmonik  an kai mìno an
(1) ⊥
H = (m − |B|2
)H
(2) 2traceA ⊥
(−)
H(−) + m
2
grad(|H|2
) = 0
Apìdeixh
'Eqoume
traceB(−, AH−) =
1
m
(traceA)η|B|2
= |B|2
H
ìpou
H =
1
m
(traceA)ηa =
1
m
(traceA)η
kai h ηa
m
a=1
eÐnai mia orjokanonik  bˆsh tou TM⊥
.
Sto Je¸rhma 4.3.1. apodeÐxame ìti h i eÐnai diarmonik  an kai mìno an
(1) − ⊥
H − traceB(−, AH−) + mH = 0
(2) 2traceA (−)
H(−) + m
2
grad(|H|2
) = 0
H pr¸th sqèsh gÐnetai
− ⊥
H − |B|2
H + mH = 0 ⇔
⊥
H = (m − |B|2
)H
Epomènwc, h i eÐnai diarmonik  an kai mìno an
(1) ⊥
H = (m − |B|2
)H
(2) 2traceA (−)H(−) + m
2
grad(|H|2
) = 0
56 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES
Prìtash 4.3.2. 'Estw M = Sm
(a) × b =
p = (x1, ..., xm+1, b); x2
1 + ... + x2
m+1 = a2
, a2
+ b2
= 1, 0  a  1 mia
parˆllhlh upersfaÐra thc Sm+1
.
H M eÐnai diarmonik  upopollaplìthta thc Sm+1
an kai mìno an a = 1√
2
kai
b = + 1√
2
  b = − 1√
2
Apìdeixh
JewroÔme to sÔnolo Γ(TM) = X = (X1
, ...Xm
, 0) ∈ Rm+2
; x1
X1
+ ... +
xm+1
Xm+1
= 0 twn tom¸n (section) thc efaptìmenhc dèsmhc thc M kai
ξ = (x1
, ..., xm+1
, −a2
b
) èna dianusmatikì pedÐo thc M.
'Eqoume
ξ, X = x1
X1
+ ... + xm+1
Xm+1
+ (−
a2
b
)0 = 0
kai
ξ, p = (x1
)2
+ ... + (xm+1
)2
−
a2
b
b = a2
− a2
= 0
ξ, ξ = (x1
)2
+ ... + (xm+1
)2
+ (−
a2
b
)2
= a2
+
a4
b2
= c2
ìpou c  0. Apì tic duo pr¸tec sqèseic sumperaÐnoume ìti to ξ eÐnai tom 
(section) thc orjog¸niac dèsmhc thc M, dhlad  ξ ∈ Γ(TM⊥
).
Prìkeitai dhlad  gia mia C∞
−apeikìnish
ξ : M → TM⊥
p → ξ(p) tètoia ¸ste π ◦ ξ = id, ìpou π ◦ ξ : M → M me tim  (π ◦ ξ)(p) = p
gia kˆje p ∈ M kai π : TM⊥
→ M h dianusmatik  dèsmh pˆnw sth M.
Jètoume η = 1
c
ξ kai sumbolÐzoume me −AηX to efaptìmeno dianusmatikì pedÐo
thc Sm+1
, dhlad 
−AηX = ( Sm+1
X η)
4.3. DIARMONIKŸES EPIFŸANEIES STHN S3
57
ìpou h apeikìnish
Aη : C(TM) → C(TM)
X → AηX
eÐnai digrammik , autosuzug c kai kaleÐtai telest c sq matoc   deÔterh jemeli¸dhc
morf  sth kˆjeth dieÔjunsh ξ.
Apì to tÔpo tou Weingarten èqoume ìti
Sm+1
X η = ⊥
Xη − AηX
ìpou to dianusmatikì pedÐo ⊥
Xη orÐzei mia sunoq  pou eÐnai sumbat  sto
sÔnolo twn tom¸n thc orjog¸niac dèsmhc TM⊥
.
Jètw η = 1
c
ξ kai h sqèsh grˆfetai
Sm+1
X
1
c
ξ = ⊥
X
1
c
ξ − AηX ⇔
1
c
Sm+1
X ξ =
1
c
( ⊥
Xξ − AξX) =
1
c
( Rm+1
X ξ − AξX)
=
1
c
( Rm+1
X ξ + ξ, X p) =
1
c
(X1,...,Xm+1,0)(x1
, ..., xm+1
, −
a2
b
) =
1
c
X
Epomènwc,
⊥
Xη − AηX =
1
c
X ⇔ ⊥
(−)η − Aη(−) =
1
c
(−)
Apì th teleutaÐa sqèsh, èqoume ⊥
η = 0 kai Aη = 1
c
I kai to diˆnusma mèshc
kampulìthtac gÐnetai
H =
1
m
(traceA)η = −
1
c
η
AH = A−1
c
η = −
1
c
Aη = −
1
c
(−
1
c
)I =
1
c2
I
ApodeÐxame sto pìrisma 4.3.1 ìti h apeikìnish ègklishc miac upopollaplìth-
tac M thc Sn
me ⊥
H = 0 eÐnai diarmonik  an kai mìno an
mH = traceB(−, AH−) = |B|2
H
58 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES
Me efarmog  tou porÐsmatoc autoÔ, h teleutaÐa sqèsh mac dÐnei
c2
= 1 ⇔ a2
+
a4
b2
= 1
ìpou a2
+b2
= 1 kai 0  a  1 . Oi lÔseic tou sust matoc twn duo exis¸sewn
eÐnai (a = 1√
2
, b = + 1√
2
) kai (a = 1√
2
, b = − 1√
2
).
'Ara h upopollaplìthta M eÐnai diarmonik  thc Sm+1
an kai mìno an
a = 1√
2
kai b = 1√
2
  b = − 1√
2
.
EÐdame ìti oi mh armonikèc diarmonikèc kampÔlec thc S3
èqoun stajer  gew-
daisiak  kampulìthta. Oi B.Y. Chen kai S. Ishikawa sthn ergasÐa touc [5],
apèdeixan ìti to mètro tou dianÔsmatoc mèshc kampulìthtac twn mh armonik¸n
diarmonik¸n epifanei¸n thc S3
eÐnai stajerì.
DiatÔpwsan kai apèdeixan to parakˆtw je¸rhma :
Je¸rhma 4.3.2. 'Estw M mia epifˆneia thc S3
. H M eÐnai mh armonik  di-
armonik  upopollaplìthta an kai mìno an to |H| eÐnai stajerì kai to |B|2
= 2.
Prokeimènou na taxinom soume tic diarmonikèc epifˆneiec thc S3
parajètoume
to apotèlesma thc ergasÐac [13] tou Z.H. Hou.
Je¸rhma 4.3.3. 'Estw M mia uperepifˆneia thc S3
me stajer  mèsh kam-
pulìthta.
(1) An |B|2
= 2, tìte h M eÐnai eÐte topikˆ isometrik  me èna tm ma thc uper-
sfaÐrac S2
( 1√
2
) sthn S3
eÐte eÐnai topikˆ isometrik  me èna tm ma tou tìrou
S1
( 1√
2
) × S1
( 1√
2
)
(2) An h M eÐnai sumpag c kai prosanatolismènh kai |B|2
= 2, tìte h M
eÐnai eÐte isometrik  mia mikr  upersfaÐra S2
( 1√
2
) eÐte isometrik  me ton tìro
S1
( 1√
2
) × S1
( 1√
2
).
4.3. DIARMONIKŸES EPIFŸANEIES STHN S3
59
An lˆboume upìyh mac ìti o tìroc tou Clifford S1
( 1√
2
) × S1
( 1√
2
) eÐnai ar-
monik  epifˆneia thc S3
tìte sundiˆzontac to je¸rhma 4.3.2. kai to je¸rhma
4.3.3., èqoume :
Je¸rhma 4.3.4. 'Estw M mia mh armonik  diarmonik  epifˆneia thc S3
.
(1) An h M eÐnai mh sumpag c, tìte aut  eÐnai topikˆ isometrik  me èna tm ma
thc sfaÐrac S2
( 1√
2
) sthn S3
.
(2) An h M eÐnai sumpag c kai prosanatolismènh, tìte eÐnai isometrik  me th
sfaÐra S2
( 1√
2
) aktÐnac 1√
2
.
Anakefalai¸nontac, ta apotelèsmata pou katal goume eÐnai ta ex c :
'Estw Mm
mia diarmonik  upopollaplìthta thc tridiˆstathc sfaÐrac S3
.
Tìte,
(1) An m = 1, dhlad  h M eÐnai mia kampÔlh thc S3
, tìte h M eÐnai isometrik 
eÐte
(i) me ènan kÔklo aktÐnac 1√
2
, ìtan h gewdaisiak  kampulìthta eÐnai Ðsh me th
monˆda, dhlad  kg = 1, eÐte
(ii) me mia gewdaisiak  kampÔlh tou tìrou tou Clifford
S1
( 1√
2
) × S1
( 1√
2
), ìtan h gewdaisiak  kampulìthta ikanopoieÐ th sqèsh
0  kg  1.
(2) An m = 2, dhlad  h M eÐnai mia uperepifˆneia tìte:
(i) an h M eÐnai mh sumpag c tìte aut  eÐnai topikˆ isometrik  me èna tm ma
thc sfaÐrac S2
( 1√
2
) sthn S3
, kai
(ii) an h M eÐnai sumpag c kai prosanatolismènh tìte eÐnai isometrik  me th
sfaÐra S2
( 1√
2
) aktÐnac 1√
2
.
60 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES
BibliografÐa
[1] William M. Boothby: An Introduction to Differentiable Manifolds and
Riemannian Geometry, Academic Press, Inc., 1986.
[2] Manfredo Do Carmo: Riemannian Geometry, theory and applications,
1992.
[3] B. Y. Chen: Total MeanCurvature and Submanifolds of Finite Type,
Series in Pure Mathematics -Volume 1, World Scientific, 1984.
[4] B. Y. Chen: Some open problems and conjectures on submanifolds of
finite type, Soochow J. Math. 17 (1991), 169-188.
[5] B. Y. Chen, S. Ishikawa: Biharmonic pseudo-Riemannian submanifplds
in pseudo-Euclidean spaces, Kyushu J. Math. 52, 1998,
pp. 167-185.
[6] R. Caddeo, S. Montaldo and C. Oniciuc: Biharmonic submanifolds
of S3
, Intern.J. Math., 12 (2001), 867-876.
[7] R. Caddeo, S. Montaldo and Paola piu: On Biharmonic maps, Amer.
Math. Soc. 288 (2001), 286-290.
61
62 BIBLIOGRAFŸIA
[8] R. Caddeo, S. Montaldo and C. Oniciuc: Biharmonic submanifolds
in spheres, Israel. J. Math., 130 (2002), 109-123.
[9] Krishan L. Duggal and Aurel Bejancu: Lightlike Submanifolds of
Semie-Riemannian Manifolds and Applications, Kluwer Academic Pub-
lishers, 1996.
[10] M. Dajczer: Submanifolds and Isometric Immersions, Mathematics
Lecture series 13, Publish or Perish, 1990.
[11] J. Eells, L. Lemaire: A report on harmonic maps, Bull. London Math.
Soc. 10 (1978), 1-68.
[12] J. Eells, J.H. Sampson: Harmonic mappings of Riemannian manifolds,
Amer. J. Math. 86 (1964), 109-160.
[13] Z.H. Hou: Hypersurfaces in a sphere with constant mean curvature,
Proc. Amer. Math. Soc. 125 (1997), 1193-1196.
[14] G. Y. Jiang: 2-harmonic isometric immersions between Riemannian
manifolds, Chinese Ann. Math. Ser. A 7no 2 (1986), 130-144.
[15] G. Y. Jiang: 2-harmonic maps and their first and second variational
formulas, Chinese Ann. Math. Ser. A 7no 4 (1986), 389-402.
[16] Serge Lang: Differential and Riemannian manifolds, Graduate Texts
in Mathematics 160, Springer-Verlag, 1995.
BIBLIOGRAFŸIA 63
[17] John M. Lee: Riemannian Geometry: An introduction to curvature,
Graduate Texts in Mathematics, Springer-Verlag, 1997.
[18] John M. Lee: Introduction to Smooth Manifolds, Graduate Texts in
Mathematics, Springer-Verlag, 2003.
[19] E. Loubeau and Oniciuc: The index of biharmonic maps in spheres,
Compositio Math. 141 (2005) 729-745.
[20] B. O’Neil: Semie-Riemannian Geometry with Applications to Relativ-
ity, Academic Press, 1983.
[21] C. Oniciuc: Biharmonic maps between Riemannian manifolds,
An. Stiint. Umv. Al. I. Cuza Iasi Mat. (N.S) 48 (2002) 237-248.
[22] Peter Petersen: Riemannian Geometry, Graduate Texts in Mathemat-
ics, Springer-Verlag, 1998.
[23] BasÐleioc PapantwnÐou: DiaforÐsimec Pollaplìthtec, Pan/mio Pa-
tr¸n, 1993.
[24] BasÐleioc PapantwnÐou: Tanustik  Anˆlush kai GewmetrÐa Riemann,
Tìmoi I kai II, Pan/mio Patr¸n, 1995.
[25] H. Urakawa, Calculus of Variations and Harmonic Maps, Amer. Math.
Soc., Providance, 1993.
[26] T.J. Willmore: Riemannian Geometry, Oxford Science Publications,
1993.

More Related Content

Featured

PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Applitools
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at WorkGetSmarter
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...DevGAMM Conference
 

Featured (20)

Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 
ChatGPT webinar slides
ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slides
 
More than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike RoutesMore than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike Routes
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
 

Biharmonic submanifolds in_three_dimensisional sphere

  • 1. PANEPISTHMIO PATRWN TMHMA MAJHMATIKWN DIARMONIKES UPOPOLLAPLOTHTES THS SFAIRAS S3 STELLA SEREMETAKH MAJHMATIKOS ErgasÐa gia metaptuqiakì dÐplwma eidÐkeushc sta Jewrhtikˆ Majhmatikˆ Epiblèpwn : Lèktorac Andrèac Arbanitoge¸rgoc PATRA 2006
  • 2. EuqaristÐec Jewr¸ kaj kon, na ekfrˆsw tic eilikrineÐc kai pio jermèc mou euqaristÐec ston epiblèponta Lèktora Andrèa Arbanitogèwrgo kaj¸c kai kai sta ˆl- la dÔo mèlh thc TrimeloÔc Sumbouleutik c Epitrop c, Kajhght  BasÐleio PapantwnÐou kai Kajhght  Ajanˆsio Kotsi¸lh gia th sumbol  touc sthn teleiopoÐhsh aut c thc metaptuqiak c ergasÐac. Jewr¸ epÐshc upoqrèws  mou na euqarist sw thn oikogèneiˆ mou gia thn hjik  kai oikonomik  upost rixh pou mou prìsferan katˆ th diˆrkeia twn spoud¸n mou. Stèlla Seremetˆkh Pˆtra, Septèmbrioc 2006
  • 3. Perieqìmena Prìlogoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 1 Basikèc 'Ennoiec 1 2 Logismìc twn metabol¸n 13 2.1 Eisagwg  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Armonikèc kai diarmonikèc apeikonÐseic 23 3.1 Armonikèc apeikonÐseic . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Diarmonikèc apeikonÐseic . . . . . . . . . . . . . . . . . . . . . 38 4 Diarmonikèc Upopollaplìthtec 41 4.1 Eisagwg  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Diarmonikèc kampÔlec sthn S3 . . . . . . . . . . . . . . . . . . 42 4.3 Diarmonikèc epifˆneiec sthn S3 . . . . . . . . . . . . . . . . . 49 bibliografÐa 61 i
  • 4. ii PERIEQŸOMENA Prìlogoc Skopìc thc ergasÐac aut c eÐnai h anaz thsh twn diarmonik¸n upopol- laplot twn Mm , m = 1, 2, thc sfaÐrac S3 . H mèjodoc pou efarmìzoume sundèetai me thn arq  logismoÔ twn metabol¸n wc mia mèjodoc sullog c twn bèltistwn antikeimènwn apì ènan q¸ro X me ton ex c trìpo: (1) Sullègoume ìla ta antikeÐmena sto q¸ro X. (2) Epilègoume mia katˆllhlh sunˆrthsh E ston X. Tìte ta mègista   elˆqista thc sunˆrthshc eÐnai ta bèltista antikeÐmena pou anazhtˆme. Pio sugkekrimèna, ja parousiˆsoume me ekten  trìpo apotelèsmata apì tic ergasÐec [6] , [8] twn R. Caddeo, S. Montaldo, C. Oniciuc, oi opoÐec aforoÔn diarmonikèc upopollaplìthtec thc sfaÐrac S3 . Analutikìtera, h diˆrjrwsh thc ergasÐac èqei ¸c ex c: Sto kefˆlaio 1 parousiˆzontai sunoptikˆ orismoÐ kai ènnoiec apì th jewrÐa pollaplot twn pou apaitoÔntai gia thn parousÐash thc metaptuqiak c er- gasÐac. Sto kefˆlaio 2 parousiˆzetai o sun jhc trìpoc prosèggishc tou logismoÔ twn metabol¸n kaj¸c kai kˆpoiec gnwstèc jewrÐec pou phgˆzoun apì tic mejìdouc metabol¸n. Sto kefˆlaio 3 orÐzontai oi ènnoiec thc armonik c kai diarmonik c apeikì- nishc metaxÔ duo pollaplot twn Riemann kai dÐnontai paradeÐgmata tètoiwn apeikonÐsewn. Sto kefˆlaio 4 anazhtoÔme tic diarmonikèc kampÔlec kai tic diarmonikèc epifˆneiec thc sfaÐrac S3 . Oi kentrikèc mac anaforèc eÐnai oi ergasÐec [8] , [11] twn R. Caddeo, S. Montaldo, C. Oniciuc kai J. Eells, L. Lemaire.
  • 5. Kefˆlaio 1 Basikèc 'Ennoiec Orismìc 1.1. Onomˆzoume topologik  pollaplìthta diˆstashc n ènan sunektikì topologikì q¸ro tou Hausdorff me thn idiìthta se kˆje shmeÐo tou na upˆrqei perioq  omoiomorfik  me èna anoiktì uposÔnolo tou Rn . Tètoia pollaplìthta gia parˆdeigma eÐnai o q¸roc Rn . Orismìc 1.2. Topikìc qˆrthc pˆnw se mia n-diˆstath topologik  pol- laplìthta M lègetai kˆje duˆda (U, φ) ìpou φ eÐnai h omoiomorfik  apeikì- nish φ : U ⊆ Mn → V ⊆ Rn , ìpou U eÐnai èna anoiktì uposÔnolo thc Mn kai V èna anoiktì uposÔnolo tou EukleÐdiou q¸rou Rn . JewroÔme èna qˆrth (U, φ) miac topologik c pollaplìthtac Mn . Tìte kˆje shmeÐo p ∈ U kajorÐzetai apì tic suntetagmènec {x1(p), x2(p), ..., xn(p)} tou shmeÐou φ(p) ∈ Rn . Dhlad , xi(p) = xi(φ(p)) = (xi ◦ φ)(p), i = 1, 2, ..., n. An to sÔnolo U eÐnai sunektikì, tìte oi arijmoÐ xi(p) lègontai topikèc suntetagmènec tou shmeÐou p wc proc to qˆrth (U, φ) kai h n-ˆda twn sunart sewn xi : U ⊆ M → R 1
  • 6. 2 KEFŸALAIO 1. BASIKŸES ŸENNOIES p → xi(p) = (φ(p))i , i = 1, 2, ..., n lègetai sÔsthma topik¸n suntetagmènwn sto U wc proc to qˆrth (U, φ), ìpou h i-suntetagmènh tou p eÐnai h i-suntetagmènh tou φ(p). Epomènwc kˆje topikìc qˆrthc thc M orÐzei èna topikì sÔsthma suntetag- mènwn aut c. Orismìc 1.3. Onomˆzoume ˆtlanta diˆstashc n kai klˆshc Cr pˆn- w se mia n-diˆstath topologik  pollaplìthta M, mia oikogèneia topik¸n qart¸n Uα = {, Uαφα}α∈I (ìpou I eÐnai èna sÔnolo deikt¸n), pou ikanopoieÐ ta parakˆtw axi¸mata : (1) Ta sÔnola Uα kalÔptoun thn topologik  pollaplìthta M, dhlad  α∈I Uα = M (2) An Uα ∩ Uβ = ∅, oi omoiomorfismoÐ φα kai φβ eÐnai tètoioi ¸ste o o- moiomorfismìc φβ ◦ φ−1 α : φα(Uα ∩ Uβ) ⊆ Rn → φβ(Uα ∩ Uβ) ⊆ Rn na eÐnai amfidiaforÐsimoc klˆshc Cr . Orismìc 1.4. Oi qˆrtec c1 = (Uα, φα) kai c2 = (Uβ, φβ) klˆshc Cr , pˆnw se mia n-diˆstath topologik  pollaplìthta M, onomˆzonai Cr - sumbibastoÐ, an (1) Uα ∩ Uβ = ∅,   efìson Uα ∩ Uβ = ∅, (2) h apeikìnish φβ ◦ φ−1 α : φα(Uα ∩ Uβ) ⊆ Rn → φβ(Uα ∩ Uβ) ⊆ Rn na eÐnai klˆshc Cr .
  • 7. 3 Orismìc 1.5. DÔo Cr -ˆtlantec U1,U2 diˆstashc n miac topologik c pol- laplìthtac M onomˆzontai Cr -sumbibastoÐ, an (1) U1 ∪ U2 eÐnai pˆli ènac Cr -ˆtlantac thc M kai (2) An c1 ∈ U1 kai c2 ∈ U2 eÐnai dÔo tuqaÐoi qˆrtec, tìte oi qˆrtec autoÐ eÐnai Cr-sumbibastoÐ. Orismìc 1.6. DiaforÐsimh pollaplìthta diˆstashc n kai klˆshc Cr , onomˆzoume kˆje n-diˆstath topologik  pollaplìthta M, efodiasmènh me mia klˆsh isodÔnamwn Cr -sumbibast¸n atlˆntwn pˆnw sth M. Upojètoume ìti M eÐnai mia diaforÐsimh pollaplìthta diˆstashc n, tˆxhc diaforisimìthtac r(  klˆshc Cr ) kai ìti A eÐnai èna anoiktì uposÔnolo thc M. Orismìc 1.7. H sunˆrthsh f : A ⊆ M → R onomˆzetai diaforÐsimh tˆxhc r (  klˆshc Cr ) pˆnw sto A an h sunˆrthsh f ◦ φ−1 : φ(U ∩ A) ⊆ Rn → R eÐnai diaforÐsimh gia kˆpoio qˆrth (U, φ) pˆnw sth M. To sÔnolo twn diaforÐsimwn sunart sewn klˆshc Cr , pou orÐzontai sth n- diˆstath pollaplìthta M klˆshc Cr , sumbolÐzetai me Dr (M), en¸ to sÔnolo twn diaforÐsimwn sunart sewn pou orÐzontai sthn pollaplìthta M, klˆshc C∞ , sumbolÐzetai me D0 (M).
  • 8. 4 KEFŸALAIO 1. BASIKŸES ŸENNOIES Orismìc 1.8. H apeikìnish f : A ⊆ Mn → Nm onomˆzetai dia- forÐsimh klˆshc Cr sto shmeÐo p ∈ A, an gia kˆje qˆrth (U, φ) thc M kai (V, ψ) thc N tètoio ¸ste p ∈ U kai f(p) ∈ V , h apeikìnish F = ψ ◦ f ◦ φ−1 : φ(U ∩ f−1 (V )) ⊆ Rn → Rm na eÐnai diaforÐsimh klˆshc Cr sto shmeÐo φ(p) ∈ Rn . 'Estw to sÔnolo Dr (M, p) ìlwn twn diaforÐsimwn sunart sewn klˆshc Cr sto shmeÐo p ∈ M. To sÔnolo Dr (M, p) apoteleÐ dianusmatikì q¸ro, o opoÐoc gÐnetai ˆlgebra an orÐsoume wc deÔtero nìmo eswterik c sÔnjeshc ton pollaplasiasmì sunart sewn. Orismìc 1.9. An p eÐnai èna tuqaÐo shmeÐo thc n-diˆstathc pollaplìthtac M kai X = (X1 , X2 , ..., Xn ) èna diˆnusma sto shmeÐo p, onomˆzoume Efaptìmeno diˆnusma sto shmeÐo p thc n-diˆstathc pollaplìthtac M thn apeikìnish Xp : Dr (M, p) → R me tim  Xp(φ) = n i ( ∂φ ∂xi )Xi p pou ikanopoieÐ tic parakˆtw sunj kec : (1) Xp(λf + µg) = λXpf + µXpg (2) Xp(fg) = f(p)Xg(f) + g(p)Xp(f), gia kˆje f, g ∈ Dr (M, p), λ, µ ∈ R To sÔnolo twn efaptìmenwn dianusmˆtwn sto shmeÐo p miac diaforÐsimhc pol- laplìthtac M, apoteleÐ dianusmatikì q¸ro. Ton dianusmatikì autì q¸ro ton
  • 9. 5 lème efaptìmeno q¸ro thc M sto shmeÐo p kai ja ton sumbolÐzoume me TpM. Orismìc 1.10. O duikìc q¸roc tou TpM eÐnai o grammikìc q¸roc pou apoteleÐtai apì to sÔnolo twn grammik¸n apeikonÐsewn me pedÐo orismoÔ to q¸ro TpM kai timèc sto sÔnolo R. O q¸roc autìc sumbolÐzetai me T∗ p M, eÐnai isomorfikìc me ton TpM kai onomˆzetai sunefaptìmenoc q¸roc thc M sto p. H sullog  ìlwn twn efaptìmenwn (sunefaptìmenwn) q¸rwn thc M se kˆje shmeÐo aut c sumbolÐzetai me TM (T∗ M antÐstoiqa) kai lègetai e- faptìmenh dèsmh (sunefaptìmenh dèsmh antÐstoiqa), TM = p∈M TpM = (p, Xp); p ∈ M, Xp ∈ TpM kai T∗ M = p∈M T∗ p M Orismìc 1.11. Mia diaforik  morf  pr¸thc tˆxhc   diaforik  1-morf  epÐ thc diaforÐsimhc pollaplìthtac M onomˆzetai h apeikìnish ω : M → p∈M T∗ p M h opoÐa se kˆje shmeÐo p ∈ M antistoiqeÐ to sunefaptìmeno diˆnusma ωp tou sunefaptìmenou q¸rou T∗ p M. Dhlad  gia kˆje p ∈ M h antÐstoiqh di- aforik  1-morf  eÐnai mia grammik  morf  pˆnw ston TpM, (ωp : TpM → R). Ean D1 (M) eÐnai to sÔnolo twn dianusmatik¸n pedÐwn epÐ thc M kai D1(M) to duikì tou sÔnolo, tìte wc diaforÐsimec 1-morfèc orÐzontai ta stoiqeÐa tou
  • 10. 6 KEFŸALAIO 1. BASIKŸES ŸENNOIES D1(M) ìpou D1(M) = ω; ω : D1 (M) → D0 (M) kai h ω eÐnai diaforÐsimh grammik  apeikìnish en¸ D0 (M) eÐnai o q¸roc twn diaforÐsimwn sunart sewn. 'Estw M, N dÔo diaforÐsimec pollaplìthtec kai φ mia apeikìnish apì th M sth N. Orismìc 1.12. H apeikìnish dφp : TpM → Tφ(P)N me tim  dφp : Xp → dφp(Xp) onomˆzetai diaforikì thc apeikìnishc φ : M → N sto shmeÐo p. Sum- bolÐzetai epÐshc kai me φ∗p kai eÐnai mia grammik  apeikìnish tou efaptìmenou q¸rou TpM ston efaptìmeno q¸ro Tφ(p)N, ìpou, dφp(Xp) : D0 (N) → R dφp(Xp) : g → dφp(Xp)g = Xp(g ◦ ϕ) Orismìc 1.13. An φ : M → N eÐnai mÐa diaforÐsimh apeikìnish, to diaforikì dφp thc φ sto p ∈ M eÐnai mÐa grammik  apeikìnish dφp : TpM → R me tim  pou orÐzetai mèsw thc apeikìnishc dφp : Xp → dφp(Xp)
  • 11. 7 kai exaitÐac thc isomorfik c taÔtishc Tφ(p)R ≡ R èqoume dφp(Xp) = Xp(φ) Orismìc 1.14. 'Estw φ : M → N mia diaforÐsimh apeikìnish metaxÔ twn pollaplot twn M kai N kai èstw ω ∈ T∗ M. Onomˆzoume apeikìnish epistrof c (pull back) thc ω mèsou thc φ thn apeikìnish φ∗ ω : Tφ(p)N → TpM me tim  φ∗ ω(u1, u2, u3) = ω(φ∗(u1), ..., φ∗(un)) gia kˆje ui ∈ TpM, i = 1, 2, ..., n kai p ∈ M. Orismìc 1.15. O metrikìc tanust c Riemann eÐnai ènac sunalloÐ- wtoc tanust c tÔpou (0,2), tètoioc ¸ste se kˆje shmeÐo p ∈ M antistoiqeÐ thn apeikìnish , : TpM × TpM → R me tic akìloujec idiìthtec: 1. (i) vp + wp, zp kai (ii) λvp, wp = λ vp, wp 2. vp, wp = wp, vp 3. vp, vp ≥ 0 me vp, vp = 0 an kai mìno an vp = 0, gia kˆje vp, wp, zp ∈ TpM. Orismìc 1.16. Kˆje pollaplìthta M efodiasmènh me mia metrik  Riemann , , lègetai pollaplìthta Riemann. Orismìc 1.17. Sunoq    sunalloÐwth parˆgwgo se mia C∞ − pollaplìthta M kaloÔme thn apeikìnish : : D1 (M) × D1 (M) → D1 (M)
  • 12. 8 KEFŸALAIO 1. BASIKŸES ŸENNOIES (X, Y ) → XY pou ikanopoieÐ tic akìloujec sunj kec : (1) X(Y + Z) = XY + XZ (2) X+Y Z = XZ + Y Z (3) fXY = f XY (4) X(fX) = (Xf)Y + f XY gia kˆje f ∈ C∞ (M) kai X, Y ∈ D1 (M) (me D1 (M) sumbolÐzoume to sÔnolo ìlwn twn dianusmatik¸n pedÐwn epÐ thc M.) Orismìc 1.18. Gia kˆje dianusmatikì pedÐo X, Y ∈ D1 (M) to diaforÐsimo dianusmatikì pedÐo thc M, [X, Y ] = XY − Y X pou dra sto q¸ro D0 (M) twn diaforÐsimwn sunart sewn thc M me tim  [X, Y ]f = X(Y f) − Y (Xf) pou eÐnai epÐshc mia diaforÐsimh sunˆrthsh, gia kˆje f ∈ D0 (M), lègetai agkÔlh tou Lie twn dianusmatik¸n pedÐwn X, Y tou D1 (M). Je¸rhma 1.1. 'Estw (M, g) mia C∞ − pollaplìthta Riemann diˆstashc n. H sunoq  pou ikanopoieÐ th sqèsh 2g( XY, Z) = X(g(Y, Z))+Y (g(Z, X))−Z(g(X, Y ))+g(Z, [X, Y ])+g(Y, [Z, X])−g(X, [Y, Z]) gia kˆje X, Y, Z ∈ D1 (M), kaleÐtai Levi-Civita Epiplèon h sunoq  Levi-Civita ikanopoieÐ tic sunj kec (1) X(g(Y, Z)) = g( XY, Z) + g(Y, XZ) (2) XY − Y X = [X, Y ] Antistrìfwc, kˆje sunoq  pou ikanopoieÐ tic (1) kai (2) eÐnai Levi-Civita.
  • 13. 9 Orismìc 1.19. Tanustikì pedÐo kampulìthtac R miac pol- laplìthtac M efodiasmènhc me mia sÔndesh kaleÐtai to tanustikì pedÐo tÔpou (1,3) me tim  R(X, Y )Z = X Y Z − Y XZ − [X,Y ]Z, gia kˆje X, Y, Z ∈ D1 (M). To tanustikì pedÐo kampulìthtac ikanopoieÐ tic akìloujec sqèseic: (1) R(X, Y )Z = −R(Y, X)Z (2) R(X1 + X2, Y ) = R(X1, Y ) + R(X2, Y ) (3) R(X, Y1 + Y2) = R(X, Y1) + R(X, Y2) (4) R(fX, gY )hZ = fghR(X, Y )Z Eˆn h sunoq  eÐnai summetrik , tìte isqÔoun oi tautìthtec (5) R(X, Y )Z + R(Y, Z)X + R(Z, X)Y = 0 (6) ( XR)(Y, Z)W + ( Y R)(Z, X)W + ( ZR)(X, Y )W = 0 gia kˆje X, Y, Z ∈ D1 (M) kai f, g, h ∈ D0 (M). Oi tautìthtec (5) kai (6) kaloÔntai pr¸th kai deÔterh tautìthta tou Bianchi antÐstoiqa. Orismìc 1.20. SunalloÐwto tanustikì pedÐo twn Cristoffel- Riemann lègetai h tetragrammik  apeikìnish R : D1 (M) × D1 (M) × D1 (M) × D1 (M) → D0 (M) me tim  R(X, Y, Z, W) = g(R(X, Y )Z, W) gia kˆje X, Y, Z, W ∈ D1 (M). To sunalloÐwto tanustikì pedÐo twn Cristoffel-Riemann ikanopoeÐ tic akìlou- jèc idiìthtec: (1) R(X, Y, Z, W) = −R(Y, X, Z, W) = −R(X, Y, W, Z) = R(Y, X, Z, W)
  • 14. 10 KEFŸALAIO 1. BASIKŸES ŸENNOIES (2) R(X, Y, Z, W) + R(X, Z, W, Y ) + R(X, W, Y, Z) = 0 (3) ( XR)(Y, Z, W, V ) + ( Y R)(Z, X, W, V ) + ( ZR)(X, Y, W, V ) = 0 'Ena ˆllo tanustikì pedÐo pou orÐzetai apì to tanustikì pedÐo twn Cristoffel- Riemann , eÐnai to tanustikì pedÐo tou Ricci kai gia kˆje shmeÐo thc pollaplìthtac M o antÐstoiqoc tanust c tou Ricci. 'Estw p ∈ M tuqaÐo shmeÐo thc pollaplìthtac M kai TpM o efaptìmenoc q¸roc aut c sto shmeÐo p. JewroÔme thn apeikìnish R(−, X)Y : TpM → TpM me tim  R(−, X)Y : Z → R(Z, X)Y Orismìc 1.20. O tanust c tou Ricci orÐzetai wc to Ðqnoc thc apeikìni- shc, R(−, X)Y , gia kˆje X, Y ∈ TpM, kai sumbolÐzetai me S(X, Y )   Ric(X, Y ). Me th bo jeia topikoÔ sust matoc suntetagmènwn {xi}n i=1, o tanust c tou Ricci grˆfetai wc èxhc: S(X, Y ) = Ric(X, Y ) = n i=1 g(R(ei, X)Y, ei) = n i=1 R(ei, X, Y, ei) ìpou X, Y ∈ TpM kai {e1, e2, ..., en} eÐnai mia orjokanonik  bˆsh tou TpM wc proc to topikì sÔsthma suntetagmènwn {xi}n i=1. Orismìc 1.21. Metasqhmatismìc tou Ricci   telest c kampu- lìthtac tou Ricci sto shmeÐo p ∈ M, wc proc to efaptìmeno diˆnusma X ∈ TpM, lègetai h apeikìnish Sx = R(−, X)X : TpM → TpM me tim  Sx : Y → Sx(Y ) = R(Y, X)X
  • 15. 11 Orismìc 1.22. Bajmwt  kampulìthta thc pollaplìthtac (M, g) lègetai h sunˆrthsh sg h opoÐa orÐzetai apì th sustol  twn deikt¸n tou tanustikoÔ pedÐou tou Ricci kai dÐnetai apì th sqèsh sg = n i,j=1 gij Sij = n i=1 Ric(ei, ei) = n i=1 g(Qei, ei) ìpou Q = n i=1 R(−, ei)ei eÐnai o metasqhmatismìc tou Ricci kai {e1, e2, ..., en} eÐnai mia orjokanonik  bˆsh tou TpM. Orismìc 1.23. Gia dÔo grammik¸c anexˆrthta dianÔsmata u, v tou efaptìmenou q¸rou TpM sto p thc pollaplìthtac Riemann (M, g) o arijmìc K(u, v) = g(R(u, v)v, u) g(u, u)g(v, v) − g(u, v)2 lègetai kampulìthta tom c thc (M, g) wc proc to zeÔgoc u, v . H (M, g) èqei jetik  (arnhtik ) kampulìthta tom c eˆn gia kˆje p ∈ M kai gia duo grammik¸c anexˆrthta dianÔsmata u, v tou TpM, K(u, v) ≥ 0, (K(u, v) ≤ 0).
  • 16. 12 KEFŸALAIO 1. BASIKŸES ŸENNOIES
  • 17. Kefˆlaio 2 Logismìc twn metabol¸n 2.1 Eisagwg  O logismìc twn metabol¸n eÐnai mia jewrÐa pou basÐzetai sthn idèa ìti eÐnai dunatìn na ermhneujoÔn pollˆ fainìmena sta majhmatikˆ kai sth fusik  wc krÐsima shmeÐa sunarthsoeid¸n. Sto kefˆlaio autì ja parousiˆsoume merikèc shmantikèc jewrÐec twn majhmatik¸n kai thc fusik c, oi opoÐec proèrqontai apì mejìdouc tou logismoÔ metabol¸n (variational methods) kaj¸c kai pa- radeÐgmata twn mejìdwn aut¸n. H arq  tou logismoÔ twn metabol¸n eÐnai mia mèjodoc sullog c twn bèltistwn apì mia sullog  majhmatik¸n antikeimènwn me ton ex c trìpo: (1) Sullègoume ìla ta antikeÐmena apì èna q¸ro X. (2) Epilègoume mia katˆllhlh sunˆrthsh E ston X. Ta mègista   ta elˆqista thc sunˆrthshc aut c eÐnai ta bèltista antikeÐmena pou anazhtoÔme. ArketoÐ epist monec, ìpwc oi I. Newton, G.W. Leibnitz, P.L. Maupertuis, L. Euler kai J.L. Lagrange asqol jhkan me to logismì metabol¸n. 13
  • 18. 14 KEFŸALAIO 2. LOGISMŸOS TWN METABOLŸWN O sunhjismènoc trìpoc prosèggishc tou logismoÔ twn metabol¸n eÐnai o ex c: (1) Sto q¸ro X jewr¸ to diaforikì E thc sunˆrthshc E. (2) Eˆn to x ∈ X eÐnai èna apì ta bèltista majhmatikˆ antikeÐmena tìte autì epitugqˆnei thn elaqistopoÐhsh   th megistopoÐhsh thc sunˆrthshc E. Epomènwc h parˆgwgoc thc E mhdenÐzetai sto x, dhlad  E (x) = 0. (3) To shmeÐo x pou ikanopoieÐ th sqèsh E (x) = 0 kaleÐtai krÐsimo shmeÐo. H parapˆnw sqèsh antistoiqeÐ sthn exÐswsh twn Euler-Lagrange. (4) Skopìc eÐnai na lujeÐ h exÐswsh aut . Kˆpoiec forèc sqediˆzoume thn antÐstrofh diadikasÐa: (1) Jèloume na lÔsoume tic diaforikèc exis¸seic kˆpoiou problhmatìc mac (2) Gia na pragmatopoihjeÐ autì, jewroÔme ènan q¸ro X kai mia sunˆrthsh E ston X ètsi ¸ste h exÐswsh twn Euler-Lagrange na antistoiqeÐ sthn exÐsw- sh tou problhmatìc mac. (3) ArkeÐ tìte na brejeÐ èna elˆqisto   mègisto thc sunˆrthshc E ston X. Sto mèso thc dekaetÐac tou 1960, oi R. Palais kai S. Smale dieukrÐnhsan kˆtw apì poièc sunjhkèc h sunˆrthsh E èqei elˆqista. H sunj kh aut  kaleÐtai sunj kh twn Palais-Smale (P-S) kai perigrˆfetai wc ex c : Upojètoume ìti (M, g) eÐnai mia Ck+1 -pollaplìthta Riemann kai f : M → N mia Ck+1 - sunˆrthsh ( k ≥ 1) kai èstw S èna uposÔnolo thc M. H f ikanopoieÐ th sunj kh (P-S) eˆn isqÔoun ta ex c: (1) H f eÐnai fragmènh sto S kai (2) inf f(x) : x ∈ S = 0 Tìte upˆrqei shmeÐo x sth j kh ¯S tou S, ètsi ¸ste to x na eÐnai krÐsimo shmeÐo thc f, dhlad  fx= 0. ( f : M → fx ∈ TxM gia kˆje x ∈ M).
  • 19. 2.1. EISAGWGŸH 15 Gia na exhg soume th sunj kh (P-S) jewroÔme to ex c parˆdeigma : 'Estw duo sunart seic f kai g ston M = R me tÔpouc, (1) f(x) = x2 , −∞ < x < ∞ (2) g(x) = ex3 , −∞ < x < ∞ Kai oi duo sunart seic èqoun infima mhdèn. H pr¸th èqei elˆqisto sto shmeÐo (0, 0), en¸ h deÔterh den èqei elˆqisto. PoÔ ofeÐletai to parapˆnw fainìmeno; H apˆnthsh eÐnai ìti h sunˆrthsh f(x) ikanopoieÐ th sunj kh (P-S), en¸ h sunˆrthsh g(x) ìqi. SumbaÐnei wstìso, gia kˆpoia probl mata pou den ikanopoioÔn th sunj kh (P-S) h sunˆrthsh E na èqei elˆqisto. 1.1. Mèjodoc twn metabol¸n kai jewrÐec pedÐou H mèjodoc twn metabol¸n brÐskei efarmog  sth fusik , kurÐwc stic jew- rÐec pedÐou (field theories). Se aut n th parˆgrafo ja d¸soume mia eikìna twn armonik¸n apeikonÐsewn kai ˆllwn jewri¸n pedÐou. EÐnai gnwstì ìti sth fÔsh upˆrqoun tessˆrwn eid¸n dunˆmeic, h barÔthta (gravitation), h h- lektromagnhtik  dÔnamh (electromagnetism), h asjènhc allhlepÐdrash (weak interaction) kai h isqur  allhlepÐdrash (strong interaction). Eqoun gÐnei prospˆjeiec na sumperilhfjoÔn oi dunˆmeic autèc se mia enwpoihmènh jewrÐa pedÐou. H barÔthta èqei perigrafeÐ apì th jewrÐa sqetikìthtac tou Einstein kai o hlektromagnhtismìc apì th jewrÐa tou Maxwell. Autèc oi tèsseric dunˆmeic èqoun katagrafeÐ apì touc fusikoÔc wc jewrÐec bajmÐdac. Ja perigrˆyoume tic jewrÐec autèc ìpwc phgˆzoun apì tic mejìdouc metabol¸n. Metrikèc tou Einstein 'Estw M mia pollaplìthta diˆstas c m kai X o q¸roc ìlwn twn metrik¸n Riemann g sth M pou èqoun ìgko monˆda. 'Estw E h sunˆrthsh ston X,
  • 20. 16 KEFŸALAIO 2. LOGISMŸOS TWN METABOLŸWN pou dÐdetai apì th sqèsh E(g) = M Sgvg, g ∈ X, ìpou Sg h bajmwt  kampulìthta thc g kai vg to stoiqeÐo ìgkou pou dÐnetai apì th sqèsh vg = det(gij).dx1...dxm H sunˆrthsh E onomˆzetai sunarthsoeidèc olik c kampulìthtac. JewroÔme mia tuqaÐa metabol  (deformation) gt , (− < t < ) , g0 = g thc g. Tìte h g eÐnai krÐsimo shmeÐo thc E ston X an kai mìno an d dt t=0 E(gt) = 0 to opoÐo apodeiknÔetai ìti isodunameÐ me thn exÐswsh Ric(g) = cg ìpou Ric(g) eÐnai o tanust c Ricci thc g kai c mia stajerˆ. Mia metrik  g pou ikanopoieÐ th parapˆnw exÐswsh kaleÐtai metrik  tou Ein- stein. Sunoqèc Yang - Mills (Yang - Mills Connections) Estw E mia dianusmatik  dèsmh se mia sumpag  pollaplìthta Riemann (M, g). JewroÔme to q¸ro X ìlwn twn sunoq¸n thc dianusmatik c dèsmhc E kai th sunˆrthsh E ston X me tÔpo E( ) = 1 2 M R 2 vg, ∈ X O R eÐnai o tanust c kampulìthtac thc sunoq c sth dianusmatik  dèsmh E. JewroÔme mia metabol  (deformation) t , (− < t < ), 0 = thc . Tìte h sunoq  apoteleÐ krÐsimo shmeÐo thc E an kai mìno an d dt t=o E( t) = 0
  • 21. 2.1. EISAGWGŸH 17 Ta krÐsima shmeÐa tou parapˆnw sunarthsoeidoÔc kaloÔntai sunoqèc Yang- Mills. Armonikèc apeikonÐseic 'Estw dÔo sumpageÐc pollaplìthtec Riemann (M, g) kai (N, h) kai èstw to sÔnolo X ìlwn twn leÐwn apeikonÐsewn apì th M sth N, dhlad  X = C∞ (M, N). 'Estw h sunˆrthsh E ston X pou dÐnetai apì th sqèsh E(φ) = 1 2 M |dφ|2 vg, φ ∈ X ìpou h apeikìnish dφ : TM → TN eÐnai to diaforikì thc φ. 'Estw mia tuqoÔsa metabol  φt , (− < t < ) , φ0 = φ , thc φ. (Bl. sq ma 2.1) Tìte, h φ eÐnai armìnikh apeikìnish an kai mìno an eÐnai krÐsimo shmeÐo thc E, dhlad  an kai mìno an d dt t=0 E(φt) = 0 Parˆdeigma : Kleistèc gewdaisiakèc sth sfaÐra 'Estw mia kleist  diaforÐsimh kampÔlh φ(x) = (φ1(x), φ2(x), φ3(x)), x ∈ [0, 2π] ston R3 me perÐodo 2π. (Periodikìthta shmaÐnei ìti: φ(x+2π) = φ(x), dhlad  φi(x + 2π) = φi(x), i = 1, 2, 3). AnazhtoÔme tic kampÔlec ekeÐnec pou apoteloÔn krÐsima shmeÐa tou sunarthsoeidoÔc thc enèrgeiac E(φ) = 1 2 2π 0 3 i=1 dφi dx 2 dx 'Estw φε(x) = (φε,1(x), φε,2(x), φε,3(x)), x ∈ [0, 2π] mia metabol  thc φ me φ0 = φ kai φε(x + 2π) = φε(x), x ∈ [0, 2π] 'Eqoume ìti d dε ε=0 E(φε) = 1 2 2π 0 d dε ε=0 3 i=1 dφε,i dx 2 dx = 2π 0 3 i=1 d dε ε=0 dφε,i(x) dx dφi(x) dx dx
  • 22. 18 KEFŸALAIO 2. LOGISMŸOS TWN METABOLŸWN = 3 i=1 d dε ε=0 φε,i(x) dφi(x) dx x=2π x=0 − 2π 0 3 i=1 d dε ε=0 φε,i(x) d2 φi(x) dx2 dx Epeid  oi φε,i kai φi eÐnai periodikèc me perÐodo 2π o pr¸toc ìroc tou deÔterou mèlouc mhdenÐzetai, opìte prokÔptei ìti d dε ε=0 E(φε) = 2π 0 3 i=1 d dε ε=0 φε,i(x) d2 φε,i(x) dx2 dx Epiplèon, epeid  h φε(x) = (φε,1(x), φε,2(x), φε,3(x)) eÐnai mia leÐa metabol  thc φ tìte kai h d dε ε=0 φε(x) = d dε ε=0 φε,1(x), d dε ε=0 φε,2(x), d dε ε=0 φε,3(x) eÐnai leÐa periodik  apeikìnish . Epomènwc h φ eÐnai krÐsimo shmeÐo thc enèrgeiac an kai mìno an d dε ε=0 E(φε) = 0,   isodÔnama d2 φi(x) dx2 = 0, i = 1, 2, 3 H lÔsh twn exis¸sewn eÐnai φi(x) = Bix + Ai, i = 1, 2, 3 ìpou ta Ai, Bi eÐnai stajerèc. ExaitÐac thc periodikìthtac twn φi(x) èqoume ìti (x + 2π)Bi + Ai = xBi + Ai,dhlad  Bi = 0, opìte φi(x) = Ai gia kˆje x ∈ [0, 2π]. Epeid  oi lÔseic pou lambˆnoume sth perÐptwsh aut  eÐnai mìno oi tetrimmènec, eisˆgoume ton ex c periorismì: ApaitoÔme oi kampÔlec φ na brÐskontai sth monadiaÐa sfaÐra S2 = (y1, y2, y3) ∈ R3 ; y2 1 + y2 2 + y2 3 = 1 kai anazhtoÔme ta krÐsima shmeÐa thc E, metaxÔ twn kampul¸n aut¸n.
  • 23. 2.1. EISAGWGŸH 19 Me ton Ðdio trìpo pou perigrˆyame parapˆnw, jewroÔme mia metabol  φε(x) thc φ , x ∈ [0, 2π] . Tìte h φ ∈ S2 eÐnai krÐsimo shmeÐo an kai mìno an d dε ε=0 E(φε) = 0   isodÔnama 2π 0 3 i=1 d dε ε=0 φε,i(x) d2 φi(x) dx2 = 0 Sto shmeÐo autì prèpei na lˆboume upìyhn to periorismì φε(x) ∈ S2 , x ∈ [0, 2π]. Gia to lìgo autì, jewroÔme ton efaptìmeno q¸ro TyS2 = V ∈ R3 ; V, y = 0 thc S2 se èna y ∈ S2 , pou eÐnai to kˆjeto epÐpedo sto diˆnusma y. Kˆje diˆnusma V ∈ R3 mporeÐ na analujeÐ se duo sunist¸sec, mia sto kˆ- jeto q¸ro (TyS2 ) ⊥ kai mia ston TyS2 , dhlad  V = V, y y + (V − V, y y) ExaitÐac thc sunj khc φε(x) ∈ S2 gia kˆje x ∈ [0, 2π], to φε(x), φε(x) = 1. ParagwgÐzontac th teleutaÐa sqèsh sto ε = 0 kai lambˆnontac upìyh ìti φ0(x) = φ(x) èqoume ìti ( d dε ) ε=0 φε(x), φε(x) = 0 dhlad  ( d dε ) ε=0 φε(x) ∈ Tφ(x)S2 Lìgw thc sqèshc V = V, y y + (V − V, y y) to diˆnusma d2 φ dx = d2 φ1 dx2 , d2 φ2 dx2 , d2 φ3 dx2 analÔetai wc ex c : d2 φ dx2 = d2 φ(x) dx2 , φ(x) φ(x) + d2 φ(x) dx2 − d2 φ(x) dx2 , φ(x) φ(x) kai epeid  o deÔteroc ìroc an kei ston Tφ(x)S2 autìc eÐnai mhdèn. 'Ara, d2 φ(x) dx2 = d2 φ(x) dx2 , φ(x) φ(x)
  • 24. 20 KEFŸALAIO 2. LOGISMŸOS TWN METABOLŸWN ParagwgÐzoume th sqèsh φ(x), φ(x) = 1 gia kˆje x sto [0, 2π] kai èqoume dφ(x) dx , φ(x) = 0 ParagwgÐzontac xanˆ paÐrnoume d2 φ(x) d2(x) , φ(x) + dφ(x) dx , dφ(x) dx = 0   isodÔnama d2 φ(x) dx2 , φ(x) = − dφ(x) dx , dφ(x) dx ExaitÐac thc teleutaÐac sqèshc h d2 φ(x) dx2 = d2 φ(x) dx2 , φ(x) φ(x) paÐrnei th morf  d2 φ(x) d2(x) + dφ(x) dx , dφ(x) dx φ(x) = 0 Sth sunèqeia paragwgÐzoume to eswterikì ginìmeno dφ(x) dx , dφ(x) dx kai èqoume d dx dφ(x) dx , dφ(x) dx = 2 d2 φ(x) dx2 , dφ(x) dx . Lìgw thc d2 φ(x) dx2 = d2 φ(x) dx2 , φ(x) φ(x) h parapˆnw sqèsh gÐnetai d dx dφ(x) dx , dφ(x) dx = 2 d2 φ(x) dx2 , dφ(x) dx = −2 dφ(x) dx , dφ(x) dx φ(x), dφ(x) dx kai lìgw thc dφ(x) dx , φ(x) = 0
  • 25. 2.1. EISAGWGŸH 21 èqoume telikˆ ìti d dx dφ(x) dx , dφ(x) dx = 2 d2 φ(x) dx2 , dφ(x) dx = −2 dφ(x) dx , dφ(x) dx φ(x), dφ(x) dx = −2 dφ(x) dx , dφ(x) dx φ(x), dφ(x) dx = 0 Epomènwc to eswterikì ginìmeno dφ(x) dx , dφ(x) dx eÐnai stajerì gia kˆje x ∈ [0, 2π]. Jètoume dφ(x) dx , dφ(x) dx = c2 , c > 0 kai h sqèsh d2 φ(x) d2(x) + dφ(x) dx , dφ(x) dx φ(x) = 0 gÐnetai d2 φ(x) dx2 + dφ(x) dx , dφ(x) dx φ(x) = 0 IsodÔnama d2 φi(x) dx2 + c2 φi = 0, i = 1, 2, 3 H genik  lÔsh tou sust matoc eÐnai φi(x) = Ai cos(cx) + Bi sin(cx) ⇔ φ(x) = A cos(cx) + B sin(cx) ìpou ta A kai B eÐnai dianÔsmata ston R3 . Ikan  kai anagkaÐa sunj kh ¸ste h kampÔlh φ(x), x ∈ [0, 2π] na eÐnai periodik  me perÐodo 2π, na keÐtai sth sfaÐra S2 kai na apoteleÐ krÐsimo shmeÐo thc E eÐnai : A, A = B, B = 1, A, B = 0 kai c = m (akèraioc) Mia tètoia kampÔlh eÐnai ènac mègistoc kÔkloc thc sfaÐrac S2 kai diagrˆfetai m forèc kaj¸c to x metabˆletai apì to 0 èwc to 2π. (Eˆn to m eÐnai arnhtikì o kÔkloc diagrˆfetai sthn antÐjeth kateÔjunsh ).
  • 26. 22 KEFŸALAIO 2. LOGISMŸOS TWN METABOLŸWN Sumpèrasma : Apì ìlec tic leÐec periodikèc kampÔlec φ(x) = (φ1(x), φ2(x), φ3(x)), x ∈ [0, 2π] me perÐodo 2π, oi opoÐec brÐskontai sth sfaÐra S2 = (y1, y2, y3) ∈ R3 ; y2 1 + y2 2 + y2 3 = 1 ta krÐsima shmeÐa thc E(φ) = 1 2 2π 0 3 i=1 dφi dx 2 dx eÐnai oi lÔseic thc diaforik c exÐswshc d2 φ(x) dx + dφ(x) dx , dφ(x) dx φ(x) = 0 Autèc oi lÔseic eÐnai mègistoi kÔkloi thc S2 pou diagrˆfontai m forèc kaj¸c to x metabˆletai apì to 0 èwc to 2π.
  • 27. Kefˆlaio 3 Armonikèc kai diarmonikèc apeikonÐseic 3.1 Armonikèc apeikonÐseic Orismìc 3.1.1. Mia leÐa apeikìnish φ ∈ C∞ (M, N) metaxÔ duo pol- laplot twn Riemann (M, g) kai (N, h) kaleÐtai armonik  an kai mìno an eÐnai krÐsimo shmeÐo tou sunarthsoeidoÔc thc enèrgeiac E(φ) = 1 2 M |dφ|2 vg H apeikìnish dφ : TM → TN eÐnai to diaforikì thc φ ∈ C∞ (M, N) kai vg = det(gij)dx1dx2...dxm to stoiqeÐo ìgkou thc metrik c g. H φ eÐnai krÐsimo shmeÐo thc E eˆn gia opoiad pote leÐa apeikìnish F : (−ε, ε) × M → N me tim  F(t, x) = φt(x), gia kˆje t ∈ (−ε, ε) kai gia kˆje x ∈ M me F(0, x) = φ0(x) = φ(x) isqÔei h sqèsh d dt t=0 E(φt) = 0 23
  • 28. 24 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS Orismìc 3.1.2. Mia C1 −kampÔlh γ : I → M thc pollapìthtac M onomˆzetai gewdaisiak  an γ γ = 0, gia kˆje shmeÐo tou anoiqtoÔ di- ast matoc I. 'Estw èna topikì sÔsthma suntetagmènwn {xi}n i=1 thc M. Tìte, γ(t) = (γ1(t), γ2(t), ..., γn(t)) kai γ (t) = n i=1 γi(t) ∂ ∂xi γ(t) Epomènwc h sqèsh γ γ = 0 isodÔnama gÐnetai d2 γi dt2 + n j,k=1 Γi jk dγj dt dγk dt = 0, i = 1, 2, ..., n. Jètoume ξi = dγi dt kai katal goume sto ex c sÔsthma diaforik¸n exis¸sewn: dξi dt = − n j,k=1 Γi jkξjξk, i = 1, 2, ..., n. Eˆn dojoÔn oi arqikèc timèc γ(0) = (γ1(0), γ2(0), ..., γn(0)) kai dγ dt (0) = dγ1 dt (0), dγ2 dt (0), ..., dγn dt (0) gia t = 0 to sÔsthma èqei monadik  lÔsh gia ìla ta t sthn perioq  tou mhdenìc. Autì shmaÐnei ìti gia opoiod pote shmeÐo p thc M kai gia opoiod pote efaptìmeno diˆnusma u sto shmeÐo p tou efaptìmenou q¸rou TM pou ikanopoioÔn tic sunj kec (1) γ(0) = p kai (2)γ (0) = u upˆrqei monadik  gewdaisiak  γ(t) gia t kontˆ sto mhdèn. SumbolÐzoume γ(t) = expp(tu) kai dÐnoume ton parakˆtw orismì. Orismìc 3.1.3. Ekjetik  apeikìnish sto shmeÐo p miac pollaplìthtac M, lègetai h apeikìnish expp : TpM → M me tim  ekeÐno to shmeÐo thc M pou orÐzetai apì to γ(1), dhlad  γ(1) = expp u gia kˆje u ∈ TpM kai tètoio ¸ste na orÐzetai to γ(1). Autì shmaÐnei ìti to mètro tou efaptìmenou dianusmatoc u prèpei na eÐnai arketˆ mikrì, dhlad  to
  • 29. 3.1. ARMONIKŸES APEIKONŸISEIS 25 t na paÐrnei timèc se mia perioq  tou mhdenìc sto q¸ro TpM. Orismìc 3.1.4. 'Estw mia tuqoÔsa C∞ − apeikìnish V : M → TN me V (x) ∈ Tφ(x)N, x ∈ M kai φt : M → N h ekjetik  C∞ − apeikìnish me tim  φt(x) = expφ(x)(tV (x)), x ∈ M. Onomˆzoume to dianusmatikì pedÐo V (x) = d dt t=0 φt(x) dianusmatikì pedÐo metabol c katˆ m koc thc φ (variation vector field along φ). Antistrìfwc eˆn jewr soume mia tuqoÔsa leÐa metabol  φt ∈ C∞ (M, N) thc φ, ( < t < ) kai φ0 = φ, jètontac V (x) = d dt t=0 φt(x) orÐzetai mia C∞ − apeikìnish V apì thn pollaplìthta M sthn efaptìmenh dèsmh TN me tim  V (x) ∈ Tφ(x)N, x ∈ M. Orismìc 3.1.5. 'Estw duo Ck − pollaplìthtec E kai N kai π : E → N mia Ck − apeikìnish. H π : E → N onomˆzetai Ck −dianusmatik  dèsmh epÐ thc N eˆn : (1) Gia kˆje x ∈ N o q¸roc π−1 (x) = Ex o kaloÔmenoc n ma epÐ tou x eÐnai dianusmatikìc q¸roc diˆstashc k (2) upˆrqei anoiqt  geitoniˆ U thc N sto x, kai ènac diaforomorfismìc φ : π−1 (U) → U × Rk tou opoÐou o periorismìc sto π−1 (ψ) eÐnai ènac i- somorfismìc epÐ tou ψ × Rk gia kˆje ψ ∈ U. Orismìc 3.1.6. DÐnetai mia Ck dianusmatik  dèsmh p : E → N kai mi- a Ck − apeikìnish φ : M → N metaxÔ duo Ck − pollaplot twn M kai N. Kataskeuˆzoume thn dianusmatik  dèsmh π : E → M, ìpou E = (p , u) ∈ M × E; φ(p ) = π(u) , π ((p , u)) = p . SumbolÐzw th dianusmatik  dèsmh E me φ∗ E   φ−1 E kai thn onomˆzw epag¸menh dianusmatik  dèsmh thc dianusmatik c dèsmhc E mèsw thc φ.
  • 30. 26 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS Sqhmatikˆ èqoume to diˆgramma: φ−1 E // π E π M φ // N 'Estw h C∞ − dianusmatik  dèsmh π : TN → N me π(u) = φ(x) gia kˆje x ∈ M. OrÐzoume thn epag¸menh dèsmh φ−1 TN thc efaptìmenhc dèsmhc TN mèsw thc φ wc to sÔnolo φ−1 TN = (x, u) ∈ M × TN; π(u) = φ(x), x ∈ M = x∈M Tφ(x)N H sqhmatik  parˆstash èqei wc ex c: φ−1 TN // π TN π M φ // N ìpou π : (M, TN) → M eÐnai h C∞ − dianusmatik  dèsmh me π (x, u) = x, x ∈ M. Orismìc 3.1.7. Mia C∞ −tom  (section) thc epag¸menhc dèsmhc φ−1 TN mèsw thc φ : M → N eÐnai h C∞ − apeikìnish V : M → TN me V (x) ∈ Tφ(x)N, x ∈ M. SumbolÐzoume to sÔnolo ìlwn twn C∞ −tom¸n me Γ(φ−1 TN) = V ∈ C∞ (M, TN), V (x) ∈ Tφ(x)N, x ∈ M . ParathroÔme ìti to sÔnolo Γ(φ−1 TN) eÐnai to sÔnolo ìlwn twn dianus- matik¸n pedÐwn metabol c katˆ m koc thc φ. Gia kˆje f ∈ C∞ (M) ,V, V1, V2 ∈ Γ(φ−1 TN) kai x ∈ M orÐzoume sto sÔnolo φ−1 TN touc ex c nìmouc : + : Γ(E) × Γ(E) → Γ(E) (V1, V2) → V1 + V2
  • 31. 3.1. ARMONIKŸES APEIKONŸISEIS 27 me tim  (V1 + V2)(x) = V1(x) + V2(x) ìpou E = φ−1 TN kai · : C∞ (M) × Γ(E) → Γ(E) (f, V ) → f.V me tim  (f.V )(x) = f(x).V (x) Me ton prosjetikì nìmo (+) to Γ(E) kajÐstatai abelian  omˆda. Epiplèon, isqÔoun oi ex c idiìthtec : (1) ((f + g)V )(x) = (fV )(x) + (gV )(x) (2) ((f.g)V )(x) = (f.(g.V ))(x) (3) (f.(V1 + V2))(x) = (f.V1)(x) + (f.V2)(x) Me tic parapˆnw idiìthtec h abelian  omˆda (Γ(E), +) kajÐstatai èna prìtupo (module) epÐ thc C∞ (M). Prin d¸soume ton orismì thc epag¸menhc sunoq c sthn epag¸menh dèsmh φ−1 TN thc efaptìmenhc dèsmhc TN mèsw thc φ, dÐnoume touc epìmenouc orismoÔc. Orismìc 3.1.8. H apeikìnish σ : R → M me tim  σ(t) ∈ M gia kˆje t ∈ R eÐnai mia C1 − kampÔlh thc M. Gia t = 0 èqoume (1) σ(0) = x kai (2) σ (0) = Xx ⇔ d dt t=0 σ(t) = Xx ìpou Xx ∈ TxM kai h kampÔlh σt me tim  σt(s) = σ(s) eÐnai o periorismìc thc σ ìtan to 0 ≤ s ≤ t. Orismìc 3.1.9. To dianusmatikì pedÐo X lègetai parˆllhlo katˆ m koc thc C1 − kampÔlhc γ : [a, b] ⊂ R → M an ta dianÔsmata tou pedÐou X se
  • 32. 28 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS opoiad pote dÔo diaforetikˆ shmeÐa thc kampÔlhc eÐnai parˆllhla metaxÔ touc, dhlad  γ X = 0 'Estw èna topikì sÔsthma suntetagmènwn {xi}n i=1 se mia perioq  U thc M. Tìte, grˆfoume X(t) = n i=1 ξi(t) ∂ ∂xi γ(t) , ìpou X(t) ∈ Tγ(t)M, gia kˆje t ∈ [a, b] kai γ(t) = (γ1(t), γ2(t), ..., γn(t)), opìte γ (t) = n i=1 γi(t) ∂ ∂xi γ(t) . Epomènwc, apì th sqèsh γ X = 0 isodÔnama èqoume dξi(t) dt + n j,k=1 Γi jk(γ(t)) dγj(t) dt ξk(t) = 0, i = 1, 2, ...n. Eˆn dojeÐ h kampÔlh γ(t) kai dojeÐ h arqik  tim  (ξ1(α), ξ2(α), ..., ξn(α)) sto shmeÐo p = γ(α) tìte ta ξi eÐnai monadikˆ orismèna, efìson to sÔsthma twn diaforik¸n exis¸sewn èqei monadik  lÔsh. Epomènwc, h tim  (ξ1(b), ξ2(b), ..., ξn(b)) sto q = γ(b) kai katˆ sunèpeia to X(b) orÐzontai monadikˆ. 'Eqoume dhlad  thn antistoiqÐa Tγ(α)M X(α) → X(b) ∈ Tγ(b)M. Orismìc 3.1.10. Onomˆzoume thn apeikìnish Pγ : Tγ(α)M → Tγ(b)M parˆllhlh metaforˆ katˆ m koc thc kampÔlhc γ wc proc th Levi-Civita sunoq  sth pollaplìthta (M, g). H apeikìnish Pγ eÐnai ènac grammikìc isomorfismìc kai epiplèon, gγ(b) (Pγ(u), Pγ(v)) = gγ(α) (u, v) , u, v ∈ Tγ(α)M.
  • 33. 3.1. ARMONIKŸES APEIKONŸISEIS 29 SumbolÐzoume me kai N tic sunoqèc Levi-Civita stic pollaplìthtec (M, g) kai (N, h) antÐstoiqa, kai dÐnoume ton akìloujo orismì. Orismìc 3.1.11. Gia kˆje C∞ − dianusmatikì pedÐo X thc M onomˆzoume epag¸menh sunoq  sthn epag¸menh dèsmh φ−1 TN thc efaptìmenhc dèsmhc TN mèsw thc f, thn apeikìnish X : N P−1 φ◦σt V (σ(t))Γ(φ−1 TN) → Γ(φ−1 TN) V → XV gia kˆje V ∈ Γ(φ−1 TN), me tim  XV (x) = N φ∗X V = d dt t=0 , x ∈ M H ikanopoieÐ tic ex c idiìthtec : (1) fX+gY V = f XV + g Y V (2) X(V1 + V2) = XV1 + 2V2 (3) X(fV ) = X(f)V + f XV gia kˆje f, g ∈ C∞ (M) gia kˆje X, Y ∈ D1 (M) kai V, V1, V2 ∈ Γ(φ−1 TN). H apeikìnish N Pφ◦σt : Tφ(x)N → Tφ(σ(t))N eÐnai h kaloÔmenh parˆllhlh metaforˆ katˆ m koc thc C1 −kampÔlhc φ ◦ σt wc proc th Levi-Civita sunoq  N sth pollaplìthta (N, h). Sth sunèqeia ja apodeÐxoume endeiktikˆ thn trÐth katˆ seirˆ apì tic idiìthtec thc epag¸menhc sÔnoq c . Ja apodeÐxoume dhlad  ìti X(fV ) = X(f)V + f XV
  • 34. 30 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS Apìdeixh Gia kˆje x ∈ M èqoume X(fV )(x) = d dt t=0 N P−1 φ◦σt (f(σ(t))V (σ(t))) = d dt t=0 f(σ(t)) N P−1 φ◦σt (V (σ(t))) + f(x) d dt N P−1 φ◦σt V (σ(t)) = Xx(f)V (x) + f(x)( XV )(x) H epag¸menh dèsmh φ−1 TN epidèqetai èna eswterikì ginìmeno proerqìmeno apì th metrik  h sth pollaplìthta N pou sumbolÐzetai me hφ(x) kai eÐnai h apeikìnish hφ(x) : Tφ(x)N × Tφ(x)N → R Lambˆnontac upìyh thn isometrik  diìthta : hϕ(σ(t))(V1(σ(t)), V2(σ(t)) = hφ(x)(N P−1 φ◦σt V1(σ(t)), N P−1 φ◦σt V2(σ(t)) = hφ(x)(V1(x), V2(x)) thc apeikìnishc N P−1 φ◦σt V (σ(t)) : Tϕ(σ(t))N → Tφ(x)N ja deÐxoume ìti h epag¸menh sunoq  eÐnai sumbat  me th metrik  hφ(x) ìpwc thn orÐsame parapˆnw. Prˆgmati, Xxhφ(x)(V1, V2) = d dt t=0 hφ(σ(t))(V1(σ(t)), V2(σ(t)) = d dt t=o hφ(x)(N P−1 φ◦σt V1(σ(t)), N P−1 φ◦σt V2(σ(t)) = hφ(x) d dt t=0 N P−1 φ◦σt V1(σ(t)), V2(x) +hφ(x) V1(x), d dt t=o N P−1 φ◦σt V2(σ(t)) = hφ(x)( Xx V1, V2) + hφ(x)(V1, Xx V2) gia kˆje X ∈ D1 (M), V1, V2 ∈ Γ(φ−1 TN) kai x ∈ M.
  • 35. 3.1. ARMONIKŸES APEIKONŸISEIS 31 O H. Urakawa sto biblÐo tou [25] anafèrei to parakˆtw je¸rhma metabo- l c: Je¸rhma 3.1.1. 'Estw φ ∈ C∞ (M, N) kai φt mia tuqaÐa leÐa metabol  thc φ, ìpou − t , φ0 = φ kai V (x) = d dt t=0 φt(x), x ∈ M to C∞ − dianusmatikì pedÐo metabol c katˆ m koc thc φ. Tìte d dt t=0 E(φt) = − M h(V, τ(φ))vg ìpou to τ(φ) eÐnai stoiqeÐo tou Γ(φ−1 TN) pou kaleÐtai pedÐo èntashc thc φ (tension field) kai dÐdetai apì th sqèsh τ(φ) = m i=1 ( ei dφ(ei) − dφ( ei ei) Sumpèrasma: h φ ∈ C∞ (M, N) eÐnai armonik  an kai mìno an d dt t=0 E(φt) = 0 ⇔ τ(φ) = 0 H exÐswsh τ(φ) = 0 kaleÐtai exÐswsh twn Euler-Lagrange. ParadeÐgmata armonik¸n apeikonÐsewn (1) Stajerèc apeikonÐseic 'Estw dÔo sumpageÐc pollaplìthtec Riemann (M, g) kai (N, h) kai q ∈ N èna stajerì shmeÐo. Kˆje stajer  apeikìnish φ : M → N me tim  φ(x) = q, x ∈ M, eÐnai armonik  kai antistrìfwc. Apìdeixh H φ eÐnai stajer  an kai mìno an to sunarthsoeidèc thc puknìthtac thc enèrgeiac e(φ) = 1 2 |dφ|2 thc φ eÐnai mhdèn, dhlad  an kai mìno an e(φ) = 0. 'Omwc to sunarthsoeidèc thc enèrgeiac thc φ dÐnetai apì th sqèsh E(φ) = M e(φ)vg. Epomènwc, e(φ) = 0 ⇔ E(φ) = 0 ⇔ d dt t=o E(φ) = 0 ⇔ τ(φ) = 0
  • 36. 32 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS Dhlad  h φ eÐnai stajer  an kai mìno an eÐnai armonik . (2) Kleistèc gewdaisiakèc sth sfaÐra S2 'Estw mia kleist  diaforÐsimh kampÔlh φ(x) = (φ1(x), φ2(x), φ3(x)), x ∈ [0, 2π] ston R3 me perÐodo 2π, dhlad  φ(x + 2π) = φ(x)   φi(x + 2π) = φi(x), i = 1, 2, 3. AnazhtoÔme tic kampÔlec pou apoteloÔn krÐsima shmeÐa thc enèrgeiac E(φ) = 1 2 2π 0 3 i=1 ( dφi dx )2 dx kai brÐskontai sth monadiaÐa sfaÐra S2 = (y1, y2, y3); y2 1 + y2 2 + y2 3 = 1 Autèc oi kampÔlec eÐnai mègistoi kÔkloi thc sfaÐrac S2 pou strèfontai m forèc kaj¸c to x metabˆletai apì to 0 èwc to 2π. (Analutik  parousÐash ègine sthn parˆgrafo 2.2.) Sth sunèqeia ja sundèsoume thn armonikìthta me tic pollaplìthtec elˆqi- sthc èktashc.
  • 37. 3.1. ARMONIKŸES APEIKONŸISEIS 33 Orismìc 3.1.12. 'Estw duo diaforÐsimec pollaplìthtec (M, g) kai (N, h). Mia leÐa apeikìnish φ : M → N onomˆzetai isometrik  embˆ- ptish (isometric immersion) eˆn : (1) to diaforikì thc φ sto p ∈ M, dhlad  h apeikìnish dφp : TpM → Tφ(p)N eÐnai 1 − 1 gia kˆje x ∈ M, (2) xp, yp M = dφ(xp), dφ(yp) N gia kˆje xp, yp ∈ TpM. Orismìc 3.1.13. 'Otan mia embˆptish φ : M → N eÐnai 1 − 1, tìte h φ lègetai emfÔteush thc M sthn N . Sthn perÐptwsh aut  lème ìti h pollaplìthta M eÐnai emfuteumènh mèsa sth N mèsou thc φ,   ìti h M eÐnai mia emfuteumènh upopollaplìthta thc N. Orismìc 3.1.14. Mia m−diˆstath pollaplìthta M onomˆzetai upopol- laplìthta thc n−diˆstathc pollaplìthtac N ìtan : (1) M ⊂ N (h M eÐnai topologikìc upìqwroc thc N.) (2) H tautotik  apeikìnish i : M → N eÐnai mia emfÔteush thc pollaplìthtac M sthn pollaplìthta N. Eˆn dimN − dimM = 1, tìte h M lègetai uperepifˆneia thc N. 'Estw M mia m− diˆstath upopollaplìthta thc n− diˆstathc pollaplìth- tac Riemann N (m n). An h eÐnai h metrik  Riemann thc N, tìte h epag¸menh metrik  thc M eÐnai h g = i∗ h, ìpou (1) h i : M → N eÐnai leÐa (2) h i : M → N eÐnai tautotik  me tim  i(x) = x (3) h i : M → N eÐnai 1-1 (4) h di : TpM → Ti(p)N eÐnai èna proc èna kai tautotik . H M efodiasmènh me th g kajistˆ thn i : M → N isometrik  : g(xp, yp) =
  • 38. 34 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS i∗ h(x, y) = h(di(xp), di(yp)) gia kˆje xp, yp ∈ TpM. 'Ena diˆnusma ξp ∈ TpN, x ∈ M lègetai kˆjeto sthn M sto shmeÐo p an h(ξp, xp) = 0 gia kˆje xp ∈ TpM. An TM⊥ eÐnai to sÔnolo ìlwn twn kˆjetwn dianusmˆtwn se kˆje shmeÐo p ∈ M tìte TN = TM ⊕ TM⊥ 'Estw X, Y duo dianusmatikˆ pedÐa thc M kai X, Y oi epektˆseic aut¸n sthn pollaplìthta N, dhlad  ta dianusmatikˆ pedÐa thc N ta opoÐa ìtan perior- isjoÔn sthn pollaplìthta M eÐnai ta dianusmatikˆ pedÐa X, Y antÐstoiqa. 'Estw h sunoq  thc pollaplìthtac Riemann N. Tìte h tim  tou dianus- matikoÔ pedÐou XY sto p ∈ M den exartˆtai apì tic epektˆseic X, Y twn X, Y antÐstoiqa kai to dianusmatikì pedÐo [X, Y ] thc N eÐnai epèktash tou dianusmatikoÔ pedÐou [X, Y ] thc M. 'Etsi grˆfoume XY antÐ XY kai analÔoume autì to dianusmatikì pedÐo thc N se duo sunist¸sec, mia efap- tìmenh thc M, thn XY kai mia kˆjeth sth M, thn B(X, Y ). 'Epomènwc, XY = XY + B(X, Y ) O tÔpoc autìc onomˆzetai tÔpoc tou Gauss. H apeikìnish : TM × TM → TM (X, Y ) → XY orÐzei mia sunoq  sth M pou lègetai epag¸menh sunoq  sthn upopol- laplìthta M. EpÐshc h apeikìnish B : TM × TM → TM⊥ (X, Y ) → B(X, Y ) eÐnai summetrik , digrammik  kai legetai deÔterh jemeli¸dhc morf  (second fundamental form) thc upopollaplìthtac M.
  • 39. 3.1. ARMONIKŸES APEIKONŸISEIS 35 'Estw ξ èna dianusmatikì pedÐo thc N kˆjeto sth M. To dianusmatikì pedÐo Xξ analÔetai se mia efaptìmenh sunist¸sa thn −AξX kai mia kˆjeth thn ⊥ Xξ opìte isqÔei o akìloujoc tÔpoc tou Weingarten Xξ = −AξX + ⊥ Xξ H apeikìnish ⊥ : TM × TM⊥ → TM⊥ (X, ξ) → ⊥ Xξ èqei tic idiìthtec miac sunoq c kai lègetai kˆjeth sunoq  (normal conne- ction) thc upopollaplìthtac M. H apeikìnish Aξ : TM → TM X → AξX eÐnai grammik  wc proc X kai ξ kai autosuzug c, dhlad , gia kˆje X, Y ∈ TM isqÔei: AξX, Y M = X, AξY M kai kaleÐtai telest c sq matoc (shape operator)   deÔterh jemeli¸dhc morf  sth kˆjeth dieÔjunsh ξ ∈ TM⊥ (the second fundamental form in the normal direction ξ). Jewr¸ th diaforÐsimh kampÔlh a : I ⊂ R → M sthn pollaplìthta M me tim  a(t) ∈ M pou ikanopoieÐ tic sunj kec a(t0) = p kai a (t0) = xp ∈ TpM. To AξX = −( xp ξ) = −(ξ ◦ a) (t0) metrˆei thn allag  kateÔjunshc tou ξ kaj¸c autì dièrqetai apì to p katˆ m koc thc kampÔlhc a. O efaptìmenoc q¸roc Ta(t)M thc M sto a(t) strèfetai kaj¸c to kˆjeto diˆnusma ξ strèfe- tai. 'Epomènwc to AξX ekfrˆzei èna mètro strof c tou efaptìmenou q¸rou thc M sto p kaj¸c to ξ dièrqetai apì to p katˆ m koc thc a. 'Ara o telest c sq matoc mac dÐnei plhroforÐec gia to sq ma thc M.
  • 40. 36 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS Prìtash 3.1.1. Gia kˆje dianusmatikì pedÐo ξ thc N kˆjeto sth M kai gia X, Y ∈ TM èqoume AξX, Y M = B(X, Y ), ξ M Apìdeixh X ξ, Y M = Xξ, Y M + ξ, XY M ⇔ 0 = Xξ + ⊥ Xξ, Y M + ξ, XY + B(X, Y ) M ⇔ 0 = −AξX, Y M + ⊥ Xξ, Y M + ξ, XY )M + ξ, B(X, Y ) M ⇔ AξX, Y M = B(X, Y ), ξ M Gia èna monadiaÐo kˆjeto diˆnusma ξ thc M sto p o telest c sq matoc Aξ eÐnai grammikìc kai autosuzug c opìte mporoÔme na epilèxoume orjokanonik  bˆsh e1, e2, ..., em thc M ìpou ta stoiqeÐa thc na apoteloÔn idiodianÔsmata tou Aξ, dhladh Aξ(ei) = λiei, i = 1, 2, ..., m. Ta λi ∈ R kaloÔntai kÔriec kampulìthtec (principal curvatures) thc M wc proc thn kˆjeth dieÔjunsh ξ kai ta idiodianÔsmata ei kaloÔntai kÔriec dieujÔnseic (principal directions). Oi kÔriec kampulìthtec mac dÐnoun mia perigraf  tou topikoÔ telest  sq - matoc thc emfuteumènhc pollaplìthtac M. Orismìc 3.1.15. 'Estw φ : Mm → Nn mia isometrik  embˆptish metaxÔ duo pollaplot twn M kai N. To dianusmatikì pedÐo mèshc kampulìth- tac H thc φ eÐnai h apeikìnish H : M → TM⊥ x → H(x) ∈ TxM⊥ me tim  H(x) = 1 m m i=1 B(ei, ei) ⇔ H(x) = 1 m traceB
  • 41. 3.1. ARMONIKŸES APEIKONŸISEIS 37 ìpou ei m i=1 mia orjokanonik  bˆsh tou q¸rou TxM. 'Estw ξa m a=1 mia orjokanonik  bˆsh tou TM⊥ sto x. Tìte traceB = a,i B(ei, ei), ξa M kai lìgw thc sqèshc AξX, Y M = B(X.Y ), ξ M èqoume traceB = a,i Aξa (ei), ei M = a traceAξa 'Ara to dianusmatikì pedÐo mèshc kampulìthtac gÐnetai wc ex c: H(x) = 1 m a traceAξa ⇔ H(x) = 1 m (traceA)ξ Orismìc 3.1.16. H φ kaleÐtai elˆqisth isometrik  embˆptish kai h upopollaplìthta M elaqÐsthc èktashc (minimal submanifold) eˆn H = 0. Apì to tÔpo tou Gauss èqoume XY = XY + B(X, Y ) gia kˆje X, Y ∈ TM. Gia X = Y = ei ∈ TM, i = 1, 2, ..., m o tÔpoc gÐnetai wc ex c: ei ei = ei ei + B(ei, ei) ⇔ B(ei, ei) = ei ei − ei ei ìpou eÐnai h sÔndesh sthn epag¸menh dèsmh φ−1 TN thc efaptìmenhc dèsmh- c TN. Epomènwc to dianusmatikì pedÐo mèshc kampulìthtac H = 1 m m i=1 B(ei, ei)
  • 42. 38 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS gÐnetai wc ex c: H = 1 m m i=1 ( ei ei − ei ei) 'Omwc τ(φ) = m i=1 ( ei dφ(ei) − dφ( ei ei) Lìgw tou tautotikoÔ isomorfismoÔ Tφ(x)N ∼= Nφ(x) èqoume H = 1 m τ(φ) Sunep¸c H = 0 an kai mìno an τ(φ) = 0 Prìtash 3.1.2. An h φ : M → N eÐnai isometrik  embˆptish tìte h M eÐnai elˆqisthc èktashc an kai mìno an to pedÐo èntashc τ(φ) thc φ mhdenÐzetai. 3.2 Diarmonikèc apeikonÐseic Orismìc 3.2.1. MÐa leÐa apeikìnish φ ∈ C∞ (M, N) metaxÔ duo pol- laplot twn Riemann (M, g) kai (N, h) kaleÐtai diarmonik  an kai mìno an eÐnai krÐsimo shmeÐo tou sunarthsoeidoÔc thc enèrgeiac deÔterhc tˆxhc (bienergy) E2(φ) = 1 2 M |τ(φ)|2 vg H φ eÐnai krÐsimo shmeÐo thc E2 an gia opoiad pote metabol  φt ∈ C∞ (M, N) (− t ), φ0 = φ thc φ isqÔei h sunj kh d dt t=0 E2(φt) = 0 Stic ergasÐec [14] , [15] o J. Jiang èdwse gia thn pr¸th metabol  tou sunarth- soeidoÔc E2 ton akìloujo tÔpo d dt t=0 E2(φt) = − M h(τ2(φ), V )vg
  • 43. 3.2. DIARMONIKŸES APEIKONŸISEIS 39 Je¸rhma 3.2.1. 'Estw φ ∈ C∞ (M, N) kai φt mia tuqaÐa leÐa metabol  thc φ, ìpou (− t ), φ0 = φ kai V (x) = d dt |t=0φt(x), x ∈ M to C∞ − dianusmatikì pedÐo metabol c katˆ m koc thc φ. Tìte, d dt t=0 E2(φt) = − M h(τ2(φ), V )vg ìpou τ2(φ) = Jφ(τ(φ)) eÐnai to pedÐo tˆshc deÔterhc tˆxhc kai Jφ eÐnai ènac au- tosuzug c, diaforikìc telest c pou dra sto sÔnolo twn dianusmatik¸n pedÐ- wn metabol c katˆ m koc thc φ, onomˆzetai telest c tou Jacobi(Jacobi operator) kai orÐzetai wc ex c : Jφ = ¯ φ − Rφ O diaforikìc telest c ¯ φ onomˆzetai Laplasian  (rough Laplacian), dra sta dianusmatikˆ pedÐa metabol c katˆ m koc thc φ kai orÐzetai wc ex c : ¯ φV = − m i=1 ( ei ei − ei ei )V ìpou V ∈ Γ(φ−1 TN), ei m i=1 orjokanonik  bˆsh wc proc th metrik  g sth M kai (m = dimM). Tèloc o diaforikìc telest c Rφ dra epÐshc sta dianusmatikˆ pedÐa metabol c katˆ m koc thc φ kai dÐnetai apì th sqèsh RφV = m i=1 N R(V, dφ(ei))dφ(ei) ìpou V ∈ Γ(φ−1 TN) kai N R eÐnai to tanustikì pedÐo kampulìthtac thc suno- q c N sthn pollaplìthta (N, h). Sumpèrasma : H φ ∈ C∞ (M, N) eÐnai diarmonik  an kai mìno an d dt t=0 E(φt) = 0 ⇔ τ2(φ) = 0 ⇔ J(τ(φ)) = 0 H exÐswsh τ2(φ) = 0 kaleÐtai diarmonik  exÐswsh.
  • 44. 40 KEFŸALAIO 3. ARMONIKŸES KAI DIARMONIKŸES APEIKONŸISEIS Idiìthtec twn diarmonik¸n apeikonÐsewn Prìtash 3.2.1. H φ eÐnai diarmonik  an kai mìno an to τ(φ) an kei ston pur na tou telest  Jφ, dhlad  an kai mìno an τ(φ) ∈ KerJφ. Apìdeixh KerJφ = V ∈ Γ(φ−1 TN); Jφ(V ) = 0 τ(φ) ∈ KerJφ ⇔ Jφ(τ(φ)) = 0 ⇔ τ2(φ) = 0, dhlad  h φ eÐnai diarmonik . Prìtash 3.2.2. Eˆn h φ ∈ C∞ (M, N) eÐnai armonik  tìte eÐnai kai diar- monik . Apìdeixh Jèlw na deÐxw ìti h φ eÐnai diarmonik , dhlad  ìti d dt t=0 E2(φt) = 0 gia kˆje leÐa metabol  φt, (− t ), φ0 = φ thc φ, ìpou E2(φ) = 1 2 M |τφ)|2 vg to sunarthsoeidèc thc enèrgeiac deÔterhc tˆxhc (bienergy). Apì thn upì- jesh èqw pwc h φ eÐnai diarmonik , dhlad  τ(φ) = 0, ˆra E2(φ) = 0, ˆra d dt t=0 E2(φt) = 0, ˆra h φ eÐnai diarmonik . Prìtash 3.2.3. Mia armonik  apeikìnish elaqistopoieÐ to sunarthsoeidèc E2(φ) = 1 2 M |τ(φ)|2 vg . Apìdeixh H φ eÐnai armonik , dhlad  τ(φ) = 0. Epomènwc E2(φ) = 0.
  • 45. Kefˆlaio 4 Diarmonikèc Upopollaplìthtec 4.1 Eisagwg  O B.Y. Chen sthn ergasÐa tou [4] anafèrei thn ex c eikasÐa: EikasÐa tou Chen Kˆje diarmonik  upopollaplìthta tou eukleÐdeiou q¸rou En eÐnai armonik , dhlad  eÐnai elˆqisthc èktashc. Eˆn o q¸roc den eÐnai eukleÐdeioc h eikasÐa tou Chen genikˆ den epalhjeÔetai. 'Ena antiparˆdeigma anafèrei o G.Y. Jiang sthn ergasÐa tou [15] kai prìkeitai gia to genikeumèno tìro tou Clifford Sp ( 1√ 2 ) × Sq ( 1√ 2 ) ⊂ Sm+1 me p + q = m kai p = q. Orismìc 4.1.1. Tìroc tou Clifford lègetai h eikìna f(S1 × S1 ) thc apeikìnishc f : S1 × S1 → R4 me tim  f(u, v) = (cosu, sinu, cosv, sinv). O tìroc T2 = S1 ×S1 diagrˆfetai apì thn peristrof  tou kÔklou S1 me exÐswsh (x1 − a)2 + x2 3 = r2 , r a sto epÐpedo x10x3 gÔrw apì ton ˆxona x3. 41
  • 46. 42 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES Sth sunèqeia oi G.Y. Jiang kai C. Oniciuc stic ergasÐec touc [7] kai [21] apèdeixan tic parakˆtw protˆseic: Prìtash 4.1.1. Eˆn M eÐnai mia sumpag c upopollaplìthta Riemann miac pollaplìthtac N me kampulìthta tom c RiemN ≤ 0, tìte h φ : M → N eÐnai diarmonik  an kai mìno an eÐnai armonik , dhlad  elˆqisthc èktashc. Prìtash 4.1.2. Eˆn h φ : M → N eÐnai isometrik  embˆptish me |τ(φ)| stajerì kai h kampulìthta tom c thc pollaplìthtac N eÐnai RiemN ≤ 0, tìte h φ eÐnai diarmonik  an kai mìno an eÐnai armonik , dhlad  elˆqisthc èk- tashc. Oi parapˆnw protˆseic mac odhgoÔn sth genikeumènh eikasÐa tou Chen. Genikeumènh eikasÐa tou Chen Oi mìnec diarmonikèc upopollaplìthtec miac pollaplìthtac N me kampulìth- ta tom c RiemN ≤ 0 eÐnai oi elˆqisthc èktashc, dhlad  oi armonikèc. Stìqoc mac eÐnai na anazht soume tic diarmonikèc kampÔlec kai tic diarmonikèc epifˆneiec thc sfaÐrac S3 . Oi kentrikèc mac anaforèc eÐnai oi ergasÐec [3],[4] twn R. Caddeo, S. Montaldo, C. Oniciuc kai h ergasÐa [11] twn J. Eells, L. Lemaire. 4.2 Diarmonikèc kampÔlec sthn S3 Arqikˆ ja anazht soume tic diarmonikèc kampÔlec miac trisdiˆstathc pol- laplìthtac M. Jewr¸ (M3 , g) mia tridiˆstath pollaplìthta Riemann me stajer  kampulìth- ta tom c K kai mia diaforÐsimh kampÔlh γ : I ⊂ R → (M3 , g) parametrikopoih- mènh wc proc to m koc tìxou thc. 'Estw T, N, B èna orjokanonikì pedÐo
  • 47. 4.2. DIARMONIKŸES KAMPŸULES STHN S3 43 plaisÐwn efaptìmeno sthn M3 katˆ m koc thc γ, ìpou : • T = γ eÐnai to monadiaÐo dianusmatikì pedÐo efaptìmeno sth γ • N to monadiaÐo kˆjeto dianusmatikì pedÐo sth dieÔjunsh tou T T • B to dianusmatikì pedÐo kˆjeto sta T kai N epÐ thc γ epilegmèno ¸ste h T, N, B na apoteleÐ jetikˆ prosanatolismènh bˆsh. KaloÔme to T, N, B paidÐo plaisÐwn tou Frenet epÐ thc γ. Eˆn h kampÔlh γ eÐnai monadiaÐac taqÔthtac, dhlad  |γ (t)| = 1,tìte kg = | T T| = |τ(γ)|. H kg onomˆzetai gewdaisiak  kampulìthta kai ekfrˆzei thn taqÔthta metabol c thc dieÔjunshc tou efaptomenikoÔ pedÐou sth kampÔlh anˆ monˆda m kouc tìxou. H sunˆrthsh τg pou perilambˆnetai stouc parakˆtw tÔpouc onomˆzetai gewdaisiak  strèyh kai ekfrˆzei thn taqÔthta metabo- l c thc dieÔjunshc tou dianusmatikoÔ pedÐou B. IsqÔoun oi parakˆtw exis¸- seic tou Frenet : T T = kgN T N = −kgT + τgB T B = −τgN H kampÔlh γ eÐnai diarmonik  an kai mìno an τ2(γ) = 0 ⇔ 3 T T − R(T, kgN)T = 0 ⇔ (−3kgkg)T + (kg − k3 g − kgτ2 g + kgK)N + (2kgτg + kgτg)B = 0 ìpou K = K(T, N) = g(R(T, N)N, T) g(T, T)g(N, N) − g(T, N)2 = g(R(T, N)N, T) = R(T, N, N, T) = −R(T, N, T, N)
  • 48. 44 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES eÐnai h kampulìthta tom c thc M3 wc proc to zeÔgoc T, N , h opoÐa èqoume upojèsei ìti eÐnai stajer . Epomènwc h kampÔlh γ eÐnai diarmonik  an kai mìno an τ2(γ) = 0. IsodÔnama (1) kgkg = 0 (2) kg − k3 g − kgτ2 g + kgK = 0 (3) 2kgτg + kgτg = 0 AnazhtoÔme diarmonikèc mh gewdaisiakèc kampÔlec, dhlad  diarmonikèc kampÔlec me gewdaisiak  kampulìthta kg = 0. 'Eqontac wc upìjesh ìti kg = 0 èqw ta ex c : Apì thn exÐswsh (1) sunepˆgetai ìti kg = c1, ìpou h c1 eÐnai mia mh mhdenik  pragmatik  stajerˆ. Apì thn (2) sunepˆgetai ìti k2 g + τ2 g = K. Apì thn (3) sunepˆgetai ìti τg = c2, ìpou h c2 eÐnai mia mh mhdenik  prag- matik  stajerˆ. Epomènwc katal goume sth parakˆtw prìtash. Prìtash 4.2.1 Oi diarmonikèc mh gewdaisiakèc kampÔlec thc pollaplìth- tac M eÐnai ekeÐnec pou èqoun stajer  gewdaisiak  kampulìthta kai strèyh kai pou ikanopoioÔn th sunj kh k2 g + τ2 g = K. Sthn perÐptwsh pou h kampulìthta tom c eÐnai mikrìterh   Ðsh tou mhdenìc (K ≤ 0) h sunj kh k2 g + τ2 g = K den mporeÐ na isqÔei parˆ mìno ìtan kg = τg = 0. Tìte h γ eÐnai gewdaisiak , dhlad  elˆqisthc èktashc (mini- mal). Epomènwc epibebai¸netai h genikeumènh eikasÐa tou Chen .
  • 49. 4.2. DIARMONIKŸES KAMPŸULES STHN S3 45 Sth sunèqeia ja anazht soume diarmonikèc mh gewdaisiakèc kampÔlec sth sfaÐra S3 . Oi kentrik  mac anaforˆ eÐnai h ergasÐa [6]. Prìtash 4.2.2. 'Estw γ : I → S3 ⊂ R4 mia mh gewdaisiak  diarmonik  kampÔlh parametrikopoihmènh wc proc to m koc tìxou thc. Tìte isqÔei h exÐswsh γIV + 2γ + (1 − k2 g)γ = 0 Apìdeixh PaÐrnoume th sunalloÐwth parˆgwgo wc proc T thc exÐswshc T N = −kgT + τgB tou Frenet kai èqoume 2 T N = T ( T N) = −kg T T + τg T B ExaitÐac kai twn upoloÐpwn exis¸sewn tou Frenet, h parapˆnw sqèsh gÐnetai 2 T N = −kg(kgN) + τg(−τgN) = −(k2 g + τ2 g )N = −KN Epeid  h kampulìthta tom c thc sfaÐrac eÐnai K = 1, h parapˆnw sqèsh gÐnetai 2 T N = −N ⇔ 2 T + N = 0 H exÐswsh tou Gauss gia tuqaÐo dianusmatikì pedÐo X thc S3 katˆ m koc thc γ èqei wc ex c : T X = X + T, X γ Efarmìzontac thn parapˆnw sqèsh gia to dianusmatikì pedÐo N èqoume T N = N + T, N γ
  • 50. 46 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES Epomènwc, 2 T N = T ( T N) = T (N + T, N γ) = T N = N + T, N γ = N + T, T N γ = N + T, −kgT + τgB γ = N + (−kg T, T + τg T, B )γ = N − kgγ ⇔ 2 T N = N − kgγ 'Omwc N = T kg ìpou T = T T = T γ = γ + T, T γ γ ⇔ T = γ + γ , γ γ Epeid  h kampÔlh γ èqei monadiaÐa taqÔthta, dhlad  |γ | = 1 ⇔ γ , γ = 1 èqoume telikˆ ìti T = γ + γ Opìte N = γ + γ kg ParagwgÐzoume thn parapˆnw sqèsh kai paÐrnoume N = γ + γ kg ParagwgÐzoume xanˆ N = γIV + γ kg Apì tic sqèseic 2 T N + N = 0 2 T N = N − kgγ
  • 51. 4.2. DIARMONIKŸES KAMPŸULES STHN S3 47 N = γIV + γ kg èqoume telikˆ γIV + 2γ + (1 − k2 g)γ = 0. 'Ara oi mh gewdaisiakèc diarmonikèc kampÔlec thc S3 eÐnai lÔseic thc diafori- k c exÐswshc γIV + 2γ + (1 − kg)γ = 0. ApodeÐxame prohgoumènwc ìti isqÔoun oi sunj kec kg = σταθ. = 0 τg = σταθ. = 0 k2 g + τ2 g = K gia tic mh gewdaisiakèc diarmonikèc kampÔlec γ : I → (M3 , g). Ean h pollaplìthta M eÐnai h sfaÐra S3 tìte h kampulìthta tom c isoÔtai me th monˆda, dhlad  K = 1, opìte h trÐth sunj kh gÐnetai k2 g + τ2 g = 1 Apì th teleutaÐa sqèsh sunepˆgetai ìti kg ≤ 1. Je¸rhma 4.2.1. 'Estw mia mh gewdaisiak  diarmonik  kampÔlh γ : I → S3 parametrikopoihmènh wc proc to m koc tìxou thc. IsqÔoun ta ex c : (1) Eˆn kg = 1, tìte h γ eÐnai kÔkloc aktÐnac 1√ 2 (2) Eˆn 0 kg 1, tìte h γ eÐnai gewdaisiak  tou tìrou tou Clifford S1 ( 1√ 2 ) × S1 ( 1√ 2 ) Apìdeixh Pr¸th perÐptwsh : H sqèsh γIV + 2g + (1 − k2 g)γ = 0 ìtan to kg = 1 gÐnetai γIV + 2γ = 0
  • 52. 48 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES H exÐswsh eÐnai grammik , tètarthc tˆxhc, omogen c, me stajeroÔc sunte- lestèc. To qarakthristikì polu¸numo eÐnai f(ρ) = ρ4 + 2ρ2 kai oi rÐzec tou eÐnai oi ρ = 0 (dipl  pragmatik ), ρ1 = i √ 2, ρ2 = −i √ 2. 'Ara h genik  lÔsh thc diaforik c exÐswshc eÐnai h γ(t) = e0t (c1 cos( √ 2t) + c2 sin( √ 2t) + c3t + c4 ⇔ γ(t) = c1 cos( √ 2t) + c2 sin( √ 2t) + c3t + c4 GnwrÐzontac ìti |γ|2 = 1 kai |γ |2 = 1 kai me efarmog  twn sqèsewn tou Frenet, èqoume c3 = 0, |c1|2 = |c2|2 = |c4|2 = 1 2 . Epomènwc, h genik  lÔsh eÐnai h γ(t) = 1 √ 2 cos( √ 2t), 1 √ 2 sin( √ 2t), 0, 1 √ 2   isodÔnama γ(t) = 1 √ 2 cos( √ 2t), 1 √ 2 sin( √ 2t), d1, d2 ìpou d2 1 + d2 2 = 1 2 'Ara h kampÔlh γ eÐnai kÔkloc aktÐnac ρ = 1√ 2 DeÔterh perÐptwsh : LÔnoume th diaforik  exÐswsh γIV + 2γ + (1 − k2 g)γ = 0 ìtan to 0 kg 1 Aut  eÐnai grammik , tètarthc tax c, omogen c, me stajeroÔc suntelestèc. To qarakthristikì polu¸numo eÐnai f(ρ) = ρ4 + 2ρ2 + (1 − k2 g). Oi rÐzec tou eÐnai oi ρ1 = i 1 + kg, ρ2 = −i 1 + kg kai oi ρ3 = i 1 − kg, ρ4 = −i 1 − kg. Epomènwc, h genik  lÔsh thc diaforik c exÐswshc eÐnai h γ(t) = e0t c1 cos( 1 + kg)t+c2 sin( 1 + kg)t +e0t c3 cos( 1 − kg)t+c4 sin( 1 − kg)t
  • 53. 4.3. DIARMONIKŸES EPIFŸANEIES STHN S3 49   isodÔnama γ(t) = c1 cos( 1 + kg)t+c2 sin( 1 + kg)t+c3 cos( 1 − kg)t+c4 sin( 1 − kg)t GnwrÐzontac ìti |γ|2 = |γ |2 = 1 kai me efarmog  twn tÔpwn tou Frenet, èqw ìti |ci|2 = 1 2 gia kˆje i = 1, 2, 3, 4. Epomènwc, h lÔsh eÐnai h γ(t) = 1 √ 2 cos(At), 1 √ 2 sin(At), 1 √ 2 cos(Bt), 1 √ 2 sin(Bt) ìpou A = 1 + kg kai B = 1 − kg H parapˆnw kampÔlh γ eÐnai gewdaisiak  tou tìrou tou Clifford S1 ( 1√ 2 ) × S1 ( 1√ 2 ) ⊂ S3 ⊂ R4 4.3 Diarmonikèc epifˆneiec sthn S3 Prin anaferjoÔme stic diarmonikèc epifˆneiec thc sfaÐrac S3 ja parousiˆ- soume kˆpoia genikˆ apotelèsmata pou aforoÔn upopollaplìthtec sth sfaÐra Sn . 'Estw (M, , ) mia upopollaplìthta diˆstashc m thc Sn kai i : M → Sn h apeikìnish ègklishc. SumbolÐzoume me: • B th deÔterh jemeli¸dh morf  thc M • A to telest  sq matoc thc M • H to dianusmatikì pedÐo mèshc kampulìthtac thc M • ⊥ thn orjog¸nia sÔndesh, dhlad  th sÔndesh sthn orjog¸nia dèsmh TM⊥ thc M
  • 54. 50 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES • ⊥ th Laplasian  sthn orjog¸nia dèsmh TM⊥ thc M Je¸rhma 4.3.1. H apeikìnish ègklishc i : M → Sn eÐnai diarmonik  an kai mìno an (1) − ⊥ H − traceB(−, AH−) + mH = 0 (2) 2traceA ⊥ (−) H(−) + m 2 grad(|H|2 ) = 0 Apìdeixh GnwrÐzoume ìti traceRSn (di, τ(i))di = trace Sn di , Sn τ(i) di − Sn [di,τ(i)]di = −mτ(i) H apeikìnish i eÐnai diarmonik  an kai mìno an τ2(i) = 0. 'Omwc τ2(i) = J(τ(i)) = − (τ(i)) − traceRSn (di, τ(i))di = trace dτ(i) + mτ(i) 'Ara h i eÐnai diarmonik  an kai mìno an τ2(i) = trace dτ(i) + mτ(i) = 0. Gia mia isometrik  emfÔteush i èqoume H = 1 m τ(i) ⇒ 1 m dτ(i) = dH ⇒ 1 m dτ(i) = dH ⇒ 1 m trace dτ(i) = trace dH ⇒ trace dτ(i) = mtrace dH Apì tic duo teleutaÐec sqèseic èqoume τ2(i) = mtrace dH+mτ(i) = mtrace dH+m.mH = m trace dH+mH = 0 'An xi m i=1 eÐnai èna sÔsthma orjog¸niwn suntetagmènwn sth perioq  tou tuqaÐou shmeÐou p ∈ M kai ei = ∂ ∂xi m i=1 èna orjog¸nio sÔsthma suntetag- mènwn ston efaptìmeno q¸ro TpM thc M tìte trace dH = m i=1 Sn ei Sn ei H
  • 55. 4.3. DIARMONIKŸES EPIFŸANEIES STHN S3 51 Apì ton tÔpo tou Weingarten èqoume ìti trace dH = i=1 m Sn ei −AH(ei) + ⊥ ei H ìpou ⊥ ei : TM⊥ → TM⊥ H → ⊥ ei H ∈ TM⊥ kai −AH(ei) ∈ TM Apì to tÔpo tou Gauss Sn ei AH(ei) = ei AH(ei) + B(ei, AH(ei)) ìpou Sn ei AH(ei) ∈ TSn ei AH(ei) ∈ TM B(ei, AH(ei)) ∈ TM⊥ kai apì ton tÔpo tou Weingarten Sn ei ( ⊥ ei H) = −A ⊥ ei H(ei) + ⊥ ei ( ⊥ ei H) ìpou Sn ei ( ⊥ ei H) ∈ TSn −A ⊥ ei H(ei) ∈ TM ⊥ ei ( ⊥ ei H) ∈ TM⊥ Epomènwc, trace dH = m i=1 Sn ei −AH(ei) + ⊥ ei H =
  • 56. 52 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES m i=1 ⊥ ei ( ⊥ ei H) − A ⊥ ei H(ei) − ei AH(ei) − B(ei, AH(ei)) 'Omwc ⊥ H = − m i=1 ⊥ ei ( ⊥ ei H) − ⊥ ⊥ ei ei H = − m i=1 ⊥ ei ⊥ ei H 'Ara, trace dH = − ⊥ H − traceB(−, AH−) − m i=1 A ⊥ ei H(ei) + ei AH(ei) Sth sunèqeia ja apodeÐxoume mia prìtash pou mac eÐnai qr simh sthn olokl - rwsh thc apìdeixhc tou jewr matoc. JewroÔme ton mousikì isomorfismì : TM → T∗ M mèsw tou opoÐou tautÐzontai ta dianusmatikˆ pedÐa me tic 1-morfèc. H apeikìnish aut  orÐze- tai wc ex c: 'Estw V ∈ TM kai V ∗ oi 1-morfèc sto q¸ro T∗ M ètsi ¸ste V ∗ (X) = V, X gia kˆje X ∈ TM. Prìtash 'Estw V ∈ TM kai V ∗ oi 1-morfèc sto q¸ro T∗ M ètsi ¸ste V ∗ (X) = V, X gia kˆje X ∈ TM. Tìte h apeikìnish : TM → T∗ M eÐnai ènac isomorfismìc. Apìdeixh Gia na deÐxoume ìti h apeikìnish eÐnai isomorfismìc prèpei na deÐxoume ìti aut  eÐnai 1-1 kai epÐ. Gia na deÐxoume ìti eÐnai 1-1 arkeÐ na deÐxoume ìti an V ∗ (X) = W∗ (X) gia kˆje X ∈ TM tìte V = W. 'H isodÔnama an V, X = W, X gia kˆje X ∈ TM tìte V = W. Prˆgmati, èstw U = V − W. ArkeÐ na deÐxw ìti eˆn Up, Xp = 0 gia kˆje p ∈ M kai X ∈ TM tìte U = 0. Autì ìmwc isqÔei apì ton orismì tou metrikoÔ tanust  Riemann.
  • 57. 4.3. DIARMONIKŸES EPIFŸANEIES STHN S3 53 Gia na deÐxoume ìti eÐnai epÐ, prèpei na deÐxoume ìti dojeÐshc miac 1-morf c θ ∈ T∗ M upˆrqei monadikì dianusmatikì pedÐo V ∈ TM tètoio ¸ste θ(X) = V, X gia kˆje X ∈ TM. Prˆgmati, jewroÔme èna topikì sÔsthma suntetagmènwn {xi}m i=1 kai mia to- pik  orjokanonik  bˆsh {∂i}m i=1 tou q¸rou TM, kai {dxi}m i=1 thn antÐstoiqh orjokanonik  bˆsh tou duikoÔ q¸rou T∗ M. Tìte, h 1-morf  θ kai to dianusmatikì pedÐo V grˆfontai wc ex c : θ = i θidxi kai V = i,j gij θi∂j. Tìte, èqoume V, ∂k M = i,j gij θi∂j, ∂k M = i,j gij θi ∂j, ∂k M = i,j θigij gjk = i θiδik = θk = θ(∂k). Epomènwc, gia kˆje X = i Xi ∂i ìpou X ∈ TM èqoume V, X M = V, i Xi ∂i M = i Xi V, ∂i M = i Xi θ(∂i) = θ i Xi ∂i = θ(X). Sth sunèqeia ja deÐxoume ìti to dianusmatikì pedÐo V ∈ TM tètoio ¸ste θ(X) = V, X gia kˆje X ∈ TM eÐnai monadikì. Prˆgmati, jewroÔme èna ˆllo dianusmatikì pedÐo W ∈ TM tètoio ¸ste θ(X) = W, X gia kˆje X ∈ TM. Tìte, èqoume V, X = W, X gia kˆje X ∈ TM. Autì shmaÐnei ìti V = W. Epistrèfoume sthn apìdeixh tou jewr matoc 4.3.1. kai èqoume trace dH = − ⊥ H − traceB(−, AH−) − m i=1 A ⊥ ei H(ei) + ei AH(ei) 'Omwc m i=1 A ⊥ ei H(ei) + ei AH(ei) = 2 m i=1 A ⊥ ei H(ei) + m 2 (d|H|2 ) = 2traceA ⊥ (−) H(−) + m 2 grad(|H|)2 )
  • 58. 54 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES ìpou d(|H|)2 → (d(|H|)) ≡ grad(|H|2 ) ∈ TM Anakefalai¸noume lègontac ìti h apeikìnish i eÐnai diarmonik  an kai mìno an τ2(i) = 0. Jètoume th tim  tou trace dH sth sqèsh τ2(i) = m trace dH + mH = 0 kai èqoume − ⊥ H − traceB(−, AH−) + mH = 2traceA ⊥ (−) H(−) + m 2 grad(|H|2 ) Efìson to aristerì mèloc thc sqèshc an kei sto kˆjeto q¸ro thc M kai to dexiì mèloc thc sqèshc ston efaptìmeno q¸ro thc M, èqoume − ⊥ H − traceB(−, AH−) + mH = 0 2traceA ⊥ (−) H(−) + m 2 grad(|H|2 ) = 0 kai to je¸rhma èqei apodeiqjeÐ. Pìrisma 4.3.1. 'Estw M mia upopollaplìthta thc Sn me ⊥ H = 0. Tìte h apeikìnish ègklishc i : M → Sn eÐnai diarmonik  an kai mìno an mH = traceB(−, AH−). Apìdeixh Apì thn upìjesh gnwrÐzw ìti ⊥ H = 0, dhlad  h sunˆrthsh ègklishc i : M → Sn èqei parˆllhlo dianusmatikì pedÐo mèshc kampulìthtac kai katˆ sunèpeia to |H| eÐnai stajerì katˆ m koc thc M. Sto prohgoÔmeno je¸rhma apodeÐxame pwc h i eÐnai diarmonik  an kai mìno an isqÔoun ta ex c: (1) − ⊥ H − traceB(−, AH−) + mH = 0 (2) 2traceA ⊥ (−) H(−) + m 2 grad(|H|2 ) = 0 Epeid  ⊥ H = 0 h pr¸th sqèsh gÐnetai traceB(−, AH−) = mH
  • 59. 4.3. DIARMONIKŸES EPIFŸANEIES STHN S3 55 kai to pìrisma apedeÐqjhke. Prìtash 4.3.1. 'Estw M mia uperepifˆneia thc Sn . Tìte h apeikìnish ègklishc i : M → Sn eÐnai diarmonik  an kai mìno an (1) ⊥ H = (m − |B|2 )H (2) 2traceA ⊥ (−) H(−) + m 2 grad(|H|2 ) = 0 Apìdeixh 'Eqoume traceB(−, AH−) = 1 m (traceA)η|B|2 = |B|2 H ìpou H = 1 m (traceA)ηa = 1 m (traceA)η kai h ηa m a=1 eÐnai mia orjokanonik  bˆsh tou TM⊥ . Sto Je¸rhma 4.3.1. apodeÐxame ìti h i eÐnai diarmonik  an kai mìno an (1) − ⊥ H − traceB(−, AH−) + mH = 0 (2) 2traceA (−) H(−) + m 2 grad(|H|2 ) = 0 H pr¸th sqèsh gÐnetai − ⊥ H − |B|2 H + mH = 0 ⇔ ⊥ H = (m − |B|2 )H Epomènwc, h i eÐnai diarmonik  an kai mìno an (1) ⊥ H = (m − |B|2 )H (2) 2traceA (−)H(−) + m 2 grad(|H|2 ) = 0
  • 60. 56 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES Prìtash 4.3.2. 'Estw M = Sm (a) × b = p = (x1, ..., xm+1, b); x2 1 + ... + x2 m+1 = a2 , a2 + b2 = 1, 0 a 1 mia parˆllhlh upersfaÐra thc Sm+1 . H M eÐnai diarmonik  upopollaplìthta thc Sm+1 an kai mìno an a = 1√ 2 kai b = + 1√ 2   b = − 1√ 2 Apìdeixh JewroÔme to sÔnolo Γ(TM) = X = (X1 , ...Xm , 0) ∈ Rm+2 ; x1 X1 + ... + xm+1 Xm+1 = 0 twn tom¸n (section) thc efaptìmenhc dèsmhc thc M kai ξ = (x1 , ..., xm+1 , −a2 b ) èna dianusmatikì pedÐo thc M. 'Eqoume ξ, X = x1 X1 + ... + xm+1 Xm+1 + (− a2 b )0 = 0 kai ξ, p = (x1 )2 + ... + (xm+1 )2 − a2 b b = a2 − a2 = 0 ξ, ξ = (x1 )2 + ... + (xm+1 )2 + (− a2 b )2 = a2 + a4 b2 = c2 ìpou c 0. Apì tic duo pr¸tec sqèseic sumperaÐnoume ìti to ξ eÐnai tom  (section) thc orjog¸niac dèsmhc thc M, dhlad  ξ ∈ Γ(TM⊥ ). Prìkeitai dhlad  gia mia C∞ −apeikìnish ξ : M → TM⊥ p → ξ(p) tètoia ¸ste π ◦ ξ = id, ìpou π ◦ ξ : M → M me tim  (π ◦ ξ)(p) = p gia kˆje p ∈ M kai π : TM⊥ → M h dianusmatik  dèsmh pˆnw sth M. Jètoume η = 1 c ξ kai sumbolÐzoume me −AηX to efaptìmeno dianusmatikì pedÐo thc Sm+1 , dhlad  −AηX = ( Sm+1 X η)
  • 61. 4.3. DIARMONIKŸES EPIFŸANEIES STHN S3 57 ìpou h apeikìnish Aη : C(TM) → C(TM) X → AηX eÐnai digrammik , autosuzug c kai kaleÐtai telest c sq matoc   deÔterh jemeli¸dhc morf  sth kˆjeth dieÔjunsh ξ. Apì to tÔpo tou Weingarten èqoume ìti Sm+1 X η = ⊥ Xη − AηX ìpou to dianusmatikì pedÐo ⊥ Xη orÐzei mia sunoq  pou eÐnai sumbat  sto sÔnolo twn tom¸n thc orjog¸niac dèsmhc TM⊥ . Jètw η = 1 c ξ kai h sqèsh grˆfetai Sm+1 X 1 c ξ = ⊥ X 1 c ξ − AηX ⇔ 1 c Sm+1 X ξ = 1 c ( ⊥ Xξ − AξX) = 1 c ( Rm+1 X ξ − AξX) = 1 c ( Rm+1 X ξ + ξ, X p) = 1 c (X1,...,Xm+1,0)(x1 , ..., xm+1 , − a2 b ) = 1 c X Epomènwc, ⊥ Xη − AηX = 1 c X ⇔ ⊥ (−)η − Aη(−) = 1 c (−) Apì th teleutaÐa sqèsh, èqoume ⊥ η = 0 kai Aη = 1 c I kai to diˆnusma mèshc kampulìthtac gÐnetai H = 1 m (traceA)η = − 1 c η AH = A−1 c η = − 1 c Aη = − 1 c (− 1 c )I = 1 c2 I ApodeÐxame sto pìrisma 4.3.1 ìti h apeikìnish ègklishc miac upopollaplìth- tac M thc Sn me ⊥ H = 0 eÐnai diarmonik  an kai mìno an mH = traceB(−, AH−) = |B|2 H
  • 62. 58 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES Me efarmog  tou porÐsmatoc autoÔ, h teleutaÐa sqèsh mac dÐnei c2 = 1 ⇔ a2 + a4 b2 = 1 ìpou a2 +b2 = 1 kai 0 a 1 . Oi lÔseic tou sust matoc twn duo exis¸sewn eÐnai (a = 1√ 2 , b = + 1√ 2 ) kai (a = 1√ 2 , b = − 1√ 2 ). 'Ara h upopollaplìthta M eÐnai diarmonik  thc Sm+1 an kai mìno an a = 1√ 2 kai b = 1√ 2   b = − 1√ 2 . EÐdame ìti oi mh armonikèc diarmonikèc kampÔlec thc S3 èqoun stajer  gew- daisiak  kampulìthta. Oi B.Y. Chen kai S. Ishikawa sthn ergasÐa touc [5], apèdeixan ìti to mètro tou dianÔsmatoc mèshc kampulìthtac twn mh armonik¸n diarmonik¸n epifanei¸n thc S3 eÐnai stajerì. DiatÔpwsan kai apèdeixan to parakˆtw je¸rhma : Je¸rhma 4.3.2. 'Estw M mia epifˆneia thc S3 . H M eÐnai mh armonik  di- armonik  upopollaplìthta an kai mìno an to |H| eÐnai stajerì kai to |B|2 = 2. Prokeimènou na taxinom soume tic diarmonikèc epifˆneiec thc S3 parajètoume to apotèlesma thc ergasÐac [13] tou Z.H. Hou. Je¸rhma 4.3.3. 'Estw M mia uperepifˆneia thc S3 me stajer  mèsh kam- pulìthta. (1) An |B|2 = 2, tìte h M eÐnai eÐte topikˆ isometrik  me èna tm ma thc uper- sfaÐrac S2 ( 1√ 2 ) sthn S3 eÐte eÐnai topikˆ isometrik  me èna tm ma tou tìrou S1 ( 1√ 2 ) × S1 ( 1√ 2 ) (2) An h M eÐnai sumpag c kai prosanatolismènh kai |B|2 = 2, tìte h M eÐnai eÐte isometrik  mia mikr  upersfaÐra S2 ( 1√ 2 ) eÐte isometrik  me ton tìro S1 ( 1√ 2 ) × S1 ( 1√ 2 ).
  • 63. 4.3. DIARMONIKŸES EPIFŸANEIES STHN S3 59 An lˆboume upìyh mac ìti o tìroc tou Clifford S1 ( 1√ 2 ) × S1 ( 1√ 2 ) eÐnai ar- monik  epifˆneia thc S3 tìte sundiˆzontac to je¸rhma 4.3.2. kai to je¸rhma 4.3.3., èqoume : Je¸rhma 4.3.4. 'Estw M mia mh armonik  diarmonik  epifˆneia thc S3 . (1) An h M eÐnai mh sumpag c, tìte aut  eÐnai topikˆ isometrik  me èna tm ma thc sfaÐrac S2 ( 1√ 2 ) sthn S3 . (2) An h M eÐnai sumpag c kai prosanatolismènh, tìte eÐnai isometrik  me th sfaÐra S2 ( 1√ 2 ) aktÐnac 1√ 2 . Anakefalai¸nontac, ta apotelèsmata pou katal goume eÐnai ta ex c : 'Estw Mm mia diarmonik  upopollaplìthta thc tridiˆstathc sfaÐrac S3 . Tìte, (1) An m = 1, dhlad  h M eÐnai mia kampÔlh thc S3 , tìte h M eÐnai isometrik  eÐte (i) me ènan kÔklo aktÐnac 1√ 2 , ìtan h gewdaisiak  kampulìthta eÐnai Ðsh me th monˆda, dhlad  kg = 1, eÐte (ii) me mia gewdaisiak  kampÔlh tou tìrou tou Clifford S1 ( 1√ 2 ) × S1 ( 1√ 2 ), ìtan h gewdaisiak  kampulìthta ikanopoieÐ th sqèsh 0 kg 1. (2) An m = 2, dhlad  h M eÐnai mia uperepifˆneia tìte: (i) an h M eÐnai mh sumpag c tìte aut  eÐnai topikˆ isometrik  me èna tm ma thc sfaÐrac S2 ( 1√ 2 ) sthn S3 , kai (ii) an h M eÐnai sumpag c kai prosanatolismènh tìte eÐnai isometrik  me th sfaÐra S2 ( 1√ 2 ) aktÐnac 1√ 2 .
  • 64. 60 KEFŸALAIO 4. DIARMONIKŸES UPOPOLLAPLŸOTHTES
  • 65. BibliografÐa [1] William M. Boothby: An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, Inc., 1986. [2] Manfredo Do Carmo: Riemannian Geometry, theory and applications, 1992. [3] B. Y. Chen: Total MeanCurvature and Submanifolds of Finite Type, Series in Pure Mathematics -Volume 1, World Scientific, 1984. [4] B. Y. Chen: Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), 169-188. [5] B. Y. Chen, S. Ishikawa: Biharmonic pseudo-Riemannian submanifplds in pseudo-Euclidean spaces, Kyushu J. Math. 52, 1998, pp. 167-185. [6] R. Caddeo, S. Montaldo and C. Oniciuc: Biharmonic submanifolds of S3 , Intern.J. Math., 12 (2001), 867-876. [7] R. Caddeo, S. Montaldo and Paola piu: On Biharmonic maps, Amer. Math. Soc. 288 (2001), 286-290. 61
  • 66. 62 BIBLIOGRAFŸIA [8] R. Caddeo, S. Montaldo and C. Oniciuc: Biharmonic submanifolds in spheres, Israel. J. Math., 130 (2002), 109-123. [9] Krishan L. Duggal and Aurel Bejancu: Lightlike Submanifolds of Semie-Riemannian Manifolds and Applications, Kluwer Academic Pub- lishers, 1996. [10] M. Dajczer: Submanifolds and Isometric Immersions, Mathematics Lecture series 13, Publish or Perish, 1990. [11] J. Eells, L. Lemaire: A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68. [12] J. Eells, J.H. Sampson: Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. [13] Z.H. Hou: Hypersurfaces in a sphere with constant mean curvature, Proc. Amer. Math. Soc. 125 (1997), 1193-1196. [14] G. Y. Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7no 2 (1986), 130-144. [15] G. Y. Jiang: 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7no 4 (1986), 389-402. [16] Serge Lang: Differential and Riemannian manifolds, Graduate Texts in Mathematics 160, Springer-Verlag, 1995.
  • 67. BIBLIOGRAFŸIA 63 [17] John M. Lee: Riemannian Geometry: An introduction to curvature, Graduate Texts in Mathematics, Springer-Verlag, 1997. [18] John M. Lee: Introduction to Smooth Manifolds, Graduate Texts in Mathematics, Springer-Verlag, 2003. [19] E. Loubeau and Oniciuc: The index of biharmonic maps in spheres, Compositio Math. 141 (2005) 729-745. [20] B. O’Neil: Semie-Riemannian Geometry with Applications to Relativ- ity, Academic Press, 1983. [21] C. Oniciuc: Biharmonic maps between Riemannian manifolds, An. Stiint. Umv. Al. I. Cuza Iasi Mat. (N.S) 48 (2002) 237-248. [22] Peter Petersen: Riemannian Geometry, Graduate Texts in Mathemat- ics, Springer-Verlag, 1998. [23] BasÐleioc PapantwnÐou: DiaforÐsimec Pollaplìthtec, Pan/mio Pa- tr¸n, 1993. [24] BasÐleioc PapantwnÐou: Tanustik  Anˆlush kai GewmetrÐa Riemann, Tìmoi I kai II, Pan/mio Patr¸n, 1995. [25] H. Urakawa, Calculus of Variations and Harmonic Maps, Amer. Math. Soc., Providance, 1993. [26] T.J. Willmore: Riemannian Geometry, Oxford Science Publications, 1993.