SlideShare a Scribd company logo
1 of 28
Lecture 5 Smaller Network: CNN
 We know it is good to learn a small model.
 From this fully connected model, do we really need all
the edges?
 Can some of these be shared?
Consider learning an image:
Some patterns are much smaller than
the whole image
“beak” detector
Can represent a small region with fewer parameters
Same pattern appears in different places:
They can be compressed!
What about training a lot of such “small” detectors
and each detector must “move around”.
“upper-left
beak” detector
“middle beak”
detector
They can be compressed
to the same parameters.
A convolutional layer
A filter
A CNN is a neural network with some convolutional layers
(and some other layers). A convolutional layer has a number
of filters that does convolutional operation.
Beak detector
Convolution
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
6 x 6 image
1 -1 -1
-1 1 -1
-1 -1 1
Filter 1
-1 1 -1
-1 1 -1
-1 1 -1
Filter 2
…
…
These are the network
parameters to be learned.
Each filter detects a
small pattern (3 x 3).
Convolution
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
6 x 6 image
1 -1 -1
-1 1 -1
-1 -1 1
Filter 1
3 -1
stride=1
Dot
product
Convolution
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
6 x 6 image
1 -1 -1
-1 1 -1
-1 -1 1
Filter 1
3 -3
If stride=2
Convolution
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
6 x 6 image
1 -1 -1
-1 1 -1
-1 -1 1
Filter 1
3 -1 -3 -1
-3 1 0 -3
-3 -3 0 1
3 -2 -2 -1
stride=1
Convolution
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
6 x 6 image
3 -1 -3 -1
-3 1 0 -3
-3 -3 0 1
3 -2 -2 -1
-1 1 -1
-1 1 -1
-1 1 -1
Filter 2
-1 -1 -1 -1
-1 -1 -2 1
-1 -1 -2 1
-1 0 -4 3
Repeat this for each filter
stride=1
Two 4 x 4 images
Forming 2 x 4 x 4 matrix
Feature
Map
Color image: RGB 3 channels
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
1 -1 -1
-1 1 -1
-1 -1 1
Filter 1
-1 1 -1
-1 1 -1
-1 1 -1
Filter 2
1 -1 -1
-1 1 -1
-1 -1 1
1 -1 -1
-1 1 -1
-1 -1 1
-1 1 -1
-1 1 -1
-1 1 -1
-1 1 -1
-1 1 -1
-1 1 -1
Color image
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
image
convolution
-1 1 -1
-1 1 -1
-1 1 -1
1 -1 -1
-1 1 -1
-1 -1 1
1
x
2
x
…
…
36
x
…
…
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
Convolution v.s. Fully Connected
Fully-
connected
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
6 x 6 image
1 -1 -1
-1 1 -1
-1 -1 1
Filter 1
1
2
3
…
8
9
…
1
3
14
15
… Only connect to
9 inputs, not
fully connected
4:
10:
16
1
0
0
0
0
1
0
0
0
0
1
1
3
fewer parameters!
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
1 -1 -1
-1 1 -1
-1 -1 1
Filter 1
1:
2:
3:
…
7:
8:
9:
…
1
3:
14:
15:
…
4:
10:
16:
1
0
0
0
0
1
0
0
0
0
1
1
3
-1
Shared weights
6 x 6 image
Fewer parameters
Even fewer parameters
The whole CNN
Fully Connected
Feedforward network
cat dog ……
Convolution
Max Pooling
Convolution
Max Pooling
Flattened
Can
repeat
many
times
Max Pooling
3 -1 -3 -1
-3 1 0 -3
-3 -3 0 1
3 -2 -2 -1
-1 1 -1
-1 1 -1
-1 1 -1
Filter 2
-1 -1 -1 -1
-1 -1 -2 1
-1 -1 -2 1
-1 0 -4 3
1 -1 -1
-1 1 -1
-1 -1 1
Filter 1
Why Pooling
 Subsampling pixels will not change the object
Subsampling
bird
bird
We can subsample the pixels to make image
smaller fewer parameters to characterize the image
A CNN compresses a fully connected
network in two ways:
Reducing number of connections
Shared weights on the edges
Max pooling further reduces the complexity
Max Pooling
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
6 x 6 image
3 0
1
3
-1 1
3
0
2 x 2 image
Each filter
is a channel
New image
but smaller
Conv
Max
Pooling
The whole CNN
Convolution
Max Pooling
Convolution
Max Pooling
Can
repeat
many
times
A new image
The number of channels
is the number of filters
Smaller than the original
image
3 0
1
3
-1 1
3
0
The whole CNN
Fully Connected
Feedforward network
cat dog ……
Convolution
Max Pooling
Convolution
Max Pooling
Flattened
A new image
A new image
Flattening
3 0
1
3
-1 1
3
0 Flattened
3
0
1
3
-1
1
0
3
Fully Connected
Feedforward network
Only modified the network structure and
input format (vector -> 3-D tensor)
CNN in Keras
Convolution
Max Pooling
Convolution
Max Pooling
input
1 -1 -1
-1 1 -1
-1 -1 1
-1 1 -1
-1 1 -1
-1 1 -1
There are
25 3x3
filters.
…
…
Input_shape = ( 28 , 28 , 1)
1: black/white, 3: RGB
28 x 28 pixels
3 -1
-3 1
3
Only modified the network structure and
input format (vector -> 3-D array)
CNN in Keras
Convolution
Max Pooling
Convolution
Max Pooling
Input
1 x 28 x 28
25 x 26 x 26
25 x 13 x 13
50 x 11 x 11
50 x 5 x 5
How many parameters for
each filter?
How many parameters
for each filter?
9
225=
25x9
Only modified the network structure and
input format (vector -> 3-D array)
CNN in Keras
Convolution
Max Pooling
Convolution
Max Pooling
Input
1 x 28 x 28
25 x 26 x 26
25 x 13 x 13
50 x 11 x 11
50 x 5 x 5
Flattened
1250
Fully connected
feedforward network
Output
AlphaGo
Neural
Network
(19 x 19
positions)
Next move
19 x 19 matrix
Black: 1
white: -1
none: 0
Fully-connected feedforward
network can be used
But CNN performs much better
AlphaGo’s policy network
Note: AlphaGo does not use Max Pooling.
The following is quotation from their Nature article:
CNN in speech recognition
Time
Frequency
Spectrogram
CNN
Image
The filters move in the
frequency direction.
CNN in text classification
Source of image:
http://citeseerx.ist.psu.edu/viewdoc/downlo
ad?doi=10.1.1.703.6858&rep=rep1&type=p
df
?

More Related Content

Similar to Deep learning-smaller neural network

Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Simplilearn
 
Display Hardware
Display HardwareDisplay Hardware
Display Hardware
guest56aeb3
 

Similar to Deep learning-smaller neural network (17)

cnn.pdf
cnn.pdfcnn.pdf
cnn.pdf
 
CNN
CNNCNN
CNN
 
Machine Learning - Introduction to Convolutional Neural Networks
Machine Learning - Introduction to Convolutional Neural NetworksMachine Learning - Introduction to Convolutional Neural Networks
Machine Learning - Introduction to Convolutional Neural Networks
 
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
 
Introduction to computer graphics part 1
Introduction to computer graphics part 1Introduction to computer graphics part 1
Introduction to computer graphics part 1
 
Unit 1
Unit 1Unit 1
Unit 1
 
Find nuclei in images with U-net
Find nuclei in images with U-netFind nuclei in images with U-net
Find nuclei in images with U-net
 
Deep learning simplified
Deep learning simplifiedDeep learning simplified
Deep learning simplified
 
Display Hardware
Display HardwareDisplay Hardware
Display Hardware
 
CNN Basics.pdf
CNN Basics.pdfCNN Basics.pdf
CNN Basics.pdf
 
Convolutional Neural Networks
Convolutional Neural NetworksConvolutional Neural Networks
Convolutional Neural Networks
 
Deep learning for Computer Vision intro
Deep learning for Computer Vision introDeep learning for Computer Vision intro
Deep learning for Computer Vision intro
 
2. filtering basics
2. filtering basics2. filtering basics
2. filtering basics
 
Spatial filtering
Spatial filteringSpatial filtering
Spatial filtering
 
Spatial domain filtering.ppt
Spatial domain filtering.pptSpatial domain filtering.ppt
Spatial domain filtering.ppt
 
CNN_AH.pptx
CNN_AH.pptxCNN_AH.pptx
CNN_AH.pptx
 
CNN_AH.pptx
CNN_AH.pptxCNN_AH.pptx
CNN_AH.pptx
 

More from sonykhan3

More from sonykhan3 (14)

Algorithms and Data Structures
Algorithms and Data StructuresAlgorithms and Data Structures
Algorithms and Data Structures
 
computer visions with full detail
computer visions with full detail computer visions with full detail
computer visions with full detail
 
introduction to deep Learning with full detail
introduction to deep Learning with full detailintroduction to deep Learning with full detail
introduction to deep Learning with full detail
 
Input output devices
Input output devicesInput output devices
Input output devices
 
Information system and its types
Information system and its typesInformation system and its types
Information system and its types
 
Generation of computers
Generation of computersGeneration of computers
Generation of computers
 
Database management system
Database management systemDatabase management system
Database management system
 
Computer software and operating system
Computer software and operating systemComputer software and operating system
Computer software and operating system
 
computer language with full detail
computer language with full detail computer language with full detail
computer language with full detail
 
computer networking slides with full detail
computer  networking slides with full detailcomputer  networking slides with full detail
computer networking slides with full detail
 
computer virus with full detail
computer virus with full detail computer virus with full detail
computer virus with full detail
 
common computer terminology
common computer terminologycommon computer terminology
common computer terminology
 
Introduction to Computer System
Introduction to Computer System Introduction to Computer System
Introduction to Computer System
 
Information Security
Information SecurityInformation Security
Information Security
 

Recently uploaded

CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
TECUNIQUE: Success Stories: IT Service provider
TECUNIQUE: Success Stories: IT Service providerTECUNIQUE: Success Stories: IT Service provider
TECUNIQUE: Success Stories: IT Service provider
mohitmore19
 
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHAB...
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHAB...+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHAB...
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHAB...
Health
 

Recently uploaded (20)

Diamond Application Development Crafting Solutions with Precision
Diamond Application Development Crafting Solutions with PrecisionDiamond Application Development Crafting Solutions with Precision
Diamond Application Development Crafting Solutions with Precision
 
HR Software Buyers Guide in 2024 - HRSoftware.com
HR Software Buyers Guide in 2024 - HRSoftware.comHR Software Buyers Guide in 2024 - HRSoftware.com
HR Software Buyers Guide in 2024 - HRSoftware.com
 
How To Troubleshoot Collaboration Apps for the Modern Connected Worker
How To Troubleshoot Collaboration Apps for the Modern Connected WorkerHow To Troubleshoot Collaboration Apps for the Modern Connected Worker
How To Troubleshoot Collaboration Apps for the Modern Connected Worker
 
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 
call girls in Vaishali (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝✔️✔️
call girls in Vaishali (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝✔️✔️call girls in Vaishali (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝✔️✔️
call girls in Vaishali (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝✔️✔️
 
Reassessing the Bedrock of Clinical Function Models: An Examination of Large ...
Reassessing the Bedrock of Clinical Function Models: An Examination of Large ...Reassessing the Bedrock of Clinical Function Models: An Examination of Large ...
Reassessing the Bedrock of Clinical Function Models: An Examination of Large ...
 
Vip Call Girls Noida ➡️ Delhi ➡️ 9999965857 No Advance 24HRS Live
Vip Call Girls Noida ➡️ Delhi ➡️ 9999965857 No Advance 24HRS LiveVip Call Girls Noida ➡️ Delhi ➡️ 9999965857 No Advance 24HRS Live
Vip Call Girls Noida ➡️ Delhi ➡️ 9999965857 No Advance 24HRS Live
 
The Guide to Integrating Generative AI into Unified Continuous Testing Platfo...
The Guide to Integrating Generative AI into Unified Continuous Testing Platfo...The Guide to Integrating Generative AI into Unified Continuous Testing Platfo...
The Guide to Integrating Generative AI into Unified Continuous Testing Platfo...
 
TECUNIQUE: Success Stories: IT Service provider
TECUNIQUE: Success Stories: IT Service providerTECUNIQUE: Success Stories: IT Service provider
TECUNIQUE: Success Stories: IT Service provider
 
W01_panagenda_Navigating-the-Future-with-The-Hitchhikers-Guide-to-Notes-and-D...
W01_panagenda_Navigating-the-Future-with-The-Hitchhikers-Guide-to-Notes-and-D...W01_panagenda_Navigating-the-Future-with-The-Hitchhikers-Guide-to-Notes-and-D...
W01_panagenda_Navigating-the-Future-with-The-Hitchhikers-Guide-to-Notes-and-D...
 
call girls in Vaishali (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝✔️✔️
call girls in Vaishali (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝✔️✔️call girls in Vaishali (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝✔️✔️
call girls in Vaishali (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝✔️✔️
 
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHAB...
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHAB...+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHAB...
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHAB...
 
How to Choose the Right Laravel Development Partner in New York City_compress...
How to Choose the Right Laravel Development Partner in New York City_compress...How to Choose the Right Laravel Development Partner in New York City_compress...
How to Choose the Right Laravel Development Partner in New York City_compress...
 
Learn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdf
Learn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdfLearn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdf
Learn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdf
 
Microsoft AI Transformation Partner Playbook.pdf
Microsoft AI Transformation Partner Playbook.pdfMicrosoft AI Transformation Partner Playbook.pdf
Microsoft AI Transformation Partner Playbook.pdf
 
Azure_Native_Qumulo_High_Performance_Compute_Benchmarks.pdf
Azure_Native_Qumulo_High_Performance_Compute_Benchmarks.pdfAzure_Native_Qumulo_High_Performance_Compute_Benchmarks.pdf
Azure_Native_Qumulo_High_Performance_Compute_Benchmarks.pdf
 
10 Trends Likely to Shape Enterprise Technology in 2024
10 Trends Likely to Shape Enterprise Technology in 202410 Trends Likely to Shape Enterprise Technology in 2024
10 Trends Likely to Shape Enterprise Technology in 2024
 
Right Money Management App For Your Financial Goals
Right Money Management App For Your Financial GoalsRight Money Management App For Your Financial Goals
Right Money Management App For Your Financial Goals
 
8257 interfacing 2 in microprocessor for btech students
8257 interfacing 2 in microprocessor for btech students8257 interfacing 2 in microprocessor for btech students
8257 interfacing 2 in microprocessor for btech students
 
The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...
The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...
The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...
 

Deep learning-smaller neural network

  • 1. Lecture 5 Smaller Network: CNN  We know it is good to learn a small model.  From this fully connected model, do we really need all the edges?  Can some of these be shared?
  • 2. Consider learning an image: Some patterns are much smaller than the whole image “beak” detector Can represent a small region with fewer parameters
  • 3. Same pattern appears in different places: They can be compressed! What about training a lot of such “small” detectors and each detector must “move around”. “upper-left beak” detector “middle beak” detector They can be compressed to the same parameters.
  • 4. A convolutional layer A filter A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation. Beak detector
  • 5. Convolution 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 6 x 6 image 1 -1 -1 -1 1 -1 -1 -1 1 Filter 1 -1 1 -1 -1 1 -1 -1 1 -1 Filter 2 … … These are the network parameters to be learned. Each filter detects a small pattern (3 x 3).
  • 6. Convolution 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 6 x 6 image 1 -1 -1 -1 1 -1 -1 -1 1 Filter 1 3 -1 stride=1 Dot product
  • 7. Convolution 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 6 x 6 image 1 -1 -1 -1 1 -1 -1 -1 1 Filter 1 3 -3 If stride=2
  • 8. Convolution 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 6 x 6 image 1 -1 -1 -1 1 -1 -1 -1 1 Filter 1 3 -1 -3 -1 -3 1 0 -3 -3 -3 0 1 3 -2 -2 -1 stride=1
  • 9. Convolution 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 6 x 6 image 3 -1 -3 -1 -3 1 0 -3 -3 -3 0 1 3 -2 -2 -1 -1 1 -1 -1 1 -1 -1 1 -1 Filter 2 -1 -1 -1 -1 -1 -1 -2 1 -1 -1 -2 1 -1 0 -4 3 Repeat this for each filter stride=1 Two 4 x 4 images Forming 2 x 4 x 4 matrix Feature Map
  • 10. Color image: RGB 3 channels 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 -1 -1 -1 1 -1 -1 -1 1 Filter 1 -1 1 -1 -1 1 -1 -1 1 -1 Filter 2 1 -1 -1 -1 1 -1 -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 Color image
  • 11. 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 image convolution -1 1 -1 -1 1 -1 -1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1 x 2 x … … 36 x … … 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 Convolution v.s. Fully Connected Fully- connected
  • 12. 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 6 x 6 image 1 -1 -1 -1 1 -1 -1 -1 1 Filter 1 1 2 3 … 8 9 … 1 3 14 15 … Only connect to 9 inputs, not fully connected 4: 10: 16 1 0 0 0 0 1 0 0 0 0 1 1 3 fewer parameters!
  • 13. 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 -1 -1 -1 1 -1 -1 -1 1 Filter 1 1: 2: 3: … 7: 8: 9: … 1 3: 14: 15: … 4: 10: 16: 1 0 0 0 0 1 0 0 0 0 1 1 3 -1 Shared weights 6 x 6 image Fewer parameters Even fewer parameters
  • 14. The whole CNN Fully Connected Feedforward network cat dog …… Convolution Max Pooling Convolution Max Pooling Flattened Can repeat many times
  • 15. Max Pooling 3 -1 -3 -1 -3 1 0 -3 -3 -3 0 1 3 -2 -2 -1 -1 1 -1 -1 1 -1 -1 1 -1 Filter 2 -1 -1 -1 -1 -1 -1 -2 1 -1 -1 -2 1 -1 0 -4 3 1 -1 -1 -1 1 -1 -1 -1 1 Filter 1
  • 16. Why Pooling  Subsampling pixels will not change the object Subsampling bird bird We can subsample the pixels to make image smaller fewer parameters to characterize the image
  • 17. A CNN compresses a fully connected network in two ways: Reducing number of connections Shared weights on the edges Max pooling further reduces the complexity
  • 18. Max Pooling 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 6 x 6 image 3 0 1 3 -1 1 3 0 2 x 2 image Each filter is a channel New image but smaller Conv Max Pooling
  • 19. The whole CNN Convolution Max Pooling Convolution Max Pooling Can repeat many times A new image The number of channels is the number of filters Smaller than the original image 3 0 1 3 -1 1 3 0
  • 20. The whole CNN Fully Connected Feedforward network cat dog …… Convolution Max Pooling Convolution Max Pooling Flattened A new image A new image
  • 21. Flattening 3 0 1 3 -1 1 3 0 Flattened 3 0 1 3 -1 1 0 3 Fully Connected Feedforward network
  • 22. Only modified the network structure and input format (vector -> 3-D tensor) CNN in Keras Convolution Max Pooling Convolution Max Pooling input 1 -1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 -1 -1 1 -1 There are 25 3x3 filters. … … Input_shape = ( 28 , 28 , 1) 1: black/white, 3: RGB 28 x 28 pixels 3 -1 -3 1 3
  • 23. Only modified the network structure and input format (vector -> 3-D array) CNN in Keras Convolution Max Pooling Convolution Max Pooling Input 1 x 28 x 28 25 x 26 x 26 25 x 13 x 13 50 x 11 x 11 50 x 5 x 5 How many parameters for each filter? How many parameters for each filter? 9 225= 25x9
  • 24. Only modified the network structure and input format (vector -> 3-D array) CNN in Keras Convolution Max Pooling Convolution Max Pooling Input 1 x 28 x 28 25 x 26 x 26 25 x 13 x 13 50 x 11 x 11 50 x 5 x 5 Flattened 1250 Fully connected feedforward network Output
  • 25. AlphaGo Neural Network (19 x 19 positions) Next move 19 x 19 matrix Black: 1 white: -1 none: 0 Fully-connected feedforward network can be used But CNN performs much better
  • 26. AlphaGo’s policy network Note: AlphaGo does not use Max Pooling. The following is quotation from their Nature article:
  • 27. CNN in speech recognition Time Frequency Spectrogram CNN Image The filters move in the frequency direction.
  • 28. CNN in text classification Source of image: http://citeseerx.ist.psu.edu/viewdoc/downlo ad?doi=10.1.1.703.6858&rep=rep1&type=p df ?