This document discusses challenges with current data analytics practices and how adopting a DataOps approach can help address them. It notes that current practices often involve many people using complex, fragmented toolchains which results in high error rates, slow deployment speeds, and an inability to deliver insights at the speed of business. DataOps is presented as a way to transform data analytics by applying practices from DevOps and Lean manufacturing like continuous integration, monitoring, version control systems, and reusable components. The document provides a seven step framework for implementing DataOps along with additional considerations for architecture, metrics, and collaboration.