Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Espaรฑol
Portuguรชs
Franรงais
Deutsche
Cancel
Save
Submit search
EN
Uploaded by
Amor827
174 views
Sarahiamorocho
EJERICIOS PRPUESTOSSERIE DE FOURIER Y TRANSFORMADA DE LAPLACE- CALCULO IV SAIA "E"
Engineering
โฆ
Read more
0
Save
Share
Embed
Embed presentation
Download
Download to read offline
1
/ 8
2
/ 8
3
/ 8
4
/ 8
5
/ 8
6
/ 8
7
/ 8
8
/ 8
More Related Content
DOCX
Universidad Fermรญn toro
by
manuel franco
ย
DOCX
ejercicios matematica
by
SlideShare Saia
ย
DOCX
Tugas 3
by
sandiperlang
ย
DOCX
Tugas 3
by
sandiperlang
ย
DOCX
Examen final de matematicas de la 4ta unidad
by
Guฤฏlle Casฤ s
ย
PDF
Tabla de transformadas
by
Edgar Leon
ย
PDF
Tabela De Pares De Transformadas De Laplace
by
Iury Zamecki Chemin
ย
DOCX
Examen unidad 4 matematicas
by
Silvia Cholico
ย
Universidad Fermรญn toro
by
manuel franco
ย
ejercicios matematica
by
SlideShare Saia
ย
Tugas 3
by
sandiperlang
ย
Tugas 3
by
sandiperlang
ย
Examen final de matematicas de la 4ta unidad
by
Guฤฏlle Casฤ s
ย
Tabla de transformadas
by
Edgar Leon
ย
Tabela De Pares De Transformadas De Laplace
by
Iury Zamecki Chemin
ย
Examen unidad 4 matematicas
by
Silvia Cholico
ย
What's hot
PDF
Practica 10
by
erickmartinezchavez07
ย
DOCX
Ejeteoria jose rivas
by
jose rivas
ย
DOCX
Modelagem
by
alexandremsf
ย
DOCX
Puntos en el espacio
by
tecnologico de mexico
ย
DOCX
Soal dan Penyelesaian tugas Kalkulus
by
fauz1
ย
PDF
Ejercicios resueltos guรญa # 7
by
JoshGarca3
ย
PDF
Determinantes
by
Franz Xavier Gonzalez Aranibar
ย
PPTX
Addition and subtraction of radicals 9
by
AjayQuines
ย
PDF
ใฏใณใใผใฎๅๅๅผใจใผใผใฟ้ขๆฐใฎๅทฆๅด - ๆฐๅญฆใซใใง #mathcafe_height
by
Junpei Tsuji
ย
PDF
Skema k2 trial sbp spm 2014 add math
by
Cikgu Pejal
ย
DOCX
Practica
by
aleidagarcia1301
ย
PPTX
Potenciaciรณn de nรบmeros complejos
by
javiertuheroe
ย
PDF
LaTeX en GeoGebra
by
Jose Perez
ย
PDF
Polo
by
pinav303
ย
Practica 10
by
erickmartinezchavez07
ย
Ejeteoria jose rivas
by
jose rivas
ย
Modelagem
by
alexandremsf
ย
Puntos en el espacio
by
tecnologico de mexico
ย
Soal dan Penyelesaian tugas Kalkulus
by
fauz1
ย
Ejercicios resueltos guรญa # 7
by
JoshGarca3
ย
Determinantes
by
Franz Xavier Gonzalez Aranibar
ย
Addition and subtraction of radicals 9
by
AjayQuines
ย
ใฏใณใใผใฎๅๅๅผใจใผใผใฟ้ขๆฐใฎๅทฆๅด - ๆฐๅญฆใซใใง #mathcafe_height
by
Junpei Tsuji
ย
Skema k2 trial sbp spm 2014 add math
by
Cikgu Pejal
ย
Practica
by
aleidagarcia1301
ย
Potenciaciรณn de nรบmeros complejos
by
javiertuheroe
ย
LaTeX en GeoGebra
by
Jose Perez
ย
Polo
by
pinav303
ย
Viewers also liked
PDF
JamesALovell
by
James Lovell
ย
DOCX
April fools day
by
Mohsin Abbasi
ย
PPTX
ๆๅ้ปๆฉๅๅฑๅฟๅพ
by
440000019
ย
PDF
Acid etched glass2016
by
Oliver Zhong
ย
PDF
ๆฑ่น็ๆ๏ผSinaๅ จ็ๆฐ่ ไธญๅปฃๆฐ่ ็ฐก
by
ๅจๅจ ๅผต
ย
PDF
scan00082
by
Willem Van De Wetering.
ย
DOCX
Soal UKK TIK semester II kelas XI
by
LUSY CHIANIATY
ย
PDF
Carrera de derecho
by
Edwin Jose Sierra Garcia
ย
PDF
Madrid: un capital humano altamente cualificado y competitivo
by
Invest in Madrid
ย
PPTX
France project
by
moisesrodriguezmateo
ย
DOCX
Repaso de todos los tiempos de pasado martes
by
adjnt1979
ย
PPT
Quees creatividad-piense-creativamente-22807 (1)
by
Jorge Leรณn
ย
PPT
Internet pour dรฉcouvrir l'Europe
by
mahemard
ย
PPTX
Crm in the contact center nyc crm evolution 2013-08
by
Clint Oram
ย
PDF
VTU 7TH SEM CSE DATA WAREHOUSING AND DATA MINING SOLVED PAPERS OF DEC2013 JUN...
by
vtunotesbysree
ย
PDF
Lean & Agile Project Management: For Large Programs & Projects
by
David Rico
ย
DOC
A project report on training and development in bst textile pvt. ltd
by
Projects Kart
ย
JamesALovell
by
James Lovell
ย
April fools day
by
Mohsin Abbasi
ย
ๆๅ้ปๆฉๅๅฑๅฟๅพ
by
440000019
ย
Acid etched glass2016
by
Oliver Zhong
ย
ๆฑ่น็ๆ๏ผSinaๅ จ็ๆฐ่ ไธญๅปฃๆฐ่ ็ฐก
by
ๅจๅจ ๅผต
ย
scan00082
by
Willem Van De Wetering.
ย
Soal UKK TIK semester II kelas XI
by
LUSY CHIANIATY
ย
Carrera de derecho
by
Edwin Jose Sierra Garcia
ย
Madrid: un capital humano altamente cualificado y competitivo
by
Invest in Madrid
ย
France project
by
moisesrodriguezmateo
ย
Repaso de todos los tiempos de pasado martes
by
adjnt1979
ย
Quees creatividad-piense-creativamente-22807 (1)
by
Jorge Leรณn
ย
Internet pour dรฉcouvrir l'Europe
by
mahemard
ย
Crm in the contact center nyc crm evolution 2013-08
by
Clint Oram
ย
VTU 7TH SEM CSE DATA WAREHOUSING AND DATA MINING SOLVED PAPERS OF DEC2013 JUN...
by
vtunotesbysree
ย
Lean & Agile Project Management: For Large Programs & Projects
by
David Rico
ย
A project report on training and development in bst textile pvt. ltd
by
Projects Kart
ย
Sarahiamorocho
1.
UNIVERSIDAD FERMIN TORO DEPARTAMENTO
DE INGENIERIA CABUDARE- EDO LARA EJERCICIOS PROPUESTOS SERIE DE FOURIER Y TRANSFORMADA DE LAPLACE ALUMNO AMOROCHO SARAHI CEDULA 22275166 BARQUISIMETO 10 DE JULIO DE 216
2.
1. UTILIZAR LA
DEFINICION DE TRANSFORMADA DE LAPLACE Y RESOLVER LA SIGUIENTE FUNCION F(t)= 5 3 ๐ก + 8 5 ๐๐๐ โ2๐ก Por definiciรณn F(s)=L{ ๐(๐ก)} = โซ ๐( ๐ก) ๐โ๐ ๐ก ๐๐ก +โ 0 = โซ [ 5 3 ๐ก + 8 5 ๐๐๐ โ2๐ก] ๐โ๐ ๐ก ๐๐ก ๐ 0๐โโ ๐๐ = 5 3 โซ ๐ก๐โ๐ ๐ก๐ 0๐โโ ๐๐ dt+ 8 5 โซ ๐๐๐ โ2๐ก๐โ๐ ๐ก ๐๐ก ๐ 0๐โโ ๐๐ Por tablas integrales nos queda F(s)= 5 3 [ ๐ก๐โ๐ ๐ก โ๐ โ ๐โ๐ ๐ก ๐ 2 ] 0 ๐ ๐โโ ๐๐ + 8 5 [(๐ ๐๐๐ โ2๐ก โ โ2๐ ๐๐โ2๐ก)]0 ๐ ๐โโ ๐๐ Evaluando nos queda F(s)= 5 3 [ ๐๐โ๐ ๐ โ๐ โ ๐โ๐ ๐ ๐ 2 + 0๐โ0๐ ๐ + ๐0 ๐ 2] ๐โโ ๐๐ + 8 5 [ ๐โ๐ ๐ ๐ 2+2 (โ๐ ๐๐๐ โ2๐ + โ2๐ ๐๐โ2๐) โ ๐0 ๐ 2+2 (โ๐ ๐๐๐ 0 + โ2๐ ๐๐๐] ๐โโ ๐๐ Evaluando los limites nos queda F(s)= 5 3 [ 1 ๐ 2] + 8 5 [ ๐ ๐ 2+2 ] F(s)= 5 3๐ 2 + 8๐ 5(๐ 2+2)
3.
2. UTILIZAR PROPIEDADES
Y TABLA PARA DETERMINAR LA TRANSFORMADA DE LAPLACE ENUNCIE LAS PROPIEDADES ANTES DE RESOLVER SIMPLIFICAR LOS RESULTADOS F(t)= 3 7 t(7๐4๐ก cosh4t- ๐๐๐ 5๐ก ๐ก2 +3๐โ3๐ก ๐ก5 = 3 7 t 7๐4๐ก cosh4t - 3 7 ๐๐๐ 5๐ก ๐ก + 9 7 ๐โ3๐ก ๐ก6 Asi F(s)=L{ ๐(๐ก)} =3{ ๐ก๐4๐ก ๐๐๐ โ4๐ก} + 3 7 ๐ฟ { ๐๐๐ 5๐ก ๐ก } + 9 7 ๐ฟ{ ๐ก6 ๐โ3๐ก} ; por linealidad Luego L{ ๐๐๐ 4๐ก} = ๐ ๐ 2โ42 = ๐ ๐ 2โ16 L{tcosh4t}=โ ๐ ๐๐ [ ๐ ๐ 2โ16 ] ; por tabla = -[ ๐ 2โ16โ2๐ 2 (๐ 2โ16)2 ]= [ ๐ 2โ16 (๐ 2โ16)2] L{๐4๐ก ๐ก๐๐๐ โ4๐ก} = (๐ โ4)2+16 [(๐ โ4)2โ16]2 = ๐ 2โ8๐ +32 (๐ 2โ8๐ )2 ; traslaciรณn L{ ๐๐๐ 5๐ก ๐ก } = โซ ๐( ๐ข) ๐๐ข โ ๐ F(s)= L{cos5t}= ๐ ๐ 2+25 L{ ๐๐๐ 5๐ก ๐ก } = โซ ๐ข ๐ข2+25 ๐๐ข โ ๐
4.
โซ ๐ข๐๐ข ๐ข2 + 25 ๐ ๐ ๐โโ ๐๐ = 1 2 [ln|
๐ข2 + 25|] ๐ ๐ ๐โโ ๐๐ = 1 2 [ln( ๐2 + 25) โ ln( ๐ 2 + 25)]๐โโ ๐๐ =+โ Como la integral diverge L{ ๐๐๐ 5๐ก ๐ก } ๐๐ ๐๐ฅ๐๐ ๐ก๐ Por lo tanto L{ 3 7 ๐ก(7๐4๐ก ๐๐๐ โ4๐ก โ ๐๐๐ 5๐ก ๐ก2 + 3๐โ3๐ก ๐ก5 } No existe
5.
3. APLICAR TABLA
SIMPLIFICACION Y METODO CORRESPONDIENTE PARA DETERMINAR ๐ฟโ1{ ๐( ๐ )} = ๐( ๐ก) ๐ฟโ1 { 2๐ 3 โ 7โ2 7๐ 8 + โ2 + 2(๐ + 3 5 )3 4(๐ + 3 9 )9 โ 5๐ โ 3 ๐ 2 โ 2 5 ๐ + 7 } =๐ฟโ1 { 2๐ 3 7๐ 4 โ 7โ2 7๐ 4 + โ2 4(๐ + 3 5 ) 9 + 2(๐ + 3 5 ) 2 4(๐ + 3 5 ) 9 โ 5๐ โ3 ๐ 2โ 2 5 ๐ +7 } Por linealidad nos queda F(t)= 2 7 ๐ฟโ1 { 1 ๐ } โ โ2๐ฟโ1 { 1 ๐ 4} + โ2 4 ๐ฟโ1 { 1 ( ๐ +3)9} + 1 2 ๐ฟโ1 { 1 (๐ + 3 5 )7 }-๐ฟโ1 { 5(๐ โ 1 5 + 1 5 )โ3 (๐ โ 1 5 )2+7โ 1 25 } completando cuadrados en denominador Por tablas = 2 7 (1) โ โ2 ๐ก3 3! + โ2 4 ๐ก8 ๐ โ3 5๐กโ 8! + 1 2 ๐ โ3 5๐กโ ๐ก6 6! - 5๐ฟโ1 { (๐ โ1 5โ (๐ โ1 5โ ) 2 + 174 25 } + 2๐ฟโ1 { 1 (๐ โ1 5โ )2+ 174 25 } =F(t)= 2 7 โ โ2๐ก3 3! + โ2 4(8!) ๐ก8 ๐โ3 5๐กโ + 1 2(6!) ๐ก6 ๐โ3 5๐กโ - 5๐ 1 5โ ๐ก ๐๐๐ โ174 5 ๐ก + 2 โ174 5 ๐ 1 5โ ๐ก sen โ174๐ก 5 Tablas ๐ฟโ1 {1 ๐ โ } = 1 ๐ฟโ1 {1 ๐ ๐โ } = ๐ก ๐โ1 ( ๐โ1)! ๐ฟโ1 {1 ( ๐ + ๐) ๐โ } = ๐ก ๐โ1 ( ๐ โ 1)! ๐โ๐๐ ๐ฟโ1 { 1 ( ๐ +๐)2+๐2}= 1 ๐ ๐โ๐๐ก ๐ ๐๐๐๐ก
6.
4. UTILIZAR EL
TEOREMA DE CONVOLUCION Y DETERMINE ๐ฟโ1 { 2โ5 ๐ ๐ 3(๐ + 9) } Por convolucion F(t)= ๐ฟโ1{ ๐( ๐ )6( ๐ )} = ๐ฟโ1{ ๐( ๐ )} โ ๐ฟโ1{6( ๐ )} =f(t)*g(t) =โซ ๐( ๐ก โ ๐ฅ) ๐( ๐ฅ) ๐๐ฅ ๐ก 0 Asi ๐ฟโ1 { 2โ5 ๐ ๐ 3(๐ +9) }=2โ5๐ฟโ1 { ๐ ๐ 3} โ ๐ฟโ1 { 1 ๐ +9 } =2โ5๐ฟโ1 { 1 ๐ 2} โ ๐ฟโ1 { 1 ๐ +9 } =2โ5๐ก โ ๐โ9๐ก F(t)= 2โ5 โซ ( ๐ก โ ๐ฅ) ๐โ9๐ฅ ๐๐ฅ ๐ก 0 =2โ5 โซ ๐ก๐โ9๐ฅ ๐๐ฅ โ ๐ก 0 2โ5 โซ ๐ฅ๐โ9๐ฅ ๐๐ฅ ๐ก 0 Integrando por tablas F(t)= 2โ5 [ ๐ก๐โ9๐ฅ โ9 ] 0 ๐ก โ 2โ5 [ ๐ฅ๐โ9๐ฅ โ9 โ ๐โ9๐ฅ 81 ] 0 ๐ก Evaluando resulta F(t)= 2โ5 [ ๐ก๐โ9๐ก โ9 + ๐ก๐0 9 + ๐ก๐โ9๐ก 9 + ๐โ9๐ก 81 โ 0๐0 9 โ ๐0 81 ] =2โ5 [ ๐ก 9 + ๐โ9๐ก 81 โ 1 81 ]= 2โ5 81 [9๐ก + ๐โ9๐ก โ 1]
7.
5. DESARROLLE LA
EXPANSION DE FOURIER EN TERMINOS DEL SEMI PERIODO DE FOURIER Y REALICE EL ESPECTRO DE LA FUNCION F(X)={ 2๐ฅ ๐ ๐0 โค ๐ฅ โค 3 6 ๐ ๐ โ 3 โค ๐ฅ โค 0 } T=6 Aplicando f(x) Sea p= ๐ก 2โ =3 Asi ola serie de Fourier es F(x)= ๐ด ๐ 2 + โ ๐ด ๐ ๐๐๐ ๐รฑ๐ฅ ๐ โ ๐=1 +โ ๐ ๐ ๐ ๐๐ ๐รฑ ๐ฅ ๐ โ ๐=1 Donde ๐ด ๐ = 1 ๐ โซ ๐( ๐ฅ) ๐๐ฅ ๐ โ๐ = 1 3 [โซ 6๐๐ฅ 0 โ3 + โซ 2๐ฅ๐๐ฅ 3 0 ]
8.
= 1 3 [6๐ฅ|โ3 0 + ๐ฅ2 ๐ฅ2|0 3] = 1 3 [18 +
9]= 27 3 =9 ๐ด ๐ = 1 ๐ โซ ๐( ๐ฅ) ๐๐๐ ๐รฑ๐ฅ ๐ ๐๐ฅ ๐ โ๐ = 1 3 [โซ 6 ๐๐๐ ๐รฑ 3 ๐ฅ๐๐ฅ 0 โ3 + โซ 2๐ฅ๐๐๐ ๐รฑ 3 ๐ฅ๐๐ฅ 3 0 ] =2[ 3 ๐รฑ ๐ ๐๐ ๐รฑ 3 ๐ฅ] โ3 0 + 2 3 [ 3 ๐รฑ ๐ฅ๐ ๐๐ ๐รฑ๐ฅ 3 + 9 ๐2รฑ2 ๐๐๐ ๐รฑ๐ฅ 3 ] 0 3 = 6 ๐รฑ [ ๐ ๐๐0 โ ๐ ๐๐(โ๐รฑ)] + [ 6๐ ๐๐๐รฑ ๐รฑ + 9๐๐๐ ๐รฑ ๐2รฑ2 โ 9๐๐๐ 0 ๐2รฑ2 ] = 9(๐๐๐ ๐รฑโ1) ๐2รฑ2 cosnรฑ= (โ1) ๐ = 9[(โ1) ๐โ1] ๐2รฑ2 ๐ ๐ = 1 ๐ โซ ๐( ๐ฅ) ๐ ๐๐ ๐รฑ๐ฅ ๐ ๐๐ฅ ๐ โ๐ = 1 3 [โซ 6๐ ๐๐ ๐รฑ 3 ๐ฅ๐๐ฅ 0 โ3 + โซ 2๐ฅ๐ ๐๐ ๐รฑ 3 ๐ฅ๐๐ฅ 3 0 ] = โ6 ๐รฑ ๐๐๐ ๐รฑ 3 ๐ฅ|โ3 0 + 2 3 [ โ3๐ฅ ๐รฑ ๐๐๐ ๐รฑ 3 ๐ฅ + 9 ๐2 ๐2 ๐ ๐๐ ๐รฑ 3 ] โ3 0 =[โ 6 ๐รฑ ๐๐๐ 0 + 6 ๐รฑ cos(๐รฑ)] โ โ6๐๐๐ ๐รฑ ๐รฑ = โ6 ๐รฑ
Download