SlideShare a Scribd company logo
The Lyman α Emitter Luminosity Function at
3 < z < 6 from MUSE-Wide
(Paper submitted to A&A)
Edmund Christian Herenz & MUSE Collaboration
Stockholm University
September 13, 2018
Why do we care about the Lyα Luminosity Function?
dNLAE = φ(LLyα)dLLyαdV
Luminosity functions provide the gold standard for
summarising the changing demographics of galaxies with
cosmic look back time.
Essential physical mechanisms of galaxy formation and
evolution are “frozen-in” into the LF.
Substantial high-redshift galaxy samples:
Continuum Selection (≈LBGs)
Emission Line Selection (LAEs)
LFs connected via EWLyα distribution: P(MUV|EWLyα)
The MUSE-Wide (MW) survey
Herenz et al. (2017) - 24 MUSE pointings - 237 LAEs
DR1: Urrutia et al. (in prep.) - 44 MUSE pointings - 479 LAEs
MW LAEs not listed in 3D/HST or CANDELS
catalogues
20 22 24 26 28
JHmag
17.5
17.0
16.5
16.0
15.5
15.0
logFline(3RKron)[ergs−1cm−2]
Lyα
Selection function fc(FLyα, λobs
Lyα) from source insertion
and recovery experiments
Artificial point sources:
3D Gaussian, FWHM(λ) as PSF, vFWHM = 250 km s−1
⇒ PSSF (point source selection function)
Flux rescaled MUSE-HDFS LAEs (degraded to
MUSE-Wide PSF)
⇒ RSSF (real source selection function)
4990 5000 5010
0.0
2.5
5.0
7.5
10.0
12.5
15.0
σλ[10−20ergs−1cm−2Å]
5000Å
6860 6870
0.0
2.5
5.0
7.5
10.0
12.5
15.0
σλ[10−20ergs−1cm−2Å]
6861.25Å
7090 7100 7110
0.0
2.5
5.0
7.5
10.0
12.5
15.0
σλ[10−20ergs−1cm−2Å]
7100Å
7240 7250
0.0
2.5
5.0
7.5
10.0
12.5
15.0
σλ[10−20ergs−1cm−2Å]
7242.5Å
8290 8300
0
5
10
15
20
σλ[10−20ergs−1cm−2Å]
8295Å
5000 6000 7000 8000 9000
λ[Å]
0
10
20
30
σλ[10−20ergs−1cm−2Å]
Individual selection functions
15.516.016.517.017.518.0
−log10Fin [erg s−1cm−2]
0.0
0.2
0.4
0.6
0.8
1.0
Ndet/Ntot
Point Source - Field ID 1
8292.5
5000
7242.5
6861.25
7100
PSSF
15.516.016.517.017.518.0
−log10Fin [erg s−1cm−2]
0.0
0.2
0.4
0.6
0.8
1.0
Ndet/Ntot
Stacked HDFS Sources - Field 01
8292.5
5000
7242.5
6861.25
7100
RSSF
Final selection functions
5000 6000 7000 8000 9000
λ[Å]
17.6
17.4
17.2
17.0
16.8
16.6
16.4
16.2
16.0
log(F[ergs−1cm−2])
Realistic LAEs
5000 6000 7000 8000 9000
λ[Å]
17.6
17.4
17.2
17.0
16.8
16.6
16.4
16.2
16.0
Point Source LAEs
0.0
0.2
0.4
0.6
0.8
1.0
fc
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
zLyα
41.5
42.0
42.5
43.0
43.5
44.0
log(LLyα[ergs−1])
Realistic LAEs
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
zLyα
41.5
42.0
42.5
43.0
43.5
44.0
Point Source LAEs
0.0
0.2
0.4
0.6
0.8
1.0
fc
LAE Sample for LF: fc > 15 %
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
zLyα
41.50
41.75
42.00
42.25
42.50
42.75
43.00
43.25
43.50
logLLyα[ergs−1]
fc =15%
fc =85%
Conf. 2&3,fc >15%
Conf. 1,fc >15%
Conf. 1,fc <15%
Conf. 2&3,fc <15
AGN
179 of 237 remain (75.6 %)
Non-parametric Test for LF evolution.
Using a test developed by Efron & Petrosian (1992) we can test
for seperability of the LAE LF (H0):
Ψ(L, z) = φ(L)ρ(z) .
Redshift range |τPSSF| |τRSSF| pPSSF pRSSF
2.9 < z ≤ 4 0.47 0.24 0.32 0.40
4.0 < z ≤ 5.0 0.79 0.98 0.21 0.16
5.0 < z ≤ 6.9 0.05 0.29 0.48 0.39
2.9 < z ≤ 6.9 0.46 0.31 0.32 0.38
⇒ H0 can not be rejected. We can determine global φ(L).
3 different methods to calculate LAE LF
1/Vmax (Schmidt 1968):
Vmax,i = ω
zmax
zmin
fc(LLyα,i, z)
dV
dz
dz
φ1/Vmax
( LLyα ) =
1
∆LLyα
k
1
Vmax,k
Φ(LLyα,k ) =
i≤k
1
Vmax,i
C− (Lynden-Bell 1971):
Φ(LLyα,k) = Φ(LLyα,1)
k
i=2
1 +
1
Ti
withTi =
Ni
j=1
fc(LLyα,i, zj)
fc(LLyα,j, zj)
Page & Carrera (2000):
φPC( LLyα ) =
N LLyα
ω
Lmax
Lmin
zmax
zmin
fc(LLyα, z) dV
dz dz dL
Bias in LAE LF when not accounting for Lyα haloes!
ΦRSSF(log LLyα = 42.2) = 2.5 × ΦPSSF(log LLyα = 42.2)
10-6
10-5
10-4
10-3
10-2
Φ(LLyα)[Mpc−3]
ΦC− (RSSF)
ΦC− (PSSF)
ΦC− (RSSF)
ΦC− (PSSF)
42.2 42.4 42.6 42.8 43.0 43.2
log10(LLyα[ergs−1])
0
50
100
ΦRSSF−ΦPSSF
ΦPSSF
[%]
relative difference: ΦRSSF − ΦPSSF
ΦPSSF
C−
LAE LF ≈ 1/Vmax LAE LF
Φ1/Vmax
(log LLyα = 42.2) = 1.2 × ΦC− (log LLyα = 42.2)
10-6
10-5
10-4
10-3
10-2
Φ(LLyα)[Mpc−3]
C−
− 1/Vmax comparison Φ1/Vmax
ΦC−
Φ1/Vmax
ΦC−
42.2 42.4 42.6 42.8 43.0 43.2
log10(LLyα[ergs−1])
0
10
20
Φ1/Vmax−ΦC−
Φ1/Vmax
[%]
relative difference
Maximum-Likelihood Analysis (Sandage 1976):
φ(L) dL = φ∗ L
L∗
α
exp −
L
L∗
dL
L∗
(Schechter 1976)
L =
NLAE
i=1
p(Li, zi) ⇐ p(Li, zi) =
φ(Li)fc(Li, zi)
Lmax
Lmin
zmax
zmin
φ(L)fc(L, z)dV
dz dL dz
42.2 42.4 42.6 42.8 43.0 43.2 43.4
logL ∗
[ergs−1]
2.5
2.0
1.5
1.0
α
∆S=2.3 (68.3% CI)
∆S=6.17 (95.4% CI)
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
logφ∗
[Mpc−3]
42.2 42.4 42.6 42.8 43.0 43.2
log10(LLyα[ergs−1])
10-6
10-5
10-4
10-3
10-2
Φ(LLyα)[Mpc−3]
Φ1/Vmax SF fit 2σ CI SF fit 1σ CI
log L∗
[erg s−1
] = 42.66+0.22
−0.16 and α = −1.84+0.42
−0.41
Differential (binned) LAE LFs
41.5 42.0 42.5 43.0 43.5
10-6
10-5
10-4
10-3
10-2
10-1
φ(LLyα)[Mpc−3(∆log10LLyα[ergs−1])−1]
3<z 4
D17az∼ 3− 4
MW3<z 4 (RSSF)
MW3<z 4 (PSSF)
MW (AGN)
41.5 42.0 42.5 43.0 43.5
10-6
10-5
10-4
10-3
10-2
10-1
4<z 5
D17az∼ 4− 5
MW4<z 5 (RSSF)
MW4<z 5 (PSSF)
41.5 42.0 42.5 43.0 43.5
log10(LLyα[ergs−1])
10-6
10-5
10-4
10-3
10-2
10-1
φ(LLyα)[Mpc−3(∆log10LLyα[ergs−1])−1]
z>5
D17az∼ 5− 7
MWz>5 (RSSF)
MWz>5 (PSSF)
41.5 42.0 42.5 43.0 43.5
log10(LLyα[ergs−1])
10-6
10-5
10-4
10-3
10-2
10-1
Global: 3<z<6.7
B16z∼ 3− 7
D17bz∼ 3− 7
D17az∼ 3− 7
MW (RSSF)
MW (PSSF)
42.5 43.0
logL ∗
[ergs−1]
2.5
2.0
1.5
1.0
α
∆logLLyα[ergs−1]=0.075
42.5 43.0
logL ∗
[ergs−1]
∆logLLyα[ergs−1]=0.1
42.5 43.0
logL ∗
[ergs−1]
∆logLLyα[ergs−1]=0.15
42.5 43.0
logL ∗
[ergs−1]
∆logLLyα[ergs−1]=0.2
42.5 43.0
logL ∗
[ergs−1]
∆logLLyα[ergs−1]=0.25
42.00
42.05
42.10
42.15
42.20
logLLyα[ergs−1]StartingBin
Resulting L∗ and α depend sensitively on size of the bins and
bin placement.
⇒ Don’t fit to binned data!
Comparison to literature
41.5 42.0 42.5 43.0 43.5
log10(LLyα[ergs−1])
10-5
10-4
10-3
10-2
φ(LLyα)[Mpc−3(∆log10LLyα[ergs−1])−1]
3<z 4
M17z=3.1
C11z∼ 3− 4
O08z∼ 3
G09z∼ 3
S18z∼ 3.1
MW3<z 4 (PSSF)
MW (AGN)
41.5 42.0 42.5 43.0 43.5
log10(LLyα[ergs−1])
10-5
10-4
10-3
10-2
φ(LLyα)[Mpc−3(∆log10LLyα[ergs−1])−1]
4<z 5
O08z∼ 4
D07z∼ 4
S09z∼ 4
P18z=4.8
S18z∼ 4.7
S18z∼ 3.9
MW4<z 5 (PSSF)
41.5 42.0 42.5 43.0 43.5
log10(LLyα[ergs−1])
10-5
10-4
10-3
10-2
φ(LLyα)[Mpc−3(∆log10LLyα[ergs−1])−1]
z>5
S18z∼ 5.4
C11z∼ 4.5− 6.5
K18z∼ 6
O08z∼ 6
S16z∼ 6
S06z∼ 6
MWz>5 (PSSF)
42.0 42.5 43.0 43.5 44.0
log10(LLyα[ergs−1])
10-5
10-4
10-3
10-2
φ(LLyα)[Mpc−3(∆log10LLyα[ergs−1])−1]
Global: 3<z<6.7
S18SC4K/noAGN
MW (RSSF)
MW (PSSF)
Summary
(LLyα, z)-space probed by MUSE-Wide:
42.2 ≤ log LLyα[erg s−1
] ≤ 43.5 2.9 ≤ z ≤ 6.7
(Herenz+2017 sample: ω = 22.2 ˆ= V = 2.3 × 105 Mpc3)
Within this sampled region (LLyα, z)-space LAE LF.
appears non-evolving.
Schechter parameterisation provides good fit - Power law
not (see Paper).
log L∗
[erg s−1
] = 42.66+0.22
−0.16 α = −1.84+0.42
−0.42
log φ∗
[Mpc−3
] = −2.71
Literature LFs not accounting for extended low-SB Lyα
halos (basically all, except Drake et al. 2017) are
significantly biased at L < L∗.

More Related Content

What's hot

IGARSS2011_presentation.ppt
IGARSS2011_presentation.pptIGARSS2011_presentation.ppt
IGARSS2011_presentation.pptgrssieee
 
Appendix b
Appendix bAppendix b
Appendix b
Paralafakyou Mens
 
Coupling Neural Networks to GCMs
Coupling Neural Networks to GCMsCoupling Neural Networks to GCMs
Coupling Neural Networks to GCMs
Noah Brenowitz
 
Ali-Krakow-2015
Ali-Krakow-2015Ali-Krakow-2015
Ali-Krakow-2015Ahmed Ali
 

What's hot (7)

IGARSS2011_presentation.ppt
IGARSS2011_presentation.pptIGARSS2011_presentation.ppt
IGARSS2011_presentation.ppt
 
Appendix b
Appendix bAppendix b
Appendix b
 
Coupling Neural Networks to GCMs
Coupling Neural Networks to GCMsCoupling Neural Networks to GCMs
Coupling Neural Networks to GCMs
 
Laplace table
Laplace tableLaplace table
Laplace table
 
seminar_final
seminar_finalseminar_final
seminar_final
 
Ali-Krakow-2015
Ali-Krakow-2015Ali-Krakow-2015
Ali-Krakow-2015
 
Kalman_Filter_Report
Kalman_Filter_ReportKalman_Filter_Report
Kalman_Filter_Report
 

Similar to The Lyman Alpha Emitter Luminosity Function at 3 < z < 6 from MUSE-Wide

Deciphering Lyman Alpha emitting galaxies with integral field spectroscopy
Deciphering Lyman Alpha emitting galaxies with integral field spectroscopyDeciphering Lyman Alpha emitting galaxies with integral field spectroscopy
Deciphering Lyman Alpha emitting galaxies with integral field spectroscopy
Edmund Christian Herenz
 
論文紹介 Probabilistic sfa for behavior analysis
論文紹介 Probabilistic sfa for behavior analysis論文紹介 Probabilistic sfa for behavior analysis
論文紹介 Probabilistic sfa for behavior analysis
Shuuji Mihara
 
exceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice modelsexceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice models
Mauritz van den Worm
 
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
Sérgio Sacani
 
Charged Lepton Flavour Violation in Left-Right Symmetric Model
Charged Lepton Flavour Violation in Left-Right Symmetric ModelCharged Lepton Flavour Violation in Left-Right Symmetric Model
Charged Lepton Flavour Violation in Left-Right Symmetric Model
Samim Ul Islam
 
129966863931865940[1]
129966863931865940[1]129966863931865940[1]
129966863931865940[1]威華 王
 
Popov eurodim2014
Popov eurodim2014Popov eurodim2014
Popov eurodim2014
bpnv38
 
Standard Deviation and Variance
Standard Deviation and VarianceStandard Deviation and Variance
Standard Deviation and Variance
Robbie Jule
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve Expansion
Alexander Litvinenko
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
Alexander Litvinenko
 
Slides
SlidesSlides
Zone of flow establishment in turbulent jets
Zone of flow establishment in turbulent jetsZone of flow establishment in turbulent jets
Zone of flow establishment in turbulent jetsChristos Kotsalos
 
EKF and RTS smoother toolbox
EKF and RTS smoother toolboxEKF and RTS smoother toolbox
EKF and RTS smoother toolbox
National Cheng Kung University
 
igarss_2011_presentation_brcic.ppt
igarss_2011_presentation_brcic.pptigarss_2011_presentation_brcic.ppt
igarss_2011_presentation_brcic.pptgrssieee
 
Strong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappingsStrong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappings
Alexander Decker
 
HACKSing heterogeneity in cell motility
HACKSing heterogeneity in cell motilityHACKSing heterogeneity in cell motility
HACKSing heterogeneity in cell motility
Hee June Choi
 
A multiphase lattice Boltzmann model with sharp interfaces
A multiphase lattice Boltzmann model with sharp interfacesA multiphase lattice Boltzmann model with sharp interfaces
A multiphase lattice Boltzmann model with sharp interfaces
Tim Reis
 
Ijarcet vol-2-issue-7-2344-2350
Ijarcet vol-2-issue-7-2344-2350Ijarcet vol-2-issue-7-2344-2350
Ijarcet vol-2-issue-7-2344-2350Editor IJARCET
 
Ijarcet vol-2-issue-7-2344-2350
Ijarcet vol-2-issue-7-2344-2350Ijarcet vol-2-issue-7-2344-2350
Ijarcet vol-2-issue-7-2344-2350Editor IJARCET
 

Similar to The Lyman Alpha Emitter Luminosity Function at 3 < z < 6 from MUSE-Wide (20)

Deciphering Lyman Alpha emitting galaxies with integral field spectroscopy
Deciphering Lyman Alpha emitting galaxies with integral field spectroscopyDeciphering Lyman Alpha emitting galaxies with integral field spectroscopy
Deciphering Lyman Alpha emitting galaxies with integral field spectroscopy
 
論文紹介 Probabilistic sfa for behavior analysis
論文紹介 Probabilistic sfa for behavior analysis論文紹介 Probabilistic sfa for behavior analysis
論文紹介 Probabilistic sfa for behavior analysis
 
exceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice modelsexceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice models
 
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
 
Charged Lepton Flavour Violation in Left-Right Symmetric Model
Charged Lepton Flavour Violation in Left-Right Symmetric ModelCharged Lepton Flavour Violation in Left-Right Symmetric Model
Charged Lepton Flavour Violation in Left-Right Symmetric Model
 
129966863931865940[1]
129966863931865940[1]129966863931865940[1]
129966863931865940[1]
 
Popov eurodim2014
Popov eurodim2014Popov eurodim2014
Popov eurodim2014
 
Standard Deviation and Variance
Standard Deviation and VarianceStandard Deviation and Variance
Standard Deviation and Variance
 
SFB953.symposium
SFB953.symposiumSFB953.symposium
SFB953.symposium
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve Expansion
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 
Slides
SlidesSlides
Slides
 
Zone of flow establishment in turbulent jets
Zone of flow establishment in turbulent jetsZone of flow establishment in turbulent jets
Zone of flow establishment in turbulent jets
 
EKF and RTS smoother toolbox
EKF and RTS smoother toolboxEKF and RTS smoother toolbox
EKF and RTS smoother toolbox
 
igarss_2011_presentation_brcic.ppt
igarss_2011_presentation_brcic.pptigarss_2011_presentation_brcic.ppt
igarss_2011_presentation_brcic.ppt
 
Strong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappingsStrong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappings
 
HACKSing heterogeneity in cell motility
HACKSing heterogeneity in cell motilityHACKSing heterogeneity in cell motility
HACKSing heterogeneity in cell motility
 
A multiphase lattice Boltzmann model with sharp interfaces
A multiphase lattice Boltzmann model with sharp interfacesA multiphase lattice Boltzmann model with sharp interfaces
A multiphase lattice Boltzmann model with sharp interfaces
 
Ijarcet vol-2-issue-7-2344-2350
Ijarcet vol-2-issue-7-2344-2350Ijarcet vol-2-issue-7-2344-2350
Ijarcet vol-2-issue-7-2344-2350
 
Ijarcet vol-2-issue-7-2344-2350
Ijarcet vol-2-issue-7-2344-2350Ijarcet vol-2-issue-7-2344-2350
Ijarcet vol-2-issue-7-2344-2350
 

Recently uploaded

Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
AADYARAJPANDEY1
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
sachin783648
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
ossaicprecious19
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
kumarmathi863
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
Lokesh Patil
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
Large scale production of streptomycin.pptx
Large scale production of streptomycin.pptxLarge scale production of streptomycin.pptx
Large scale production of streptomycin.pptx
Cherry
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Areesha Ahmad
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
Health Advances
 
justice-and-fairness-ethics with example
justice-and-fairness-ethics with examplejustice-and-fairness-ethics with example
justice-and-fairness-ethics with example
azzyixes
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
Sérgio Sacani
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
muralinath2
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
muralinath2
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
muralinath2
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 

Recently uploaded (20)

Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
Large scale production of streptomycin.pptx
Large scale production of streptomycin.pptxLarge scale production of streptomycin.pptx
Large scale production of streptomycin.pptx
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
 
justice-and-fairness-ethics with example
justice-and-fairness-ethics with examplejustice-and-fairness-ethics with example
justice-and-fairness-ethics with example
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 

The Lyman Alpha Emitter Luminosity Function at 3 < z < 6 from MUSE-Wide

  • 1. The Lyman α Emitter Luminosity Function at 3 < z < 6 from MUSE-Wide (Paper submitted to A&A) Edmund Christian Herenz & MUSE Collaboration Stockholm University September 13, 2018
  • 2. Why do we care about the Lyα Luminosity Function? dNLAE = φ(LLyα)dLLyαdV Luminosity functions provide the gold standard for summarising the changing demographics of galaxies with cosmic look back time. Essential physical mechanisms of galaxy formation and evolution are “frozen-in” into the LF. Substantial high-redshift galaxy samples: Continuum Selection (≈LBGs) Emission Line Selection (LAEs) LFs connected via EWLyα distribution: P(MUV|EWLyα)
  • 3. The MUSE-Wide (MW) survey Herenz et al. (2017) - 24 MUSE pointings - 237 LAEs DR1: Urrutia et al. (in prep.) - 44 MUSE pointings - 479 LAEs
  • 4. MW LAEs not listed in 3D/HST or CANDELS catalogues 20 22 24 26 28 JHmag 17.5 17.0 16.5 16.0 15.5 15.0 logFline(3RKron)[ergs−1cm−2] Lyα
  • 5. Selection function fc(FLyα, λobs Lyα) from source insertion and recovery experiments Artificial point sources: 3D Gaussian, FWHM(λ) as PSF, vFWHM = 250 km s−1 ⇒ PSSF (point source selection function) Flux rescaled MUSE-HDFS LAEs (degraded to MUSE-Wide PSF) ⇒ RSSF (real source selection function) 4990 5000 5010 0.0 2.5 5.0 7.5 10.0 12.5 15.0 σλ[10−20ergs−1cm−2Å] 5000Å 6860 6870 0.0 2.5 5.0 7.5 10.0 12.5 15.0 σλ[10−20ergs−1cm−2Å] 6861.25Å 7090 7100 7110 0.0 2.5 5.0 7.5 10.0 12.5 15.0 σλ[10−20ergs−1cm−2Å] 7100Å 7240 7250 0.0 2.5 5.0 7.5 10.0 12.5 15.0 σλ[10−20ergs−1cm−2Å] 7242.5Å 8290 8300 0 5 10 15 20 σλ[10−20ergs−1cm−2Å] 8295Å 5000 6000 7000 8000 9000 λ[Å] 0 10 20 30 σλ[10−20ergs−1cm−2Å]
  • 6. Individual selection functions 15.516.016.517.017.518.0 −log10Fin [erg s−1cm−2] 0.0 0.2 0.4 0.6 0.8 1.0 Ndet/Ntot Point Source - Field ID 1 8292.5 5000 7242.5 6861.25 7100 PSSF 15.516.016.517.017.518.0 −log10Fin [erg s−1cm−2] 0.0 0.2 0.4 0.6 0.8 1.0 Ndet/Ntot Stacked HDFS Sources - Field 01 8292.5 5000 7242.5 6861.25 7100 RSSF
  • 7. Final selection functions 5000 6000 7000 8000 9000 λ[Å] 17.6 17.4 17.2 17.0 16.8 16.6 16.4 16.2 16.0 log(F[ergs−1cm−2]) Realistic LAEs 5000 6000 7000 8000 9000 λ[Å] 17.6 17.4 17.2 17.0 16.8 16.6 16.4 16.2 16.0 Point Source LAEs 0.0 0.2 0.4 0.6 0.8 1.0 fc 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 zLyα 41.5 42.0 42.5 43.0 43.5 44.0 log(LLyα[ergs−1]) Realistic LAEs 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 zLyα 41.5 42.0 42.5 43.0 43.5 44.0 Point Source LAEs 0.0 0.2 0.4 0.6 0.8 1.0 fc
  • 8. LAE Sample for LF: fc > 15 % 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 zLyα 41.50 41.75 42.00 42.25 42.50 42.75 43.00 43.25 43.50 logLLyα[ergs−1] fc =15% fc =85% Conf. 2&3,fc >15% Conf. 1,fc >15% Conf. 1,fc <15% Conf. 2&3,fc <15 AGN 179 of 237 remain (75.6 %)
  • 9. Non-parametric Test for LF evolution. Using a test developed by Efron & Petrosian (1992) we can test for seperability of the LAE LF (H0): Ψ(L, z) = φ(L)ρ(z) . Redshift range |τPSSF| |τRSSF| pPSSF pRSSF 2.9 < z ≤ 4 0.47 0.24 0.32 0.40 4.0 < z ≤ 5.0 0.79 0.98 0.21 0.16 5.0 < z ≤ 6.9 0.05 0.29 0.48 0.39 2.9 < z ≤ 6.9 0.46 0.31 0.32 0.38 ⇒ H0 can not be rejected. We can determine global φ(L).
  • 10. 3 different methods to calculate LAE LF 1/Vmax (Schmidt 1968): Vmax,i = ω zmax zmin fc(LLyα,i, z) dV dz dz φ1/Vmax ( LLyα ) = 1 ∆LLyα k 1 Vmax,k Φ(LLyα,k ) = i≤k 1 Vmax,i C− (Lynden-Bell 1971): Φ(LLyα,k) = Φ(LLyα,1) k i=2 1 + 1 Ti withTi = Ni j=1 fc(LLyα,i, zj) fc(LLyα,j, zj) Page & Carrera (2000): φPC( LLyα ) = N LLyα ω Lmax Lmin zmax zmin fc(LLyα, z) dV dz dz dL
  • 11.
  • 12. Bias in LAE LF when not accounting for Lyα haloes! ΦRSSF(log LLyα = 42.2) = 2.5 × ΦPSSF(log LLyα = 42.2) 10-6 10-5 10-4 10-3 10-2 Φ(LLyα)[Mpc−3] ΦC− (RSSF) ΦC− (PSSF) ΦC− (RSSF) ΦC− (PSSF) 42.2 42.4 42.6 42.8 43.0 43.2 log10(LLyα[ergs−1]) 0 50 100 ΦRSSF−ΦPSSF ΦPSSF [%] relative difference: ΦRSSF − ΦPSSF ΦPSSF
  • 13. C− LAE LF ≈ 1/Vmax LAE LF Φ1/Vmax (log LLyα = 42.2) = 1.2 × ΦC− (log LLyα = 42.2) 10-6 10-5 10-4 10-3 10-2 Φ(LLyα)[Mpc−3] C− − 1/Vmax comparison Φ1/Vmax ΦC− Φ1/Vmax ΦC− 42.2 42.4 42.6 42.8 43.0 43.2 log10(LLyα[ergs−1]) 0 10 20 Φ1/Vmax−ΦC− Φ1/Vmax [%] relative difference
  • 14. Maximum-Likelihood Analysis (Sandage 1976): φ(L) dL = φ∗ L L∗ α exp − L L∗ dL L∗ (Schechter 1976) L = NLAE i=1 p(Li, zi) ⇐ p(Li, zi) = φ(Li)fc(Li, zi) Lmax Lmin zmax zmin φ(L)fc(L, z)dV dz dL dz 42.2 42.4 42.6 42.8 43.0 43.2 43.4 logL ∗ [ergs−1] 2.5 2.0 1.5 1.0 α ∆S=2.3 (68.3% CI) ∆S=6.17 (95.4% CI) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 logφ∗ [Mpc−3] 42.2 42.4 42.6 42.8 43.0 43.2 log10(LLyα[ergs−1]) 10-6 10-5 10-4 10-3 10-2 Φ(LLyα)[Mpc−3] Φ1/Vmax SF fit 2σ CI SF fit 1σ CI log L∗ [erg s−1 ] = 42.66+0.22 −0.16 and α = −1.84+0.42 −0.41
  • 15. Differential (binned) LAE LFs 41.5 42.0 42.5 43.0 43.5 10-6 10-5 10-4 10-3 10-2 10-1 φ(LLyα)[Mpc−3(∆log10LLyα[ergs−1])−1] 3<z 4 D17az∼ 3− 4 MW3<z 4 (RSSF) MW3<z 4 (PSSF) MW (AGN) 41.5 42.0 42.5 43.0 43.5 10-6 10-5 10-4 10-3 10-2 10-1 4<z 5 D17az∼ 4− 5 MW4<z 5 (RSSF) MW4<z 5 (PSSF) 41.5 42.0 42.5 43.0 43.5 log10(LLyα[ergs−1]) 10-6 10-5 10-4 10-3 10-2 10-1 φ(LLyα)[Mpc−3(∆log10LLyα[ergs−1])−1] z>5 D17az∼ 5− 7 MWz>5 (RSSF) MWz>5 (PSSF) 41.5 42.0 42.5 43.0 43.5 log10(LLyα[ergs−1]) 10-6 10-5 10-4 10-3 10-2 10-1 Global: 3<z<6.7 B16z∼ 3− 7 D17bz∼ 3− 7 D17az∼ 3− 7 MW (RSSF) MW (PSSF)
  • 16. 42.5 43.0 logL ∗ [ergs−1] 2.5 2.0 1.5 1.0 α ∆logLLyα[ergs−1]=0.075 42.5 43.0 logL ∗ [ergs−1] ∆logLLyα[ergs−1]=0.1 42.5 43.0 logL ∗ [ergs−1] ∆logLLyα[ergs−1]=0.15 42.5 43.0 logL ∗ [ergs−1] ∆logLLyα[ergs−1]=0.2 42.5 43.0 logL ∗ [ergs−1] ∆logLLyα[ergs−1]=0.25 42.00 42.05 42.10 42.15 42.20 logLLyα[ergs−1]StartingBin Resulting L∗ and α depend sensitively on size of the bins and bin placement. ⇒ Don’t fit to binned data!
  • 17. Comparison to literature 41.5 42.0 42.5 43.0 43.5 log10(LLyα[ergs−1]) 10-5 10-4 10-3 10-2 φ(LLyα)[Mpc−3(∆log10LLyα[ergs−1])−1] 3<z 4 M17z=3.1 C11z∼ 3− 4 O08z∼ 3 G09z∼ 3 S18z∼ 3.1 MW3<z 4 (PSSF) MW (AGN) 41.5 42.0 42.5 43.0 43.5 log10(LLyα[ergs−1]) 10-5 10-4 10-3 10-2 φ(LLyα)[Mpc−3(∆log10LLyα[ergs−1])−1] 4<z 5 O08z∼ 4 D07z∼ 4 S09z∼ 4 P18z=4.8 S18z∼ 4.7 S18z∼ 3.9 MW4<z 5 (PSSF) 41.5 42.0 42.5 43.0 43.5 log10(LLyα[ergs−1]) 10-5 10-4 10-3 10-2 φ(LLyα)[Mpc−3(∆log10LLyα[ergs−1])−1] z>5 S18z∼ 5.4 C11z∼ 4.5− 6.5 K18z∼ 6 O08z∼ 6 S16z∼ 6 S06z∼ 6 MWz>5 (PSSF) 42.0 42.5 43.0 43.5 44.0 log10(LLyα[ergs−1]) 10-5 10-4 10-3 10-2 φ(LLyα)[Mpc−3(∆log10LLyα[ergs−1])−1] Global: 3<z<6.7 S18SC4K/noAGN MW (RSSF) MW (PSSF)
  • 18. Summary (LLyα, z)-space probed by MUSE-Wide: 42.2 ≤ log LLyα[erg s−1 ] ≤ 43.5 2.9 ≤ z ≤ 6.7 (Herenz+2017 sample: ω = 22.2 ˆ= V = 2.3 × 105 Mpc3) Within this sampled region (LLyα, z)-space LAE LF. appears non-evolving. Schechter parameterisation provides good fit - Power law not (see Paper). log L∗ [erg s−1 ] = 42.66+0.22 −0.16 α = −1.84+0.42 −0.42 log φ∗ [Mpc−3 ] = −2.71 Literature LFs not accounting for extended low-SB Lyα halos (basically all, except Drake et al. 2017) are significantly biased at L < L∗.