SlideShare a Scribd company logo
1 of 11
Download to read offline
Medicine & Science in Sports & Exercise
Issue: Volume 28(10), October 1996, pp 1327-1330
Copyright: © Williams & Wilkins 1996. All Rights Reserved.
Publication Type: [Applied Sciences: Physical Fitness and Performance]
ISSN: 0195-9131
Accession: 00005768-199610000-00018
Keywords: ANAEROBIC TRAINING, AEROBIC TRAINING
[Applied Sciences: Physical Fitness and Performance]
Effects of moderate-intensity endurance and high-intensity
intermittent training on anaerobic capacity and ·VO2max
TABATA, IZUMI; NISHIMURA, KOUJI; KOUZAKI, MOTOKI; HIRAI, YUUSUKE; OGITA, FUTOSHI;
MIYACHI, MOTOHIKO; YAMAMOTO, KAORU
Author Information
Department of Physiology and Biomechanics, National Institute of Fitness and Sports,
Shiromizu-cho 1, Kanoya City, Kagoshima Prefecture, 891-23 JAPAN
Submitted for publication November 1994.
Accepted for publication December 1995.
The training protocol used in experiment 2 was first introduced by Kouichi Irisawa, who
was a head coach of the Japanese National Speed Skating Team. The training has been used
by the major members of the Japanese Speed Skating Team for several years.
Present addresses: I. Tabata, Laboratory of Exercise Physiology, Division of Health
Promotion, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku City, Tokyo
162 Japan; Y. Hirai, Number 1 Fitness Club, 5-14-6 Shimo-Takaido, Suginami City, Tokyo 168
Japan; K. Nishimura, General Research and Development Section, Product Development
Department, Moon-Star Chemical Corporation, Kurume City, Fukuoka Prefecture, 830-91
Japan; F. Ogita, Swimming Performance Laboratory, National Institute of Fitness and Sport,
Shiromizu-cho 1, Kanoya City, Kagoshima Prefecture, 891-23 Japan; M. Miyachi, Department
of Health and Sports Sciences, Kawasaki University of Medical Welfare, 288 Matsushima,
Kurashiki City, Okayama Prefecture, 701-01 Japan; and K. Yamamoto, Nagoya YMCA, 2-5-29
Kamimaezu, Naka-ku, Nagoya City, Aichi Prefecture, 460 Japan.
Address for correspondence: I. Tabata, Ph.D., Laboratory of Exercise Physiology, Division
of Health Promotion, National Institute of Health and Nutrition, 1-23-1 Toyama, Shijuku City,
Tokyo 162, Japan.
ABSTRACT
This study consists of two training experiments using a mechanically braked cycle
ergometer. First, the effect of 6 wk of moderate-intensity endurance training
(intensity: 70% of maximal oxygen uptake (·VO2max), 60 min·d-1
, 5 d·wk-1
) on the
anaerobic capacity (the maximal accumulated oxygen deficit) and ·VO2max was
evaluated. After the training, the anaerobic capacity did not increase significantly(P >
0.10), while ·VO2max increased from 53 ± 5 ml·kg-1
·min-1
to 58 ± 3 ml·kg-1
·min-1
(P <
0.01) (mean± SD). Second, to quantify the effect of high-intensity intermittent
training on energy release, seven subjects performed an intermittent training exercise
5 d·wk-1
for 6 wk. The exhaustive intermittent training consisted of seven to eight
sets of 20-s exercise at an intensity of about 170% of ·VO2max with a 10-s rest between
each bout. After the training period, ·VO2max increased by 7 ml·kg-1
·min-1
, while the
anaerobic capacity increased by 28%. In conclusion, this study showed that moderate-
intensity aerobic training that improves the maximal aerobic power does not change
anaerobic capacity and that adequate high-intensity intermittent training may
improve both anaerobic and aerobic energy supplying systems significantly, probably
through imposing intensive stimuli on both systems.
During high-intensity exercise lasting more than a few seconds, adenosine
triphosphate (ATP) is resynthesized by both aerobic and anaerobic processes (7). The
ability to resynthesize ATP may limit performance in many sports. Thus, if possible,
the training of athletes for sports involving high-intensity exercise should improve the
athletes' ability to release energy both aerobically and anaerobically. The success of
different training regimens can and should be evaluated by the athletes' performance.
However, performance is influenced by other factors such as psychology. In addition,
an adequate training regimen may have several different components, all of which
may not improve the athletes' ability to resynthesize ATP. Training programs should
therefore be evaluated by other means, e.g., by laboratory experiments.
The aerobic energy releasing system is conventionally evaluated by maximal
oxygen uptake (·VO2max) (10), and there are many studies on the effect of training on
·VO2max(9). However, until recently methods for quantifying anaerobic energy release
have been inadequate and thus information on the effect of training on anaerobic
capacity, i.e., the maximum amount of energy available from anaerobic sources, is
incomplete. We have proposed that the accumulated oxygen deficit, first introduced
by Krogh and Lindhard in 1920 (4), is an accurate measure of the anaerobic energy
release during treadmill running (6) and bicycling (7). This principle may allow
examination of the anaerobic capacity (3), taken as the maximal accumulated oxygen
deficit during 2-3 min of exhaustive exercise (6,7). Therefore, the effect of specific
training on the anaerobic capacity may be evaluated by measuring the maximal
accumulated oxygen deficit before and after training. Generally, the more demanding
the training, the greater the fitness benefits. Therefore, we were interested in
learning whether the effects of training on anaerobic capacity are dependent on the
magnitude of anaerobic energy release developed by the specific training. To study
this issue, we compared two different training protocols: a moderate-intensity
endurance training that is not supposed to depend on anaerobic metabolism and a
high-intensity intermittent training that is supposed to recruit the anaerobic energy
releasing system almost maximally.
MATERIALS AND METHODS
Subjects. Young male students majoring in physical education volunteered for
the study (Table 1). Most were physically active and were members of varsity table
tennis, baseball, basketball, football (soccer), and swimming teams. After receiving a
detailed explanation of the purposes, potential benefits, and risks associated with
participating in the study, each student gave his written consent.
TABLE 1. Characteristics of the subjects.
Protocol. All experiments, as well as pretests, were done on a mechanically
braked cycle ergometer (Monark, Stockholm, Sweden) at 90 rpm. Each test or high-
intensity intermittent training session was introduced by a 10-min warm-up at about
50% of ·VO2max.
Experiment 1. The subjects started training after their·VO2max and maximal
accumulated oxygen deficit were measured. They exercised 5 d·wk-1
for 6 wk at an
intensity that elicited 70% of each subject's ·VO2max. The pedaling rate was 70 rpm,
and the duration of the training was 60 min. As each subject's ·VO2max increased
during the training period, exercise intensity was increased from week to week as
required to elicit 70% of the actual ·VO2max. During the training, the maximal
accumulated oxygen deficit was measured before, at 4 wk, and after the training.
·VO2max was determined before and after the training and every week during the
training period.
Experiment 2. Subjects exercised for 5 d·wk-1
for 6 wk. For 4 d·wk-1
, they
exercised using exhaustive intermittent training. They were encouraged by the
supervisor to complete seven to eight sets of the exercise. Exercise was terminated
when the pedaling frequency dropped below 85 rpm. When they could complete more
than nine sets of the exercise, exercise intensity was increased by 11 W. One day per
week the subjects exercised for 30 min at an intensity of 70% ·VO2max before carrying
out four sets of the intermittent exercise at 170%·VO2max. This latter session was not
exhaustive. The anaerobic capacity was determined before, at 2 wk, and 4 wk into
the training, and after the training. ·VO2max was determined before, at 3 wk, 5 wk,
and after the training.
METHODS
Pretest. Each subject's oxygen uptake was measured during the last 2 min of six
to nine different 10-min exercise sets at constant power. The power used during each
set ranged between 39% and 87% of the·VO2max. In addition, the power that would
exhaust each subject in 2-3 min was established. These pretests were carried out on
3-5 separate days.
·VO2max. After a linear relationship between exercise intensity and the steady-
state oxygen uptake had been determined in the pretests, the oxygen uptake was
measured for the last two or three 30-s intervals during several bouts of supramaximal
intensity exercise that lasted 2-4 min. The highest ·VO2 was determined to be the
subject's·VO2max (7,10).
Anaerobic capacity. Anaerobic capacity, the maximal accumulated oxygen
deficit during a 2-3-min exhaustive bicycle exercise, was determined according to the
method of Medbø et al.(6,7). The exercise intensity used to cause exhaustion within
the desired duration (2-3 min) was established on pretests. On the day that anaerobic
capacity was measured, the subjects exercised at the preset power to exhaustin
(defined as when they were unable to keep the pedaling rate above 85 rpm).
Methods of analysis. Fractions of oxygen and carbon dioxide in the expired air
were measured by a mass spectrometer (MGA-1100, Perkin-Elmer Cetus, Norwalk CT).
The gas volume was measured by a gasometer (Shinagawa Seisakusho, Tokyo, Japan).
Values are shown as means ± SD. The data were compared using a paired t-test. The
significance level for all comparisons was set at P < 0.05.
Calculations. For each subject linear relationships between the oxygen demand
and power (experiment 1: r = 0.997 ± 0.001, experiment 2: r = 0.998 ± 0.001) were
established from the measured steady state oxygen uptake at different power during
the pretests. The regression parameters are shown in Table 2. The regression
parameters did not change during training periods in either experiment 1 or 2.
TABLE 2. Regression characteristics of the subjects.
The oxygen demands of the 2-3 min of exhausting exercise were estimated by
extrapolating these relationships to the power used during the experiment. The
accumulated oxygen demand was taken as the product of the estimated oxygen
demand and the duration of the exercise, while the accumulated oxygen uptake was
taken as the measured oxygen uptake integrated over the exercise duration. The
accumulated oxygen deficit was taken as the difference between these two entities.
RESULTS
Experiment 1. After the 6 wk of training, the anaerobic capacity did not
change (Fig. 1) (P > 0.10). The·VO2max increased significantly during the training (Fig.
2) (P < 0.01).
Figure 1-Effect of the endurance training (ET, experiment 1) and the intermittent
training (IT, experiment 2) on the anaerobic capacity. Significant increase from
the pretraining value at*P < 0.05 and **P< 0.01; significant increase from the 2-wk
value at#P < 0.05.
Figure 2-Effect of the endurance training (ET, experiment 1) and the intermittent
training (IT, experiment 2) on the maximal oxygen uptake; significant increase
from the pretraining value at*P < 0.05 and **P< 0.01, respectively.
Experiment 2. The anaerobic capacity increased by 23% after 4 wk of training
(P < 0.01, Fig. 1). It increased further toward the end of the training period. After the
training period, the anaerobic capacity reached 77 ± 9 ml·kg-1
, 28% higher than the
pretraining capacity.
After 3 wk of training, the ·VO2max had increased significantly by 5 ± 3 ml·kg-
1
·min-1
(P < 0.01, Fig. 2). It tended to increase in the last part of the training period,
but no significant changes were observed. The final·VO2max after 6 wk of training was
55 ± 6 ml·kg-1
·min-1
, a value of 7 ± 1 ml·kg-1
·min-1
above the pretraining value.
DISCUSSION
The main finding of this study was that 6 wk of aerobic training at
70%·VO2max improved the ·VO2max by 5 ml·kg-1
·min-1
in moderately trained young men
but that the anaerobic capacity, as judged by the maximal accumulated oxygen
deficit, did not change. The second finding is that 6 wk of training using high-intensity
intermittent exhaustive exercise improved ·VO2max by 7 ml·kg-1
·min-1
and the
anaerobic capacity by 28%.
The observation in experiment 1 that anaerobic capacity did not change after 6
weeks of moderate-intensity endurance training but that·VO2max did increase has
several implications. First, it shows the specificity of training; aerobic training does
not change anaerobic capacity. Since lactate production accounts for about 75% of
maximal anaerobic energy release (11), significant improvements in anaerobic
capacity will probably require that the subjects can produce more lactate after
training. Consequently, lactate production should be stressed to increase the
anaerobic capacity during “anaerobic” training. However, since the blood lactate
concentration during the exercise was low (about 2 mmol·l-1
), the major part of
anaerobic energy released during the exercise probably comes from the breakdown of
phosphocreatine (PCr). Therefore, the training sessions in experiment 1 probably did
not tax the lactate producing system much and therefore did not tax the whole
anaerobic energy releasing system to any significant extent. Actually, the
accumulated oxygen deficit during the first minutes of the exercise at 70%·VO2max was
only 37 ± 6% (N = 7) of the maximal accumulated oxygen deficit (data not shown).
Second, the results of experiment 1 support the idea that the accumulated
oxygen deficit is a specific measure of the maximal anaerobic energy release. Due to
the increased ·VO2max after the training period, the subjects could exercise for more
than 6 min at the power used for the pretraining 2- to 3-min anaerobic capacity test.
Therefore, the exercise power for the posttraining anaerobic capacity test was
increased by 6 ± 3% to exhaust each subject in 2-3 min. However, the accumulated
oxygen deficit appeared unaffected by the higher power used at the posttraining test,
suggesting that this entity is able to distinguish between aerobic and anaerobic energy
release at different powers. The alternative interpretation, that there was a change
in the anaerobic capacity but that this change was obscured by a bias in the
accumulated oxygen deficit, cannot be ruled out, but the findings here suggest that
the latter interpretation is less likely.
The high-intensity intermittent training in experiment 2 improved anaerobic
capacity by 28%. Medbø and Burgers (5) reported that 6 wk of the intermittent
training (their group B) increased the anaerobic capacity of untrained men by 16%.
Since there are no clear differences in exercise intensity, exercise duration, and
number of exercise bouts between the two studies, this quantitative difference in
improving anaerobic capacity is probably explained by the difference between the
two studies in magnitude of the anaerobic energy release during each training session.
The peak blood lactate concentration after each training session in the previous
study (5) was 69% of the peak blood lactate concentration after the 2-min exhaustive
running. Therefore, anaerobic metabolism, and especially the lactate producing
system, was probably not taxed maximally. In contrast, the peak blood lactate
concentration after the intermittent training in this investigation was not significantly
different from the value observed after the anaerobic capacity test that recruited
anaerobic energy releasing systems maximally. In addition, our subjects exercised to
exhaustion, but in the previous study, the subjects' rating of perceived
exertion (1) was only 15 (“hard”). This difference may also reflect the recruited level
of anaerobic energy release. Therefore, these results support our hypothesis that the
higher the anaerobic energy release during each training session the higher the
increase in anaerobic capacity after a training period.
In addition to anaerobic capacity, the intermittent training
increased·VO2max significantly in experiment 2. This is to our knowledge the first study
to demonstrate an increase in both anaerobic capacity and maximal aerobic power. It
should be emphasized that during the last part of each training session the oxygen
uptake almost equaled each subject's maximal oxygen uptake (data not shown). High-
intensity intermittent training is a very potent means of increasing maximal oxygen
uptake (2). It is interesting to note that the increase in the maximal oxygen uptake
that we found is almost identical to that expected for intermittent training by
Fox (2). Consequently, the protocol used in training in experiment 2 may be optimal
with respect to improving both the aerobic and the anaerobic energy releasing
systems.
The intensive bicycle training may have affected the efficiency of cycling,
meaning that the relationship between power and ·VO2 may have changed. This
change may affect the measurement of anaerobic capacity because the accumulated
oxygen deficit is a calculated entity assuming a constant mechanical efficiency.
However, our subjects were sufficiently familiar with bicycle exercise through
repeated testing and experiments so that the relationship between the steady state
oxygen uptake and power did not change during the training periods. Therefore, the
pre- and posttraining data of the accumulated oxygen deficit should be comparable.
In summary, this investigation demonstrated that 6 wk of moderate-intensity
endurance training did not affect anaerobic capacity but that 6 wk of high-intensity
intermittent training (20 s exercise, 10 s rest; intensity 170%·VO2max) may improve
both anaerobic capacity and ·VO2max simultaneously.
REFERENCES
1. Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil.
Med. 2-3:92-98, 1970. [Context Link]
2. Fox, E. Sport Physiology. Philadelphia: W.B. Saunders, 1979, pp. 226. [Context
Link]
3. Hermansen, L., J. I. Medbo, A.-C. Mohn, I. Tabata, and R. Bahr. Oxygen deficit
during maximal exercise of short duration. (Abstract).Acta Physiol. Scand. 121:39A,
1984. [Context Link]
4. Krogh, A. and J. Lindhard. The changes in respiration at the transition from work to
rest. J. Physiol. 53:431-437, 1920. Full Text Bibliographic Links [Context Link]
5. Medbø, J. I. and S. Burgers. Effect of training on the anaerobic capacity. Med. Sci.
Sports Exerc. 22:501-507, 1990. Ovid Full Text Request Permissions Bibliographic
Links [Context Link]
6. Medbø, J. I., A.-C. Mohn, I. Tabata, R. Bahr, O. Vaage, and O. M. Sejersted.
Anaerobic capacity determined by maximal accumulated O2 deficit. J. Appl.
Physiol. 64:50-60, 1988. [Context Link]
7. Medbø, J. I. and I. Tabata. Relative importance of aerobic and anaerobic energy
release during short-lasting exhaustive bicycle exercise. J. Appl. Physiol. 67:1881-
1886, 1989. [Context Link]
8. Medbø, J. I. and I. Tabata. Anaerobic energy release in working muscle during 30 s
to 3 min of exhausting bicycling.J. Appl. Physiol. 75:1654-1660, 1993.
9. Saltin, B., G. Blomqvist, J. H. Mitchell, R. L. Johnson, Jr., and C. B. Chapman.
Responses to exercise after bed rest and after training. A longituinal study of adaptive
changes in oxygen transport and body composition.Circulation 38 (Suppl. 7):1-78,
1968. [Context Link]
10. Taylor, H. L., E. Buskirk, and A. Henshel. Maximal oxygen intake as an objective
measure of cardiorespiratory performance.J. Appl. Physiol. 8:73-80, 1955. [Context
Link]
ANAEROBIC TRAINING; AEROBIC TRAINING

More Related Content

What's hot

J Str Cond Res-2001-Coppack
J Str Cond Res-2001-CoppackJ Str Cond Res-2001-Coppack
J Str Cond Res-2001-CoppackRuss Coppack MBE
 
Current trends in_sports_injuries_ppt
Current trends in_sports_injuries_pptCurrent trends in_sports_injuries_ppt
Current trends in_sports_injuries_pptRadhika Chintamani
 
Efectos del calentamiento corto o largo en el rendimiento de carrera intermedia
Efectos del calentamiento corto o largo en el rendimiento de carrera intermediaEfectos del calentamiento corto o largo en el rendimiento de carrera intermedia
Efectos del calentamiento corto o largo en el rendimiento de carrera intermediaCristian Salazar
 
The Taper Effect - The art and science of coaching
The Taper Effect - The art and science of coachingThe Taper Effect - The art and science of coaching
The Taper Effect - The art and science of coachingpottsie01
 
A Comparative Study of VO2 Max in Young Female Athletes and Non-Athletes
A Comparative Study of VO2 Max in Young Female Athletes and Non-AthletesA Comparative Study of VO2 Max in Young Female Athletes and Non-Athletes
A Comparative Study of VO2 Max in Young Female Athletes and Non-AthletesIOSR Journals
 
08172432 hurst rachel - final m sc by research submission
08172432   hurst rachel - final m sc by research submission08172432   hurst rachel - final m sc by research submission
08172432 hurst rachel - final m sc by research submissionDouglas Seijum Kohatsu
 
Acute cardiopulmonary and metabolic responses to high intensity interval trai...
Acute cardiopulmonary and metabolic responses to high intensity interval trai...Acute cardiopulmonary and metabolic responses to high intensity interval trai...
Acute cardiopulmonary and metabolic responses to high intensity interval trai...Fernando Farias
 
Effect of plyometric training on sand versus grass on muscle soreness and jum...
Effect of plyometric training on sand versus grass on muscle soreness and jum...Effect of plyometric training on sand versus grass on muscle soreness and jum...
Effect of plyometric training on sand versus grass on muscle soreness and jum...Fernando Farias
 
Impact of the Nordic hamstring and hip extension exercises on hamstring archi...
Impact of the Nordic hamstring and hip extension exercises on hamstring archi...Impact of the Nordic hamstring and hip extension exercises on hamstring archi...
Impact of the Nordic hamstring and hip extension exercises on hamstring archi...Fernando Farias
 
A single exercise test for assessing physiological and performance parameters...
A single exercise test for assessing physiological and performance parameters...A single exercise test for assessing physiological and performance parameters...
A single exercise test for assessing physiological and performance parameters...Fernando Maria Saura
 
Amaravti paper
Amaravti paperAmaravti paper
Amaravti paperSamsu Deen
 
Biomechanical Analysis of The Complete Core Conditioner
Biomechanical Analysis of The Complete Core ConditionerBiomechanical Analysis of The Complete Core Conditioner
Biomechanical Analysis of The Complete Core ConditionerBrandon Hossack
 
Effect of Aerobic Training on Percentage of Body Fat, Total Cholesterol and H...
Effect of Aerobic Training on Percentage of Body Fat, Total Cholesterol and H...Effect of Aerobic Training on Percentage of Body Fat, Total Cholesterol and H...
Effect of Aerobic Training on Percentage of Body Fat, Total Cholesterol and H...IOSR Journals
 
Effects of Cold Water Immersion on Muscle Oxygenation
Effects of Cold Water Immersion on Muscle OxygenationEffects of Cold Water Immersion on Muscle Oxygenation
Effects of Cold Water Immersion on Muscle OxygenationFernando Farias
 

What's hot (19)

J Str Cond Res-2001-Coppack
J Str Cond Res-2001-CoppackJ Str Cond Res-2001-Coppack
J Str Cond Res-2001-Coppack
 
Current trends in_sports_injuries_ppt
Current trends in_sports_injuries_pptCurrent trends in_sports_injuries_ppt
Current trends in_sports_injuries_ppt
 
Efectos del calentamiento corto o largo en el rendimiento de carrera intermedia
Efectos del calentamiento corto o largo en el rendimiento de carrera intermediaEfectos del calentamiento corto o largo en el rendimiento de carrera intermedia
Efectos del calentamiento corto o largo en el rendimiento de carrera intermedia
 
The Taper Effect - The art and science of coaching
The Taper Effect - The art and science of coachingThe Taper Effect - The art and science of coaching
The Taper Effect - The art and science of coaching
 
Sprinter talent ID
Sprinter talent IDSprinter talent ID
Sprinter talent ID
 
A Comparative Study of VO2 Max in Young Female Athletes and Non-Athletes
A Comparative Study of VO2 Max in Young Female Athletes and Non-AthletesA Comparative Study of VO2 Max in Young Female Athletes and Non-Athletes
A Comparative Study of VO2 Max in Young Female Athletes and Non-Athletes
 
Klass, 2012
Klass, 2012Klass, 2012
Klass, 2012
 
Cheramie_thesis
Cheramie_thesisCheramie_thesis
Cheramie_thesis
 
Periodization training
Periodization trainingPeriodization training
Periodization training
 
08172432 hurst rachel - final m sc by research submission
08172432   hurst rachel - final m sc by research submission08172432   hurst rachel - final m sc by research submission
08172432 hurst rachel - final m sc by research submission
 
International Journal of Sports Science & Medicine
International Journal of Sports Science & MedicineInternational Journal of Sports Science & Medicine
International Journal of Sports Science & Medicine
 
Acute cardiopulmonary and metabolic responses to high intensity interval trai...
Acute cardiopulmonary and metabolic responses to high intensity interval trai...Acute cardiopulmonary and metabolic responses to high intensity interval trai...
Acute cardiopulmonary and metabolic responses to high intensity interval trai...
 
Effect of plyometric training on sand versus grass on muscle soreness and jum...
Effect of plyometric training on sand versus grass on muscle soreness and jum...Effect of plyometric training on sand versus grass on muscle soreness and jum...
Effect of plyometric training on sand versus grass on muscle soreness and jum...
 
Impact of the Nordic hamstring and hip extension exercises on hamstring archi...
Impact of the Nordic hamstring and hip extension exercises on hamstring archi...Impact of the Nordic hamstring and hip extension exercises on hamstring archi...
Impact of the Nordic hamstring and hip extension exercises on hamstring archi...
 
A single exercise test for assessing physiological and performance parameters...
A single exercise test for assessing physiological and performance parameters...A single exercise test for assessing physiological and performance parameters...
A single exercise test for assessing physiological and performance parameters...
 
Amaravti paper
Amaravti paperAmaravti paper
Amaravti paper
 
Biomechanical Analysis of The Complete Core Conditioner
Biomechanical Analysis of The Complete Core ConditionerBiomechanical Analysis of The Complete Core Conditioner
Biomechanical Analysis of The Complete Core Conditioner
 
Effect of Aerobic Training on Percentage of Body Fat, Total Cholesterol and H...
Effect of Aerobic Training on Percentage of Body Fat, Total Cholesterol and H...Effect of Aerobic Training on Percentage of Body Fat, Total Cholesterol and H...
Effect of Aerobic Training on Percentage of Body Fat, Total Cholesterol and H...
 
Effects of Cold Water Immersion on Muscle Oxygenation
Effects of Cold Water Immersion on Muscle OxygenationEffects of Cold Water Immersion on Muscle Oxygenation
Effects of Cold Water Immersion on Muscle Oxygenation
 

Viewers also liked

FLEXITEXT: MAGNIFICO TEST DE FLEXIBILIDAD
FLEXITEXT: MAGNIFICO TEST DE FLEXIBILIDADFLEXITEXT: MAGNIFICO TEST DE FLEXIBILIDAD
FLEXITEXT: MAGNIFICO TEST DE FLEXIBILIDADMeso Ciclo
 
PESOS LIVRES X RESISTÊNCIA ELÁSTICA
PESOS LIVRES X RESISTÊNCIA ELÁSTICAPESOS LIVRES X RESISTÊNCIA ELÁSTICA
PESOS LIVRES X RESISTÊNCIA ELÁSTICAFernando Farias
 
Fitness Y ComposicióN Corporal
Fitness Y ComposicióN CorporalFitness Y ComposicióN Corporal
Fitness Y ComposicióN Corporaljuanfranfitness
 
Factores de riesgo de lesión isquiosural y aspectos a tener en cuenta en su p...
Factores de riesgo de lesión isquiosural y aspectos a tener en cuenta en su p...Factores de riesgo de lesión isquiosural y aspectos a tener en cuenta en su p...
Factores de riesgo de lesión isquiosural y aspectos a tener en cuenta en su p...Fernando Farias
 
Zonas de entrenamiento de Fuerza Segun autores
Zonas de entrenamiento de Fuerza Segun autoresZonas de entrenamiento de Fuerza Segun autores
Zonas de entrenamiento de Fuerza Segun autoresMeso Ciclo
 
Batx mòdul 1 Planificació de l'entrenament
Batx mòdul 1   Planificació de l'entrenamentBatx mòdul 1   Planificació de l'entrenament
Batx mòdul 1 Planificació de l'entrenamentcsalomo
 
FUTBOL: Cuantificacion de Cargas
FUTBOL: Cuantificacion de CargasFUTBOL: Cuantificacion de Cargas
FUTBOL: Cuantificacion de CargasFuerza y Potencia
 
Ejercicios básicos para la zona central del cuerpo
Ejercicios básicos para la zona central del cuerpoEjercicios básicos para la zona central del cuerpo
Ejercicios básicos para la zona central del cuerpoYimmy Oscar
 
Cuantificación carga de entrenamiento
Cuantificación carga de entrenamientoCuantificación carga de entrenamiento
Cuantificación carga de entrenamientoMeso Ciclo
 
Entrenamiento de la fuerza en niño y prepuberes
Entrenamiento de la fuerza en niño y prepuberesEntrenamiento de la fuerza en niño y prepuberes
Entrenamiento de la fuerza en niño y prepuberesGLOBAL CyD
 
Entrenamiento de la fuerza de niños y adolecentes
Entrenamiento de la fuerza de niños y adolecentesEntrenamiento de la fuerza de niños y adolecentes
Entrenamiento de la fuerza de niños y adolecentesSoterolj
 
Porteros mesociclo competitivo 1
Porteros mesociclo competitivo 1Porteros mesociclo competitivo 1
Porteros mesociclo competitivo 1WILLY FDEZ
 
Porteros mesociclo competitivo 2
Porteros mesociclo competitivo 2Porteros mesociclo competitivo 2
Porteros mesociclo competitivo 2WILLY FDEZ
 

Viewers also liked (17)

FLEXITEXT: MAGNIFICO TEST DE FLEXIBILIDAD
FLEXITEXT: MAGNIFICO TEST DE FLEXIBILIDADFLEXITEXT: MAGNIFICO TEST DE FLEXIBILIDAD
FLEXITEXT: MAGNIFICO TEST DE FLEXIBILIDAD
 
PESOS LIVRES X RESISTÊNCIA ELÁSTICA
PESOS LIVRES X RESISTÊNCIA ELÁSTICAPESOS LIVRES X RESISTÊNCIA ELÁSTICA
PESOS LIVRES X RESISTÊNCIA ELÁSTICA
 
Fitness Y ComposicióN Corporal
Fitness Y ComposicióN CorporalFitness Y ComposicióN Corporal
Fitness Y ComposicióN Corporal
 
Factores de riesgo de lesión isquiosural y aspectos a tener en cuenta en su p...
Factores de riesgo de lesión isquiosural y aspectos a tener en cuenta en su p...Factores de riesgo de lesión isquiosural y aspectos a tener en cuenta en su p...
Factores de riesgo de lesión isquiosural y aspectos a tener en cuenta en su p...
 
Zonas de entrenamiento de Fuerza Segun autores
Zonas de entrenamiento de Fuerza Segun autoresZonas de entrenamiento de Fuerza Segun autores
Zonas de entrenamiento de Fuerza Segun autores
 
Batx mòdul 1 Planificació de l'entrenament
Batx mòdul 1   Planificació de l'entrenamentBatx mòdul 1   Planificació de l'entrenament
Batx mòdul 1 Planificació de l'entrenament
 
FUTBOL: Cuantificacion de Cargas
FUTBOL: Cuantificacion de CargasFUTBOL: Cuantificacion de Cargas
FUTBOL: Cuantificacion de Cargas
 
Esercizi di agilità e potenza delle gambe
Esercizi di agilità e potenza delle gambeEsercizi di agilità e potenza delle gambe
Esercizi di agilità e potenza delle gambe
 
Ejercicios básicos para la zona central del cuerpo
Ejercicios básicos para la zona central del cuerpoEjercicios básicos para la zona central del cuerpo
Ejercicios básicos para la zona central del cuerpo
 
Pagine da allenamento ottimale
Pagine da allenamento ottimalePagine da allenamento ottimale
Pagine da allenamento ottimale
 
Cuantificación carga de entrenamiento
Cuantificación carga de entrenamientoCuantificación carga de entrenamiento
Cuantificación carga de entrenamiento
 
Entrenamiento de la fuerza en niño y prepuberes
Entrenamiento de la fuerza en niño y prepuberesEntrenamiento de la fuerza en niño y prepuberes
Entrenamiento de la fuerza en niño y prepuberes
 
Scheda di allenamento minivolley
Scheda di allenamento minivolleyScheda di allenamento minivolley
Scheda di allenamento minivolley
 
Entrenamiento de la fuerza de niños y adolecentes
Entrenamiento de la fuerza de niños y adolecentesEntrenamiento de la fuerza de niños y adolecentes
Entrenamiento de la fuerza de niños y adolecentes
 
Presentacion Digital Bank Aval
Presentacion Digital Bank AvalPresentacion Digital Bank Aval
Presentacion Digital Bank Aval
 
Porteros mesociclo competitivo 1
Porteros mesociclo competitivo 1Porteros mesociclo competitivo 1
Porteros mesociclo competitivo 1
 
Porteros mesociclo competitivo 2
Porteros mesociclo competitivo 2Porteros mesociclo competitivo 2
Porteros mesociclo competitivo 2
 

Similar to TABATA: Articulo original del cual se ha basado el metodo Tabata actual

ACUTE EFFECT OF DIFFERENT WARM UP PROTOCOLS ON.pdf
ACUTE EFFECT OF DIFFERENT WARM UP PROTOCOLS ON.pdfACUTE EFFECT OF DIFFERENT WARM UP PROTOCOLS ON.pdf
ACUTE EFFECT OF DIFFERENT WARM UP PROTOCOLS ON.pdfPablo Lorenzo
 
Cooper 12 minute run and walk
Cooper 12 minute run and walk Cooper 12 minute run and walk
Cooper 12 minute run and walk RAUSHAN KUMAR
 
HSE304-A2-Wednesday 8am-OldMates
HSE304-A2-Wednesday 8am-OldMatesHSE304-A2-Wednesday 8am-OldMates
HSE304-A2-Wednesday 8am-OldMatesPeter Greenway
 
Artigo - Acupuncture on oxygen consumption
Artigo - Acupuncture on oxygen consumptionArtigo - Acupuncture on oxygen consumption
Artigo - Acupuncture on oxygen consumptionRenato Almeida
 
Chronic adaptations
Chronic adaptationsChronic adaptations
Chronic adaptationscjryan
 
Lipid oxidation and perceived exertion level during exercise in obese: effect...
Lipid oxidation and perceived exertion level during exercise in obese: effect...Lipid oxidation and perceived exertion level during exercise in obese: effect...
Lipid oxidation and perceived exertion level during exercise in obese: effect...IOSR Journals
 
The Discrepancy in Estimated VO2MAX Concerning Diverse Practices
The Discrepancy in Estimated VO2MAX Concerning Diverse PracticesThe Discrepancy in Estimated VO2MAX Concerning Diverse Practices
The Discrepancy in Estimated VO2MAX Concerning Diverse PracticesCarl Page
 
Effects of Eccentric Strength Training’s Time on Daily Plasma Testosterone Le...
Effects of Eccentric Strength Training’s Time on Daily Plasma Testosterone Le...Effects of Eccentric Strength Training’s Time on Daily Plasma Testosterone Le...
Effects of Eccentric Strength Training’s Time on Daily Plasma Testosterone Le...IOSR Journals
 
K28. systemic responses to exercise
K28. systemic responses to exerciseK28. systemic responses to exercise
K28. systemic responses to exerciseDaniel Rajkumar
 
Effects of Addition of Sprint, Strength and Agility Training On Cardiovascula...
Effects of Addition of Sprint, Strength and Agility Training On Cardiovascula...Effects of Addition of Sprint, Strength and Agility Training On Cardiovascula...
Effects of Addition of Sprint, Strength and Agility Training On Cardiovascula...IOSR Journals
 
Fitness testing for athletics part one
Fitness testing for athletics  part  oneFitness testing for athletics  part  one
Fitness testing for athletics part oneDr . Nishita Patel
 

Similar to TABATA: Articulo original del cual se ha basado el metodo Tabata actual (20)

Protocolo de tabata
Protocolo de tabataProtocolo de tabata
Protocolo de tabata
 
Physical fitness assessment
Physical fitness assessmentPhysical fitness assessment
Physical fitness assessment
 
3.1 Amman 2011.pdf
3.1 Amman 2011.pdf3.1 Amman 2011.pdf
3.1 Amman 2011.pdf
 
The effect of exercise on o2 consumption test
The effect of exercise on  o2 consumption testThe effect of exercise on  o2 consumption test
The effect of exercise on o2 consumption test
 
ACUTE EFFECT OF DIFFERENT WARM UP PROTOCOLS ON.pdf
ACUTE EFFECT OF DIFFERENT WARM UP PROTOCOLS ON.pdfACUTE EFFECT OF DIFFERENT WARM UP PROTOCOLS ON.pdf
ACUTE EFFECT OF DIFFERENT WARM UP PROTOCOLS ON.pdf
 
Cr training
Cr trainingCr training
Cr training
 
Monitoring training
Monitoring trainingMonitoring training
Monitoring training
 
Monitoring training
Monitoring trainingMonitoring training
Monitoring training
 
Cooper 12 minute run and walk
Cooper 12 minute run and walk Cooper 12 minute run and walk
Cooper 12 minute run and walk
 
HSE304-A2-Wednesday 8am-OldMates
HSE304-A2-Wednesday 8am-OldMatesHSE304-A2-Wednesday 8am-OldMates
HSE304-A2-Wednesday 8am-OldMates
 
Artigo - Acupuncture on oxygen consumption
Artigo - Acupuncture on oxygen consumptionArtigo - Acupuncture on oxygen consumption
Artigo - Acupuncture on oxygen consumption
 
Chronic adaptations
Chronic adaptationsChronic adaptations
Chronic adaptations
 
Lipid oxidation and perceived exertion level during exercise in obese: effect...
Lipid oxidation and perceived exertion level during exercise in obese: effect...Lipid oxidation and perceived exertion level during exercise in obese: effect...
Lipid oxidation and perceived exertion level during exercise in obese: effect...
 
I0614550
I0614550I0614550
I0614550
 
The Discrepancy in Estimated VO2MAX Concerning Diverse Practices
The Discrepancy in Estimated VO2MAX Concerning Diverse PracticesThe Discrepancy in Estimated VO2MAX Concerning Diverse Practices
The Discrepancy in Estimated VO2MAX Concerning Diverse Practices
 
Effects of Eccentric Strength Training’s Time on Daily Plasma Testosterone Le...
Effects of Eccentric Strength Training’s Time on Daily Plasma Testosterone Le...Effects of Eccentric Strength Training’s Time on Daily Plasma Testosterone Le...
Effects of Eccentric Strength Training’s Time on Daily Plasma Testosterone Le...
 
K28. systemic responses to exercise
K28. systemic responses to exerciseK28. systemic responses to exercise
K28. systemic responses to exercise
 
Effects of Addition of Sprint, Strength and Agility Training On Cardiovascula...
Effects of Addition of Sprint, Strength and Agility Training On Cardiovascula...Effects of Addition of Sprint, Strength and Agility Training On Cardiovascula...
Effects of Addition of Sprint, Strength and Agility Training On Cardiovascula...
 
Aerobic & anaerobic exs
Aerobic & anaerobic exsAerobic & anaerobic exs
Aerobic & anaerobic exs
 
Fitness testing for athletics part one
Fitness testing for athletics  part  oneFitness testing for athletics  part  one
Fitness testing for athletics part one
 

Recently uploaded

Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on DeliveryCall Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Deliverynehamumbai
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service CoimbatoreCall Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatorenarwatsonia7
 
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...Call girls in Ahmedabad High profile
 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual NeedsBangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual NeedsGfnyt
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escortsaditipandeya
 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomdiscovermytutordmt
 
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service KochiLow Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service KochiSuhani Kapoor
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Dipal Arora
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Servicevidya singh
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiAlinaDevecerski
 
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...indiancallgirl4rent
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...jageshsingh5554
 
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...narwatsonia7
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...narwatsonia7
 
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls ServiceKesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Servicemakika9823
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...astropune
 

Recently uploaded (20)

Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on DeliveryCall Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service CoimbatoreCall Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
 
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...
 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
 
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual NeedsBangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
 
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service KochiLow Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
 
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
 
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
 
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls ServiceKesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
 

TABATA: Articulo original del cual se ha basado el metodo Tabata actual

  • 1. Medicine & Science in Sports & Exercise Issue: Volume 28(10), October 1996, pp 1327-1330 Copyright: © Williams & Wilkins 1996. All Rights Reserved. Publication Type: [Applied Sciences: Physical Fitness and Performance] ISSN: 0195-9131 Accession: 00005768-199610000-00018 Keywords: ANAEROBIC TRAINING, AEROBIC TRAINING [Applied Sciences: Physical Fitness and Performance] Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and ·VO2max TABATA, IZUMI; NISHIMURA, KOUJI; KOUZAKI, MOTOKI; HIRAI, YUUSUKE; OGITA, FUTOSHI; MIYACHI, MOTOHIKO; YAMAMOTO, KAORU Author Information Department of Physiology and Biomechanics, National Institute of Fitness and Sports, Shiromizu-cho 1, Kanoya City, Kagoshima Prefecture, 891-23 JAPAN Submitted for publication November 1994. Accepted for publication December 1995. The training protocol used in experiment 2 was first introduced by Kouichi Irisawa, who was a head coach of the Japanese National Speed Skating Team. The training has been used by the major members of the Japanese Speed Skating Team for several years. Present addresses: I. Tabata, Laboratory of Exercise Physiology, Division of Health Promotion, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku City, Tokyo 162 Japan; Y. Hirai, Number 1 Fitness Club, 5-14-6 Shimo-Takaido, Suginami City, Tokyo 168 Japan; K. Nishimura, General Research and Development Section, Product Development Department, Moon-Star Chemical Corporation, Kurume City, Fukuoka Prefecture, 830-91 Japan; F. Ogita, Swimming Performance Laboratory, National Institute of Fitness and Sport, Shiromizu-cho 1, Kanoya City, Kagoshima Prefecture, 891-23 Japan; M. Miyachi, Department of Health and Sports Sciences, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki City, Okayama Prefecture, 701-01 Japan; and K. Yamamoto, Nagoya YMCA, 2-5-29 Kamimaezu, Naka-ku, Nagoya City, Aichi Prefecture, 460 Japan. Address for correspondence: I. Tabata, Ph.D., Laboratory of Exercise Physiology, Division of Health Promotion, National Institute of Health and Nutrition, 1-23-1 Toyama, Shijuku City, Tokyo 162, Japan. ABSTRACT This study consists of two training experiments using a mechanically braked cycle
  • 2. ergometer. First, the effect of 6 wk of moderate-intensity endurance training (intensity: 70% of maximal oxygen uptake (·VO2max), 60 min·d-1 , 5 d·wk-1 ) on the anaerobic capacity (the maximal accumulated oxygen deficit) and ·VO2max was evaluated. After the training, the anaerobic capacity did not increase significantly(P > 0.10), while ·VO2max increased from 53 ± 5 ml·kg-1 ·min-1 to 58 ± 3 ml·kg-1 ·min-1 (P < 0.01) (mean± SD). Second, to quantify the effect of high-intensity intermittent training on energy release, seven subjects performed an intermittent training exercise 5 d·wk-1 for 6 wk. The exhaustive intermittent training consisted of seven to eight sets of 20-s exercise at an intensity of about 170% of ·VO2max with a 10-s rest between each bout. After the training period, ·VO2max increased by 7 ml·kg-1 ·min-1 , while the anaerobic capacity increased by 28%. In conclusion, this study showed that moderate- intensity aerobic training that improves the maximal aerobic power does not change anaerobic capacity and that adequate high-intensity intermittent training may improve both anaerobic and aerobic energy supplying systems significantly, probably through imposing intensive stimuli on both systems. During high-intensity exercise lasting more than a few seconds, adenosine triphosphate (ATP) is resynthesized by both aerobic and anaerobic processes (7). The ability to resynthesize ATP may limit performance in many sports. Thus, if possible, the training of athletes for sports involving high-intensity exercise should improve the athletes' ability to release energy both aerobically and anaerobically. The success of different training regimens can and should be evaluated by the athletes' performance. However, performance is influenced by other factors such as psychology. In addition, an adequate training regimen may have several different components, all of which may not improve the athletes' ability to resynthesize ATP. Training programs should therefore be evaluated by other means, e.g., by laboratory experiments. The aerobic energy releasing system is conventionally evaluated by maximal oxygen uptake (·VO2max) (10), and there are many studies on the effect of training on ·VO2max(9). However, until recently methods for quantifying anaerobic energy release have been inadequate and thus information on the effect of training on anaerobic
  • 3. capacity, i.e., the maximum amount of energy available from anaerobic sources, is incomplete. We have proposed that the accumulated oxygen deficit, first introduced by Krogh and Lindhard in 1920 (4), is an accurate measure of the anaerobic energy release during treadmill running (6) and bicycling (7). This principle may allow examination of the anaerobic capacity (3), taken as the maximal accumulated oxygen deficit during 2-3 min of exhaustive exercise (6,7). Therefore, the effect of specific training on the anaerobic capacity may be evaluated by measuring the maximal accumulated oxygen deficit before and after training. Generally, the more demanding the training, the greater the fitness benefits. Therefore, we were interested in learning whether the effects of training on anaerobic capacity are dependent on the magnitude of anaerobic energy release developed by the specific training. To study this issue, we compared two different training protocols: a moderate-intensity endurance training that is not supposed to depend on anaerobic metabolism and a high-intensity intermittent training that is supposed to recruit the anaerobic energy releasing system almost maximally. MATERIALS AND METHODS Subjects. Young male students majoring in physical education volunteered for the study (Table 1). Most were physically active and were members of varsity table tennis, baseball, basketball, football (soccer), and swimming teams. After receiving a detailed explanation of the purposes, potential benefits, and risks associated with participating in the study, each student gave his written consent. TABLE 1. Characteristics of the subjects. Protocol. All experiments, as well as pretests, were done on a mechanically braked cycle ergometer (Monark, Stockholm, Sweden) at 90 rpm. Each test or high- intensity intermittent training session was introduced by a 10-min warm-up at about
  • 4. 50% of ·VO2max. Experiment 1. The subjects started training after their·VO2max and maximal accumulated oxygen deficit were measured. They exercised 5 d·wk-1 for 6 wk at an intensity that elicited 70% of each subject's ·VO2max. The pedaling rate was 70 rpm, and the duration of the training was 60 min. As each subject's ·VO2max increased during the training period, exercise intensity was increased from week to week as required to elicit 70% of the actual ·VO2max. During the training, the maximal accumulated oxygen deficit was measured before, at 4 wk, and after the training. ·VO2max was determined before and after the training and every week during the training period. Experiment 2. Subjects exercised for 5 d·wk-1 for 6 wk. For 4 d·wk-1 , they exercised using exhaustive intermittent training. They were encouraged by the supervisor to complete seven to eight sets of the exercise. Exercise was terminated when the pedaling frequency dropped below 85 rpm. When they could complete more than nine sets of the exercise, exercise intensity was increased by 11 W. One day per week the subjects exercised for 30 min at an intensity of 70% ·VO2max before carrying out four sets of the intermittent exercise at 170%·VO2max. This latter session was not exhaustive. The anaerobic capacity was determined before, at 2 wk, and 4 wk into the training, and after the training. ·VO2max was determined before, at 3 wk, 5 wk, and after the training. METHODS Pretest. Each subject's oxygen uptake was measured during the last 2 min of six to nine different 10-min exercise sets at constant power. The power used during each set ranged between 39% and 87% of the·VO2max. In addition, the power that would exhaust each subject in 2-3 min was established. These pretests were carried out on 3-5 separate days. ·VO2max. After a linear relationship between exercise intensity and the steady- state oxygen uptake had been determined in the pretests, the oxygen uptake was measured for the last two or three 30-s intervals during several bouts of supramaximal intensity exercise that lasted 2-4 min. The highest ·VO2 was determined to be the
  • 5. subject's·VO2max (7,10). Anaerobic capacity. Anaerobic capacity, the maximal accumulated oxygen deficit during a 2-3-min exhaustive bicycle exercise, was determined according to the method of Medbø et al.(6,7). The exercise intensity used to cause exhaustion within the desired duration (2-3 min) was established on pretests. On the day that anaerobic capacity was measured, the subjects exercised at the preset power to exhaustin (defined as when they were unable to keep the pedaling rate above 85 rpm). Methods of analysis. Fractions of oxygen and carbon dioxide in the expired air were measured by a mass spectrometer (MGA-1100, Perkin-Elmer Cetus, Norwalk CT). The gas volume was measured by a gasometer (Shinagawa Seisakusho, Tokyo, Japan). Values are shown as means ± SD. The data were compared using a paired t-test. The significance level for all comparisons was set at P < 0.05. Calculations. For each subject linear relationships between the oxygen demand and power (experiment 1: r = 0.997 ± 0.001, experiment 2: r = 0.998 ± 0.001) were established from the measured steady state oxygen uptake at different power during the pretests. The regression parameters are shown in Table 2. The regression parameters did not change during training periods in either experiment 1 or 2. TABLE 2. Regression characteristics of the subjects.
  • 6. The oxygen demands of the 2-3 min of exhausting exercise were estimated by extrapolating these relationships to the power used during the experiment. The accumulated oxygen demand was taken as the product of the estimated oxygen demand and the duration of the exercise, while the accumulated oxygen uptake was taken as the measured oxygen uptake integrated over the exercise duration. The accumulated oxygen deficit was taken as the difference between these two entities. RESULTS Experiment 1. After the 6 wk of training, the anaerobic capacity did not change (Fig. 1) (P > 0.10). The·VO2max increased significantly during the training (Fig. 2) (P < 0.01). Figure 1-Effect of the endurance training (ET, experiment 1) and the intermittent
  • 7. training (IT, experiment 2) on the anaerobic capacity. Significant increase from the pretraining value at*P < 0.05 and **P< 0.01; significant increase from the 2-wk value at#P < 0.05. Figure 2-Effect of the endurance training (ET, experiment 1) and the intermittent training (IT, experiment 2) on the maximal oxygen uptake; significant increase from the pretraining value at*P < 0.05 and **P< 0.01, respectively. Experiment 2. The anaerobic capacity increased by 23% after 4 wk of training (P < 0.01, Fig. 1). It increased further toward the end of the training period. After the training period, the anaerobic capacity reached 77 ± 9 ml·kg-1 , 28% higher than the pretraining capacity.
  • 8. After 3 wk of training, the ·VO2max had increased significantly by 5 ± 3 ml·kg- 1 ·min-1 (P < 0.01, Fig. 2). It tended to increase in the last part of the training period, but no significant changes were observed. The final·VO2max after 6 wk of training was 55 ± 6 ml·kg-1 ·min-1 , a value of 7 ± 1 ml·kg-1 ·min-1 above the pretraining value. DISCUSSION The main finding of this study was that 6 wk of aerobic training at 70%·VO2max improved the ·VO2max by 5 ml·kg-1 ·min-1 in moderately trained young men but that the anaerobic capacity, as judged by the maximal accumulated oxygen deficit, did not change. The second finding is that 6 wk of training using high-intensity intermittent exhaustive exercise improved ·VO2max by 7 ml·kg-1 ·min-1 and the anaerobic capacity by 28%. The observation in experiment 1 that anaerobic capacity did not change after 6 weeks of moderate-intensity endurance training but that·VO2max did increase has several implications. First, it shows the specificity of training; aerobic training does not change anaerobic capacity. Since lactate production accounts for about 75% of maximal anaerobic energy release (11), significant improvements in anaerobic capacity will probably require that the subjects can produce more lactate after training. Consequently, lactate production should be stressed to increase the anaerobic capacity during “anaerobic” training. However, since the blood lactate concentration during the exercise was low (about 2 mmol·l-1 ), the major part of anaerobic energy released during the exercise probably comes from the breakdown of phosphocreatine (PCr). Therefore, the training sessions in experiment 1 probably did not tax the lactate producing system much and therefore did not tax the whole anaerobic energy releasing system to any significant extent. Actually, the accumulated oxygen deficit during the first minutes of the exercise at 70%·VO2max was only 37 ± 6% (N = 7) of the maximal accumulated oxygen deficit (data not shown). Second, the results of experiment 1 support the idea that the accumulated oxygen deficit is a specific measure of the maximal anaerobic energy release. Due to the increased ·VO2max after the training period, the subjects could exercise for more than 6 min at the power used for the pretraining 2- to 3-min anaerobic capacity test. Therefore, the exercise power for the posttraining anaerobic capacity test was
  • 9. increased by 6 ± 3% to exhaust each subject in 2-3 min. However, the accumulated oxygen deficit appeared unaffected by the higher power used at the posttraining test, suggesting that this entity is able to distinguish between aerobic and anaerobic energy release at different powers. The alternative interpretation, that there was a change in the anaerobic capacity but that this change was obscured by a bias in the accumulated oxygen deficit, cannot be ruled out, but the findings here suggest that the latter interpretation is less likely. The high-intensity intermittent training in experiment 2 improved anaerobic capacity by 28%. Medbø and Burgers (5) reported that 6 wk of the intermittent training (their group B) increased the anaerobic capacity of untrained men by 16%. Since there are no clear differences in exercise intensity, exercise duration, and number of exercise bouts between the two studies, this quantitative difference in improving anaerobic capacity is probably explained by the difference between the two studies in magnitude of the anaerobic energy release during each training session. The peak blood lactate concentration after each training session in the previous study (5) was 69% of the peak blood lactate concentration after the 2-min exhaustive running. Therefore, anaerobic metabolism, and especially the lactate producing system, was probably not taxed maximally. In contrast, the peak blood lactate concentration after the intermittent training in this investigation was not significantly different from the value observed after the anaerobic capacity test that recruited anaerobic energy releasing systems maximally. In addition, our subjects exercised to exhaustion, but in the previous study, the subjects' rating of perceived exertion (1) was only 15 (“hard”). This difference may also reflect the recruited level of anaerobic energy release. Therefore, these results support our hypothesis that the higher the anaerobic energy release during each training session the higher the increase in anaerobic capacity after a training period. In addition to anaerobic capacity, the intermittent training increased·VO2max significantly in experiment 2. This is to our knowledge the first study to demonstrate an increase in both anaerobic capacity and maximal aerobic power. It should be emphasized that during the last part of each training session the oxygen uptake almost equaled each subject's maximal oxygen uptake (data not shown). High- intensity intermittent training is a very potent means of increasing maximal oxygen uptake (2). It is interesting to note that the increase in the maximal oxygen uptake
  • 10. that we found is almost identical to that expected for intermittent training by Fox (2). Consequently, the protocol used in training in experiment 2 may be optimal with respect to improving both the aerobic and the anaerobic energy releasing systems. The intensive bicycle training may have affected the efficiency of cycling, meaning that the relationship between power and ·VO2 may have changed. This change may affect the measurement of anaerobic capacity because the accumulated oxygen deficit is a calculated entity assuming a constant mechanical efficiency. However, our subjects were sufficiently familiar with bicycle exercise through repeated testing and experiments so that the relationship between the steady state oxygen uptake and power did not change during the training periods. Therefore, the pre- and posttraining data of the accumulated oxygen deficit should be comparable. In summary, this investigation demonstrated that 6 wk of moderate-intensity endurance training did not affect anaerobic capacity but that 6 wk of high-intensity intermittent training (20 s exercise, 10 s rest; intensity 170%·VO2max) may improve both anaerobic capacity and ·VO2max simultaneously. REFERENCES 1. Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 2-3:92-98, 1970. [Context Link] 2. Fox, E. Sport Physiology. Philadelphia: W.B. Saunders, 1979, pp. 226. [Context Link] 3. Hermansen, L., J. I. Medbo, A.-C. Mohn, I. Tabata, and R. Bahr. Oxygen deficit during maximal exercise of short duration. (Abstract).Acta Physiol. Scand. 121:39A, 1984. [Context Link] 4. Krogh, A. and J. Lindhard. The changes in respiration at the transition from work to rest. J. Physiol. 53:431-437, 1920. Full Text Bibliographic Links [Context Link] 5. Medbø, J. I. and S. Burgers. Effect of training on the anaerobic capacity. Med. Sci.
  • 11. Sports Exerc. 22:501-507, 1990. Ovid Full Text Request Permissions Bibliographic Links [Context Link] 6. Medbø, J. I., A.-C. Mohn, I. Tabata, R. Bahr, O. Vaage, and O. M. Sejersted. Anaerobic capacity determined by maximal accumulated O2 deficit. J. Appl. Physiol. 64:50-60, 1988. [Context Link] 7. Medbø, J. I. and I. Tabata. Relative importance of aerobic and anaerobic energy release during short-lasting exhaustive bicycle exercise. J. Appl. Physiol. 67:1881- 1886, 1989. [Context Link] 8. Medbø, J. I. and I. Tabata. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling.J. Appl. Physiol. 75:1654-1660, 1993. 9. Saltin, B., G. Blomqvist, J. H. Mitchell, R. L. Johnson, Jr., and C. B. Chapman. Responses to exercise after bed rest and after training. A longituinal study of adaptive changes in oxygen transport and body composition.Circulation 38 (Suppl. 7):1-78, 1968. [Context Link] 10. Taylor, H. L., E. Buskirk, and A. Henshel. Maximal oxygen intake as an objective measure of cardiorespiratory performance.J. Appl. Physiol. 8:73-80, 1955. [Context Link] ANAEROBIC TRAINING; AEROBIC TRAINING