Eduardo Enrique Escamilla Saldaña
Monterrey, Nuevo Leon, Mexico

February 2, 2014

Purdue Problem of the Week No.2
It is known that, for any positive integer m,
𝑛
/
𝑚𝑘

lim

!→!

!!!:!"!!

!

!!!

1
𝑛
𝑗 = 𝑚.

Prove this for m=2.
I will prove the general result. The denominator:
𝑛
𝑛
is equivalent to adding the binomial coefficients
such that
!!!:!"!!
𝑚𝑘
𝑘
𝑛
𝑘 ≡   0  (𝑚𝑜𝑑  𝑚), namely !≡  !  (!"#  !)
.
𝑘
Consider the roots of unity 𝜁 !    =    cos 2𝜋𝑖𝑘 𝑚 + 𝑖 sin 2𝜋𝑖𝑘 𝑚 of 𝜁 ! − 1 = 0.
𝜁 ! − 1 = 𝜁 − 1 1 + 𝜁 + 𝜁 ! + ⋯ + 𝜁 !!!
Therefore:
!!!

𝑚    𝑖𝑓  𝑘 ≡ 0(𝑚𝑜𝑑  𝑚)
0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

𝜁 ! =   
!!!

In other words:
1
𝑚

!!!

𝜁 ! =   
!!!

1    𝑖𝑓  𝑘 ≡ 0(𝑚𝑜𝑑  𝑚)
0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

However by the binomial theorem:
1 + 𝑥 ! 𝜁!
1 + 𝜁!

!

!

!

=
!

=

!!!

!!!

!
!

𝑥 !! 𝜁!" Making 𝑥 = 1

𝑛 !"
𝜁
𝑘

Therefore

!≡  !  (!"#  !)

𝑛
=
𝑘

𝑛
𝑘

!
!!!

1
𝑚

!!!

𝜁!
!!!

Note that
𝑒 !! + 𝑒 !!!
cos Φ =
2
2 cos Φ𝑗 = 𝑒 !!! + 𝑒 !!!!
If Φ =    2𝜋𝑗 𝑚      2 cos 2π𝑗/𝑚 = 𝑒 !

1
   =   
𝑚

!"!/!

!!!

1 + 𝜁!

!

!!!

+ 𝑒 !!

!"!/!

= 𝜁! + 𝜁 !!

Taking advantage of this equality
1 + 𝜁!

!

=

1

𝜁

+ 𝜁!/!
!/!

!

𝜁!/!

!

= 𝜁 !!/! + 𝜁!/!

!

𝜁!"/!

= 2 cos π𝑗/𝑚

! !"/!

𝜁
Since we are interested in real numbers we can take the real part of 𝜁!"/! , and using
De Moivre's theorem we get
𝑛𝑗𝜋
𝑅𝑒 𝜁!"/! = cos 2𝜋𝑗𝑛/(2𝑛) = cos
𝑚

!≡  !  (!"#  !)
!!!

=

1
𝑚

𝑛
=
𝑘

2 cos π𝑗/𝑚
!!!

1+1

!

!

=
!!!

!
!!!
!

𝑛
𝑘

1
𝑚

cos

!!!

𝜁

1
   =   
𝑚

!

!!!

𝑛𝑗𝜋
2!
=
𝑚
𝑚

!!!

!

1 + 𝜁!
!!!

!!!
!

cos π𝑗/𝑚

cos

!!!

𝑛𝑗𝜋
𝑚

𝑛 ! !!!
1 1
= 2!
𝑗

Therefore:
𝑛
/
𝑚𝑘

lim

!→!

!!!:!"!!

= lim

!→!

2!
= lim 𝑚

!≡  !  (!"#  !)

!→!

= lim

!→!

1
𝑚

= 1/𝑚

!!!
!!!

!

𝑛
𝑗

!!!
!

𝑛
/
𝑘

𝑛
𝑗 .

!!!
!

cos π𝑗/𝑚

𝑛𝑗𝜋
𝑚

cos

2!

!!!

!

cos π𝑗/𝑚

𝑛𝑗𝜋
𝑚

cos

!!!

In the case where m = 2, using the above methodology, we get
lim

!→!

= lim

!!!:!"!!
!!!

!→!

1
𝑚

1
= lim
!→! 2

𝑛
/
𝑚𝑘
cos

!!!
!

!!!

π𝑗
𝑚

𝜋𝑗
cos
2

!

𝑛
𝑗 =

!!!
!

cos

𝑛𝑗𝜋
𝑚

cos

𝑛𝑗𝜋
2

!

1
𝜋𝑗
= lim ( 1 + cos
!→! 2
2
1
= lim ( 1 + 0)
!→! 2
=1/2

!!!

)

Solution problem2 eduardoenriqueescamillasaldana

  • 1.
    Eduardo Enrique EscamillaSaldaña Monterrey, Nuevo Leon, Mexico February 2, 2014 Purdue Problem of the Week No.2 It is known that, for any positive integer m, 𝑛 / 𝑚𝑘 lim !→! !!!:!"!! ! !!! 1 𝑛 𝑗 = 𝑚. Prove this for m=2. I will prove the general result. The denominator: 𝑛 𝑛 is equivalent to adding the binomial coefficients such that !!!:!"!! 𝑚𝑘 𝑘 𝑛 𝑘 ≡  0  (𝑚𝑜𝑑  𝑚), namely !≡  !  (!"#  !) . 𝑘 Consider the roots of unity 𝜁 !   =   cos 2𝜋𝑖𝑘 𝑚 + 𝑖 sin 2𝜋𝑖𝑘 𝑚 of 𝜁 ! − 1 = 0. 𝜁 ! − 1 = 𝜁 − 1 1 + 𝜁 + 𝜁 ! + ⋯ + 𝜁 !!! Therefore: !!! 𝑚    𝑖𝑓  𝑘 ≡ 0(𝑚𝑜𝑑  𝑚) 0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       𝜁 ! =   !!! In other words: 1 𝑚 !!! 𝜁 ! =   !!! 1    𝑖𝑓  𝑘 ≡ 0(𝑚𝑜𝑑  𝑚) 0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       However by the binomial theorem: 1 + 𝑥 ! 𝜁! 1 + 𝜁! ! ! ! = ! = !!! !!! ! ! 𝑥 !! 𝜁!" Making 𝑥 = 1 𝑛 !" 𝜁 𝑘 Therefore !≡  !  (!"#  !) 𝑛 = 𝑘 𝑛 𝑘 ! !!! 1 𝑚 !!! 𝜁! !!! Note that 𝑒 !! + 𝑒 !!! cos Φ = 2 2 cos Φ𝑗 = 𝑒 !!! + 𝑒 !!!! If Φ =   2𝜋𝑗 𝑚     2 cos 2π𝑗/𝑚 = 𝑒 ! 1   =   𝑚 !"!/! !!! 1 + 𝜁! ! !!! + 𝑒 !! !"!/! = 𝜁! + 𝜁 !! Taking advantage of this equality 1 + 𝜁! ! = 1 𝜁 + 𝜁!/! !/! ! 𝜁!/! ! = 𝜁 !!/! + 𝜁!/! ! 𝜁!"/! = 2 cos π𝑗/𝑚 ! !"/! 𝜁
  • 2.
    Since we areinterested in real numbers we can take the real part of 𝜁!"/! , and using De Moivre's theorem we get 𝑛𝑗𝜋 𝑅𝑒 𝜁!"/! = cos 2𝜋𝑗𝑛/(2𝑛) = cos 𝑚 !≡  !  (!"#  !) !!! = 1 𝑚 𝑛 = 𝑘 2 cos π𝑗/𝑚 !!! 1+1 ! ! = !!! ! !!! ! 𝑛 𝑘 1 𝑚 cos !!! 𝜁 1   =   𝑚 ! !!! 𝑛𝑗𝜋 2! = 𝑚 𝑚 !!! ! 1 + 𝜁! !!! !!! ! cos π𝑗/𝑚 cos !!! 𝑛𝑗𝜋 𝑚 𝑛 ! !!! 1 1 = 2! 𝑗 Therefore: 𝑛 / 𝑚𝑘 lim !→! !!!:!"!! = lim !→! 2! = lim 𝑚 !≡  !  (!"#  !) !→! = lim !→! 1 𝑚 = 1/𝑚 !!! !!! ! 𝑛 𝑗 !!! ! 𝑛 / 𝑘 𝑛 𝑗 . !!! ! cos π𝑗/𝑚 𝑛𝑗𝜋 𝑚 cos 2! !!! ! cos π𝑗/𝑚 𝑛𝑗𝜋 𝑚 cos !!! In the case where m = 2, using the above methodology, we get lim !→! = lim !!!:!"!! !!! !→! 1 𝑚 1 = lim !→! 2 𝑛 / 𝑚𝑘 cos !!! ! !!! π𝑗 𝑚 𝜋𝑗 cos 2 ! 𝑛 𝑗 = !!! ! cos 𝑛𝑗𝜋 𝑚 cos 𝑛𝑗𝜋 2 ! 1 𝜋𝑗 = lim ( 1 + cos !→! 2 2 1 = lim ( 1 + 0) !→! 2 =1/2 !!! )