Bearing Failure Analysis
2013-09-13 ©SKF Slide 1 [Code]
SKF [Organisation]
2013-09-13 ©SKF Slide 2 [Code]
SKF [Organisation]
Bearing failure analysis
Overview:
•Load path patterns
•Failure mode classification
•How to secure evidence
•Hands-on exercises
2013-09-13 ©SKF Slide 3 [Code]
SKF [Organisation]
Bearing failure analysis
The best way to become expert is to examine damaged bearings. Evidence will emerge
to allow root cause analysis and hence corrective action. Many of ball and roller bearings
never attain their calculated life expectancy. .
The calculated life expectancy of any bearing is based on four assumptions:
1.Good lubrication in proper quantity will always be available to the bearing.
2.The bearing will be mounted without damage.
3.Dimensions of parts related to the bearing will be correct.
4.There are no defects inherent in the bearing.
2013-09-13 ©SKF Slide 4 [Code]
SKF [Organisation]
Bearing failure analysis
Even if all the four conditions are met, the bearing may still
fail due to fatigue of bearing material.
Three major classifications of premature spalling are
lubrication, mechanical damage, and material defects.
2013-09-13 ©SKF Slide 6 [Code]
SKF [Organisation]
Bearing failure analysis
Most bearing failures can be attributed to one or more of the
following causes:
1. Defective bearing seats on shafts and in housings.
2. Misalignment.
3. Faulty mounting practice
4. Incorrect shaft and housing fits.
5. Inadequate lubrication.
6. Ineffective sealing.
7. Vibration while the bearing is not rotating
8. Passage of electric current through the bearing.
9. Transportation, storage and handling.
2013-09-13 ©SKF Slide 7 [Code]
SKF [Organisation]
Load paths
2013-09-13 ©SKF Slide 8 [Code]
SKF [Organisation]
Normal radial load zones…
2013-09-13 ©SKF Slide 9 [Code]
SKF [Organisation]
Normal radial load zones…
Stationary outer ring
Rotating inner ring
Constant unidirectional loads
2013-09-13 ©SKF Slide 10 [Code]
SKF [Organisation]
Normal radial load zones
Stationary inner ring
Rotating outer ring
Constant unidirectional load
2013-09-13 ©SKF Slide 11 [Code]
SKF [Organisation]
Combined (radial and axial) load
Stationary outer ring
Rotating inner ring
Constant unidirectional radial and axial loads
2013-09-13 ©SKF Slide 12 [Code]
SKF [Organisation]
Pure Axial load
2013-09-13 ©SKF Slide 13 [Code]
SKF [Organisation]
Misalignment of outer ring
2013-09-13 ©SKF Slide 15 [Code]
SKF [Organisation]
Ovalised outer ring
2013-09-13 ©SKF Slide 16 [Code]
SKF [Organisation]
Out of round housing
2013-09-13 ©SKF Slide 17 [Code]
SKF [Organisation]
Tight fit - preloading
2013-09-13 ©SKF Slide 18 [Code]
SKF [Organisation]
Eccentric radial load
2013-09-13 ©SKF Slide 19 [Code]
SKF [Organisation]
Imbalance
2013-09-13 ©SKF Slide 20 [Code]
SKF [Organisation]
Failure mode classification
• Causes of failures have identifiable characteristics
• Failure mechanisms have identifiable failure modes
• Observed damage can identify failure causes
2013-09-13 ©SKF Slide 21 [Code]
SKF [Organisation]
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
Forced fracture
Fatigue fracture
Thermal cracking
Overload
Indentation
Indents from debris
Indents by handling
Moisture corrosion
Fretting corrosion
Excessive voltage
Current leakage
Adhesive wear
Abrasive wear
Surface initiated fatigue
Subsurface fatigue
Failure modes
2013-09-13 ©SKF Slide 22 [Code]
SKF [Organisation]
Subsurface fatigue
• Repeated stress changes
• Material structural
• Micro cracks under the surface changes
• Crack propagation
• Flaking and peeling
Surface initiated fatigue
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
Subsurface fatigue
2013-09-13 ©SKF Slide 23 [Code]
SKF [Organisation]
Fatigue spall
2013-09-13 ©SKF Slide 24 [Code]
SKF [Organisation]
Edge loading
2013-09-13 ©SKF Slide 25 [Code]
SKF [Organisation]
True brinelling
2013-09-13 ©SKF Slide 26 [Code]
SKF [Organisation]
Surface initiated fatigue
• Surface distress
• Reduced lubrication
• Sliding motion
• Severity micro cracks
40 µm
Surface initiated fatigue
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
Subsurface fatigue
2013-09-13 ©SKF Slide 29 [Code]
SKF [Organisation]
Abrasive wear
• Progressive removal of material
• Accelerating process
• Inadequate lubrication
• Ingress of dirt particles
Adhesive wear
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
Abrasive wear
2013-09-13 ©SKF Slide 30 [Code]
SKF [Organisation]
Wear
2013-09-13 ©SKF Slide 32 [Code]
SKF [Organisation]
• Smearing / skidding / galling
• Material transfer / friction heat
• Tempering / rehardening with stress
concentrations and cracking or flaking
• Low loads
• Accelerations
Adhesive wear
Adhesive wear
Abrasive wear
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
2013-09-13 ©SKF Slide 33 [Code]
SKF [Organisation]
• It is a material transfer from one
surface to another high temperature
resulting in tempering and
rehardening of material
Adhesive wear
Adhesive wear
Abrasive wear
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
2013-09-13 ©SKF Slide 34 [Code]
SKF [Organisation]
150° - 177° C (300° - 350° F)
177° - 205° C (350° - 400° F)
205° - 260° C (400° - 500° F)
+ 260° C (+ 500° F)
+ 540° C (+ 1000° F)
Temperature discoloration
• SKF Bearings can be used at temperatures up to
125° C (~ 250° F)
• Higher temperatures may cause loss of Hardness
• Loss of 2-4 points of Rockwell Hardness reduces life 50%
2013-09-13 ©SKF Slide 35 [Code]
SKF [Organisation]
• Oxidation / rust
• Chemical reaction
• Etching (water / oil
mixture)
Corrosion
Fretting corrosion
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
Moisture corrosion
Rust will form if water or corrosive agents reach the in side of the bearing In
such quantities that the lubricant can not provide adequate protection.
2013-09-13 ©SKF Slide 36 [Code]
SKF [Organisation]
Ineffective sealing
2013-09-13 ©SKF Slide 37 [Code]
SKF [Organisation]
False brinelling…
• Rolling element / raceway
• Micro movements / elastic deformations
• Vibrations
• Corrosion / wear: shiny or reddish depressions
• Stationary: Damage at rolling element spacing
• Rotating: Damage exhibits parallel flutes
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
Moisture corrosion
Fretting corrosion
2013-09-13 ©SKF Slide 38 [Code]
SKF [Organisation]
Fretting corrosion
• Rolling element / raceway
• Micro movements / elastic deformations
• Vibrations
• Corrosion / wear: shiny or reddish depressions
• Stationary: Damage at rolling element spacing
• Rotating: Damage exhibits parallel flutes
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
Moisture corrosion
Fretting corrosion
2013-09-13 ©SKF Slide 39 [Code]
SKF [Organisation]
Advanced fretting…
2013-09-13 ©SKF Slide 40 [Code]
SKF [Organisation]
Advanced fretting
2013-09-13 ©SKF Slide 41 [Code]
SKF [Organisation]
• High current = sparking
• Instant localized heating
leads to melting and/or
welding
• Craters up to 100 µm
Electrical erosion
Current leakage
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
Excessive voltage
2013-09-13 ©SKF Slide 42 [Code]
SKF [Organisation]
Electrical erosion – excessive voltage
2013-09-13 ©SKF Slide 43 [Code]
SKF [Organisation]
• Low current intensity
• Shallow craters
closely positioned
• Development of
flutes on raceways
and rollers, parallel
to rolling axis
• Dark gray
discoloration
Electrical erosion
Current leakage
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
Excessive voltage
2013-09-13 ©SKF Slide 44 [Code]
SKF [Organisation]
Vibration
2013-09-13 ©SKF Slide 45 [Code]
SKF [Organisation]
Current leakage
2013-09-13 ©SKF Slide 46 [Code]
SKF [Organisation]
Hybrid deep groove
ball bearing
Insocoat
Electric current passage solutions
2013-09-13 ©SKF Slide 47 [Code]
SKF [Organisation]
• Static or shock loads
• Plastic deformations
• Depressions at rolling element spacing
• Handling damage
Overload
Indentation
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
Overload
Indents by handling
Indents from debris
2013-09-13 ©SKF Slide 48 [Code]
SKF [Organisation]
Installation damage
2013-09-13 ©SKF Slide 49 [Code]
SKF [Organisation]
• Localized overloading
• Over-rolling of particles = dents
• Caused by soft / hardened steel / hard mineral
particles
Debris denting
Indentation
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
Overload
Indents by handling
Indents from debris
2013-09-13 ©SKF Slide 50 [Code]
SKF [Organisation]
• Localized overloading
• Nicks caused by hard /
sharp objects
Handling damage…
Indentation
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
Overload
Indents by handling
Indents from debris
2013-09-13 ©SKF Slide 51 [Code]
SKF [Organisation]
Handling damage
2013-09-13 ©SKF Slide 52 [Code]
SKF [Organisation]
CRB roller damage
2013-09-13 ©SKF Slide 53 [Code]
SKF [Organisation]
• Stress concentration exceeds tensile strength
• Impact / overstressing
Forced fracture…
Forced fracture
Fatigue fracture
Thermal cracking
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
2013-09-13 ©SKF Slide 54 [Code]
SKF [Organisation]
Forced fracture…
2013-09-13 ©SKF Slide 55 [Code]
SKF [Organisation]
• Exceeding fatigue
strength under
bending
• Crack initiation /
propagation
• Finally forced fracture
• Rings and Cages
Fatigue fracture
Forced fracture
Fatigue fracture
Thermal cracking
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
2013-09-13 ©SKF Slide 56 [Code]
SKF [Organisation]
Thermal cracking
• High sliding and / or
insufficient lubrication
• High friction heat
• Cracks at right angle to
sliding direction
Forced fracture
Fatigue fracture
Thermal cracking
Electrical erosion
Wear
Corrosion
Fracture
Fatigue
Plastic deformation
2013-09-13 ©SKF Slide 58 [Code]
SKF [Organisation]
Securing evidence
• Collect operating data, monitoring data
• Collect lubricant samples
• Check bearing environment(s)
• Assess bearing(s) in mounted condition
• Mark mounting position(s)
• Remove, mark and bag bearing(s) and parts
• Check bearing seats
2013-09-13 ©SKF Slide 59 [Code]
SKF [Organisation]
Conducting the analysis
Examine Bearing(s) and Parts
• Record visual observations
• Use the Failure Modes to eliminate improbable possible causes and
determine the original cause of the failure.
• Contact external resources for assistance, if needed
• Initiate corrective action, if desired
2013-09-13 ©SKF Slide 60 [Code]
SKF [Organisation]
False brinelling

SKF_bearing-failure-analysis training.pdf

  • 1.
    Bearing Failure Analysis 2013-09-13©SKF Slide 1 [Code] SKF [Organisation]
  • 2.
    2013-09-13 ©SKF Slide2 [Code] SKF [Organisation] Bearing failure analysis Overview: •Load path patterns •Failure mode classification •How to secure evidence •Hands-on exercises
  • 3.
    2013-09-13 ©SKF Slide3 [Code] SKF [Organisation] Bearing failure analysis The best way to become expert is to examine damaged bearings. Evidence will emerge to allow root cause analysis and hence corrective action. Many of ball and roller bearings never attain their calculated life expectancy. . The calculated life expectancy of any bearing is based on four assumptions: 1.Good lubrication in proper quantity will always be available to the bearing. 2.The bearing will be mounted without damage. 3.Dimensions of parts related to the bearing will be correct. 4.There are no defects inherent in the bearing.
  • 4.
    2013-09-13 ©SKF Slide4 [Code] SKF [Organisation] Bearing failure analysis Even if all the four conditions are met, the bearing may still fail due to fatigue of bearing material. Three major classifications of premature spalling are lubrication, mechanical damage, and material defects.
  • 5.
    2013-09-13 ©SKF Slide6 [Code] SKF [Organisation] Bearing failure analysis Most bearing failures can be attributed to one or more of the following causes: 1. Defective bearing seats on shafts and in housings. 2. Misalignment. 3. Faulty mounting practice 4. Incorrect shaft and housing fits. 5. Inadequate lubrication. 6. Ineffective sealing. 7. Vibration while the bearing is not rotating 8. Passage of electric current through the bearing. 9. Transportation, storage and handling.
  • 6.
    2013-09-13 ©SKF Slide7 [Code] SKF [Organisation] Load paths
  • 7.
    2013-09-13 ©SKF Slide8 [Code] SKF [Organisation] Normal radial load zones…
  • 8.
    2013-09-13 ©SKF Slide9 [Code] SKF [Organisation] Normal radial load zones… Stationary outer ring Rotating inner ring Constant unidirectional loads
  • 9.
    2013-09-13 ©SKF Slide10 [Code] SKF [Organisation] Normal radial load zones Stationary inner ring Rotating outer ring Constant unidirectional load
  • 10.
    2013-09-13 ©SKF Slide11 [Code] SKF [Organisation] Combined (radial and axial) load Stationary outer ring Rotating inner ring Constant unidirectional radial and axial loads
  • 11.
    2013-09-13 ©SKF Slide12 [Code] SKF [Organisation] Pure Axial load
  • 12.
    2013-09-13 ©SKF Slide13 [Code] SKF [Organisation] Misalignment of outer ring
  • 13.
    2013-09-13 ©SKF Slide15 [Code] SKF [Organisation] Ovalised outer ring
  • 14.
    2013-09-13 ©SKF Slide16 [Code] SKF [Organisation] Out of round housing
  • 15.
    2013-09-13 ©SKF Slide17 [Code] SKF [Organisation] Tight fit - preloading
  • 16.
    2013-09-13 ©SKF Slide18 [Code] SKF [Organisation] Eccentric radial load
  • 17.
    2013-09-13 ©SKF Slide19 [Code] SKF [Organisation] Imbalance
  • 18.
    2013-09-13 ©SKF Slide20 [Code] SKF [Organisation] Failure mode classification • Causes of failures have identifiable characteristics • Failure mechanisms have identifiable failure modes • Observed damage can identify failure causes
  • 19.
    2013-09-13 ©SKF Slide21 [Code] SKF [Organisation] Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation Forced fracture Fatigue fracture Thermal cracking Overload Indentation Indents from debris Indents by handling Moisture corrosion Fretting corrosion Excessive voltage Current leakage Adhesive wear Abrasive wear Surface initiated fatigue Subsurface fatigue Failure modes
  • 20.
    2013-09-13 ©SKF Slide22 [Code] SKF [Organisation] Subsurface fatigue • Repeated stress changes • Material structural • Micro cracks under the surface changes • Crack propagation • Flaking and peeling Surface initiated fatigue Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation Subsurface fatigue
  • 21.
    2013-09-13 ©SKF Slide23 [Code] SKF [Organisation] Fatigue spall
  • 22.
    2013-09-13 ©SKF Slide24 [Code] SKF [Organisation] Edge loading
  • 23.
    2013-09-13 ©SKF Slide25 [Code] SKF [Organisation] True brinelling
  • 24.
    2013-09-13 ©SKF Slide26 [Code] SKF [Organisation] Surface initiated fatigue • Surface distress • Reduced lubrication • Sliding motion • Severity micro cracks 40 µm Surface initiated fatigue Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation Subsurface fatigue
  • 25.
    2013-09-13 ©SKF Slide29 [Code] SKF [Organisation] Abrasive wear • Progressive removal of material • Accelerating process • Inadequate lubrication • Ingress of dirt particles Adhesive wear Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation Abrasive wear
  • 26.
    2013-09-13 ©SKF Slide30 [Code] SKF [Organisation] Wear
  • 27.
    2013-09-13 ©SKF Slide32 [Code] SKF [Organisation] • Smearing / skidding / galling • Material transfer / friction heat • Tempering / rehardening with stress concentrations and cracking or flaking • Low loads • Accelerations Adhesive wear Adhesive wear Abrasive wear Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation
  • 28.
    2013-09-13 ©SKF Slide33 [Code] SKF [Organisation] • It is a material transfer from one surface to another high temperature resulting in tempering and rehardening of material Adhesive wear Adhesive wear Abrasive wear Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation
  • 29.
    2013-09-13 ©SKF Slide34 [Code] SKF [Organisation] 150° - 177° C (300° - 350° F) 177° - 205° C (350° - 400° F) 205° - 260° C (400° - 500° F) + 260° C (+ 500° F) + 540° C (+ 1000° F) Temperature discoloration • SKF Bearings can be used at temperatures up to 125° C (~ 250° F) • Higher temperatures may cause loss of Hardness • Loss of 2-4 points of Rockwell Hardness reduces life 50%
  • 30.
    2013-09-13 ©SKF Slide35 [Code] SKF [Organisation] • Oxidation / rust • Chemical reaction • Etching (water / oil mixture) Corrosion Fretting corrosion Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation Moisture corrosion Rust will form if water or corrosive agents reach the in side of the bearing In such quantities that the lubricant can not provide adequate protection.
  • 31.
    2013-09-13 ©SKF Slide36 [Code] SKF [Organisation] Ineffective sealing
  • 32.
    2013-09-13 ©SKF Slide37 [Code] SKF [Organisation] False brinelling… • Rolling element / raceway • Micro movements / elastic deformations • Vibrations • Corrosion / wear: shiny or reddish depressions • Stationary: Damage at rolling element spacing • Rotating: Damage exhibits parallel flutes Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation Moisture corrosion Fretting corrosion
  • 33.
    2013-09-13 ©SKF Slide38 [Code] SKF [Organisation] Fretting corrosion • Rolling element / raceway • Micro movements / elastic deformations • Vibrations • Corrosion / wear: shiny or reddish depressions • Stationary: Damage at rolling element spacing • Rotating: Damage exhibits parallel flutes Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation Moisture corrosion Fretting corrosion
  • 34.
    2013-09-13 ©SKF Slide39 [Code] SKF [Organisation] Advanced fretting…
  • 35.
    2013-09-13 ©SKF Slide40 [Code] SKF [Organisation] Advanced fretting
  • 36.
    2013-09-13 ©SKF Slide41 [Code] SKF [Organisation] • High current = sparking • Instant localized heating leads to melting and/or welding • Craters up to 100 µm Electrical erosion Current leakage Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation Excessive voltage
  • 37.
    2013-09-13 ©SKF Slide42 [Code] SKF [Organisation] Electrical erosion – excessive voltage
  • 38.
    2013-09-13 ©SKF Slide43 [Code] SKF [Organisation] • Low current intensity • Shallow craters closely positioned • Development of flutes on raceways and rollers, parallel to rolling axis • Dark gray discoloration Electrical erosion Current leakage Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation Excessive voltage
  • 39.
    2013-09-13 ©SKF Slide44 [Code] SKF [Organisation] Vibration
  • 40.
    2013-09-13 ©SKF Slide45 [Code] SKF [Organisation] Current leakage
  • 41.
    2013-09-13 ©SKF Slide46 [Code] SKF [Organisation] Hybrid deep groove ball bearing Insocoat Electric current passage solutions
  • 42.
    2013-09-13 ©SKF Slide47 [Code] SKF [Organisation] • Static or shock loads • Plastic deformations • Depressions at rolling element spacing • Handling damage Overload Indentation Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation Overload Indents by handling Indents from debris
  • 43.
    2013-09-13 ©SKF Slide48 [Code] SKF [Organisation] Installation damage
  • 44.
    2013-09-13 ©SKF Slide49 [Code] SKF [Organisation] • Localized overloading • Over-rolling of particles = dents • Caused by soft / hardened steel / hard mineral particles Debris denting Indentation Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation Overload Indents by handling Indents from debris
  • 45.
    2013-09-13 ©SKF Slide50 [Code] SKF [Organisation] • Localized overloading • Nicks caused by hard / sharp objects Handling damage… Indentation Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation Overload Indents by handling Indents from debris
  • 46.
    2013-09-13 ©SKF Slide51 [Code] SKF [Organisation] Handling damage
  • 47.
    2013-09-13 ©SKF Slide52 [Code] SKF [Organisation] CRB roller damage
  • 48.
    2013-09-13 ©SKF Slide53 [Code] SKF [Organisation] • Stress concentration exceeds tensile strength • Impact / overstressing Forced fracture… Forced fracture Fatigue fracture Thermal cracking Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation
  • 49.
    2013-09-13 ©SKF Slide54 [Code] SKF [Organisation] Forced fracture…
  • 50.
    2013-09-13 ©SKF Slide55 [Code] SKF [Organisation] • Exceeding fatigue strength under bending • Crack initiation / propagation • Finally forced fracture • Rings and Cages Fatigue fracture Forced fracture Fatigue fracture Thermal cracking Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation
  • 51.
    2013-09-13 ©SKF Slide56 [Code] SKF [Organisation] Thermal cracking • High sliding and / or insufficient lubrication • High friction heat • Cracks at right angle to sliding direction Forced fracture Fatigue fracture Thermal cracking Electrical erosion Wear Corrosion Fracture Fatigue Plastic deformation
  • 52.
    2013-09-13 ©SKF Slide58 [Code] SKF [Organisation] Securing evidence • Collect operating data, monitoring data • Collect lubricant samples • Check bearing environment(s) • Assess bearing(s) in mounted condition • Mark mounting position(s) • Remove, mark and bag bearing(s) and parts • Check bearing seats
  • 53.
    2013-09-13 ©SKF Slide59 [Code] SKF [Organisation] Conducting the analysis Examine Bearing(s) and Parts • Record visual observations • Use the Failure Modes to eliminate improbable possible causes and determine the original cause of the failure. • Contact external resources for assistance, if needed • Initiate corrective action, if desired
  • 54.
    2013-09-13 ©SKF Slide60 [Code] SKF [Organisation] False brinelling