SlideShare a Scribd company logo
1 of 13
West Country
Aggregates: Quarry
Design
2016
BLASTING AND PRODUCTIONSCHEDULE
JAMES DUNFORD
CAMBORNE SCHOL OF MINES | Penryn campus, Cornwall
1 | P a g e
Contents
Introduction.................................................................................................................................2
Quarry Parameters....................................................................................................................... 3
1.1 Bench Height................................................................................................................. 3
1.2 Bench Angle .................................................................................................................. 3
Vibration Prediction...................................................................................................................... 4
Blast Parameters .......................................................................................................................... 4
3.1 Number of Blasts per Month................................................................................................ 4
3.2 Hole Diameter..................................................................................................................... 5
3.3 Burden................................................................................................................................ 5
3.4 Spacing............................................................................................................................... 5
3.5 Sub Drill.............................................................................................................................. 5
3.6 Stemming........................................................................................................................... 5
3.7 Hole Volume....................................................................................................................... 6
3.8 Column Charge.................................................................................................................... 6
3.9 Blast Ratio........................................................................................................................... 6
Explosive Parameters.................................................................................................................... 6
2.1 Explosive properties............................................................................................................ 6
2.2 Primer................................................................................................................................ 6
2.3 Detonation system.............................................................................................................. 6
Calculation Results........................................................................................................................ 7
Timing Design............................................................................................................................... 9
Production................................................................................................................................. 10
6.1 Fragmentation (KUZ RAM) ................................................................................................. 10
6.2 Excavator.......................................................................................................................... 10
6.3 In-Pit Crusher.................................................................................................................... 10
6.4 Front end Loader............................................................................................................... 11
6.5 ADT .................................................................................................................................. 11
6.5 Productivity Cycle.............................................................................................................. 11
Conclusion................................................................................................................................. 12
References................................................................................................................................. 12
2 | P a g e
Introduction
The aggregatessectorin the UK is showingstronggrowthcoupledwithrise ininfrastructure
projects.Manycompanies
WestCountryAggregates(WCA) have beenaskedtoforma comprehensivedesignforthe blasting
and productionsequence fora proposedlimestone quarryonbehalf of the Camborne school of
Mines(CSM). Provisional projectionsshow areserve of material toa depthof 900m withplanning
permissionlimitingthe depthof the site to90m below surface elevation.2mof overburdenhas
alreadybeenstrippedawaytobeginproduction.Regulationspermitthatbenchheightbe nogreater
than 15m andfor safetyoverall slopeangle mustnotexceed47degrees. Benchwidthsare set10m
to accommodate the widthof one ADT, withall levelshaving anaccessramp to the next.Any
changesto accessramp designcan be plannedandconstructedduringproduction.
The geologyof the depositisa limestonewiththree jointsetsconfirmedthroughlogging(See Table
1). A horizontal zone of weaknessof 1.5m thicknesswasinterceptedthroughinvestigationworkata
depthof 36m. Investigationworkanticipatesthatthe workingswill be belowthe watertable.
Table 1: Geotechnical data for joint sets from site investigation
To the North-Westof the site there isa domesticpropertyapproximately250mfrom the proposed
workings.The excavationwill be predominatelyoval shaped.
The quarry has beenaskedtoproduce 20,000 tonnesof limestoneaggregate permonthforthe
aggregatesindustry.Thisresultsinanannual productionof 240,000 tonnes.The quarryissmall to
mediumscale. Rockpile muckingwillbe achieved throughone 35 tonne track mountedswing
shovel feedingintothe primaryinpitmobilecrushingunit.The crushedpilewillbe muckedbyone
frontendloaderand fedintoa 45 tonne ADT to be transferredtothe secondarycrushingplant.
500m is the approximatedaverage distance the ADTwill coverinone cycle.
The rock masspropertiesforthe site are as follows:
UCS = 170 MPa
SpecificGravity= 2.65 t/m3
Jointset Dip° Direction Persistence Spacing(m)
1 32° NNE High 0.9
2 89° SSE Medium 2.5
3 18° WSW Low 6.0
3 | P a g e
Quarry Parameters
1.1 Bench Height
Regulationsimpose alimitof quarryingtoa depthof 90m. A 2m overburdenstriphasalreadybeen
completed.Thisleaves88mof mineral depthtobe quarried.Witha maximumallowable bench
heightsetat 15m itis proposedthatthe quarry be splitinto6 bencheswiththe firstbeing13mand
the followingbenches15minheight.
BenchNo. 1 2 3 4 5 6
Benchstart height
fromsurface (m)
0 -13 -28 -43 -58 -63
Benchheight(m) 13 15 15 15 15 15
Benchfinishheight
fromsurface (m)
-13 -28 -43 -58 -63 -88
1.2 Bench Angle
Most UK quarriesoperate abenchangle between5-15 degreesdependingonthe rocktype and
stability (assumedvaluethroughworkexperience).Vertical benchespresenttoomanyissueswith
drillinganddonotsupportslope stability. WCA recommenda10 degree benchangle asthe most
efficientfordrillingblastholesandaidingslope stability. For6 benchesthisgivesanoverall slope
angle of 37 degrees.
Figure 1: 2D side view for quarry bench parameters
4 | P a g e
Vibration Prediction
Before the timingsforthe holescanbe established,firstitisimportanttopredictthe vibrationof the
blast.A domesticpropertyissituated 250 metersfrom the quarry boundary. BS 6472 part 2 dictates
that no blast should exceed a peak particle velocity (PPV) of 6mm/s. PPV can be affected by the
geology, the Maximum instantaneous charge (MIC) and the amount of explosive detonating at the
same time. The main cause of increased PPV is the MIC. MIC is the square of separation distance
betweenblastandreceiveri.e.the propertydividedbythe scale distancecorrespondingthevibration
level required. The equation is shown below:
𝑀𝐼𝐶 = (
𝑠
𝑠𝑑
)
2
To work outthe scaleddistance inmKg-0.5
requiresthe followingequation:
𝑃𝑃𝑉 = 𝛼( 𝑠𝑑) 𝛽
α andβ representdimensionlesssite factors.Theypermitforthe use of local geologyinfluencingthe
attenuationof blastvibration.Theyare the resultof specificsite investigationandare resultantfrom
the leastsquaresregressionmethod. [4]
No data hasbeenprovidedforthe dimensionlesssite factors.WCA assumesthatfurthervibrational
analysiswill be conductedatthe site inorderto change the blastdesigntofitwithinthe allowable
limitsof vibration.Usingpreviousexperience workinginlimestonequarries,WCA assumes thatthe
valueof α for thislimestone quarryata 95% confidence levelis180.00 (forprogrammable
detonation) and βhas a value of -1.1.
With this information calculated it’s possibleto determine the scaled distance.
6.0 ( 𝑃𝑃𝑉) = 180.00( 𝛼) × ( 𝑠𝑑)−1.1( 𝛽)
Therefore scaled distance=22.02 m
From this MIC can be calculated:
𝑀𝐼𝐶 = (
250
22.02
)
2
This gives an MIC of: 128.9 Kg
Blast Parameters
The following section outlines the key parameters for every blast to be undertaken at the quarry.
A breakdown for individual benches can be seen in Chapter 4.
3.1 Number of Blasts per Month
As there isa limitationonequipmentavailabilityit’sthe recommendationof WCA thatthe quarry
operatesone blastpercalendarmonth.Thisshouldmaximise the utilisationof the equipmentand
ensure minimal overbreakandback breakthroughlargerscale blasting.
5 | P a g e
3.2 Hole Diameter
Hole diameterischosentosuitthe blastratio forthe rock type andto supplysufficientyield.Inthe
UK it iscommon to findquarriesblastingwitha110mm drill hole.WCA recommendsa110m drill
hole withnumerical calculationinthissectionprovidingevidence forthe choice.
3.3 Burden
Burdeniscalculatedthroughthe followingequation:
𝐵 = (30 𝑡𝑜 45)𝐷
Where:
B= Burdeninmeters
D= Hole Diameterinmeters
30 to 45 is a value representsthe type of rock.Where 30 is hardrock and 45 is softrock.
For lime stone the value istypicallychosenas37.
Withthisinformationthe burdeniscalculatesas:
37 × 0.110 = 4.07 𝑚
3.4 Spacing
Spacingiscalculatedthroughthe followingequation:
𝑆 = 𝐵 × (1 𝑜𝑟 1.25)
Where:
S = Spacinginmeters
1 or 1.25 is the multiplierchosenbaseduponthe geologyof the rock.If the jointingpreferable then
the spacingcan calculatedwitha 1.25 multiplierbutinmostcasesthe multiplieris1 resultingina
square pattern.For thisdesignandgeologyamultiplierof 1is sufficient.
Therefore spacingisalso: 4.07 𝑚
3.5 Sub Drill
Subdrill iscalculatedas: 𝑈 = 0.3𝐵
Thiswouldgive asub drill of: 0.3 × 4.07 = 1.221 𝑚
Thisisn’ta practical value forsubdrill forthe drill operator.Toensure a cleanbench floorand
removal of the toe it isrecommendedthatthe subdrill value be roundedto1.0 meters.
3.6 Stemming
Stemmingatthe top of the hole isusedtoavoidflyrock by ensuringthe gaspressure of the blast
doesnotventout the top of the hole.Stemmingwillbe made of 6-10mm gradedaggregate.The
stemmingvalue isequal tothe calculatedburdenforthe hole diameterwhichis4.07mpractically
thisisharder to achieve therefore valuesbetween4.0and 4.2 metersare allowed.
6 | P a g e
3.7 Hole Volume
The volume allocatedtoone hole isequal tothe burdenmultipliedbythe spacingandthe heightof
the hole.The heightof the hole includessubdrill,thereforeeachhole willbe 15+1 whichis16
meters.Forthisdesignthatwouldresultin:
4.07 × 4.07 × 16 = 265.04 𝑚3
3.8 Column Charge
The columncharge isthe heightof the explosiveinthe hole.Thisisequal tothe hole heightminus
the stemmingheight.Forthisdesignitisequal to16m – 4.07 m whichis11.93 m.
3.9 Blast Ratio
There are typical blastingratiosforhardrock, softrock and mediumstrengthrockbasedonANFO.
These are:
Hard rock – 4t/Kg
Mediumrock – 6t/Kg
Softrock – 10t/Kg
Explosive Parameters
The followingsectionoutlinesthe explosivesanddetonationsystemusedforall blasts.
2.1 Explosive properties
The chosenexplosive isOrica’sCentraTM
Gold70 bulkemulsion.The technical dataforthisexplosive
isoutlinedin Table2.
Product CentraTM
Gold 70
Density(Kg/m3
) 1200
MinimumBlasthole Diameter(mm) 45
Hole Type Wet & Dry
Delivery System Pumped
Typical VOD(m/s) 3600
Relative WeightStrength(%) 70
Relative BulkStrength 102
Gassingtime 20 minutesbetweenloadingandstemming
Table 2: Explosive technical data [1]
2.2 Primer
The chosenprimerisBrexco’sT-500 Booster.
Colour Red– outersleeve
VOD 6800 m/s
Mass 500g (+/- 20g)
Density 1500 kg/m3
Sensitivity –impact/friction 14.7 J / >353 N
Table 3: Primer technical data [2]
2.3 Detonation system
WCA recommendsandwill calculatethe blastingschedule baseduponaprogrammable system
providedbyOrica.The systemisknownas IKON.Ithas beenusedbyNordkalkinFinlandand
7 | P a g e
Glendenninginthe UK.The systemhasa highaccuracy withdelaysprogrammedaslow as1ms. The
optimumdelaytime isconsidered8ms.
Figure 2: Simple layout of programmable detonator [3]
Calculation Results
Takingthe informationabove WCA hascreateda table foroptimumblastdesignsforthislimestone
quarriesbenchblasts.
Burden (m) 4.07 4.10 4.20 4.30
Spacing(m) 4.07 4.10 4.20 4.30
Total columncharge for
16m hole length(incsub
drill) (m)
11.93 11.90 11.80 11.70
Volume (m3
) 265.04 268.96 282.24 295.84
Hole tonnage (t) 662.60 672.40 705.60 739.60
Requiredexplosive(based
on 6t/Kg ratio) (kg)
110.43 112.07 117.60 123.27
Explosive BulkStrength
(%)
102 102 102 102
Explosive Density(t/m3
) 1.2 1.2 1.2 1.2
Loadingrate (Kg/m) 9.83 9.83 9.83 9.83
Loadedhole (Kg) 117.28 116.98 116.00 115.02
Table 4: Blast design parameter calculation results
From the table it’sthe recommendationof WCA thatthe parametershighlightedinblue be
implementedinthe general blastdesign.The holesare slightlyoverchargedby4.91 Kg butthisis
manageable withthe slightexpansionof Burdenandspacing.Eachhole theoreticallywill yield672
tonnesof rock. For 20000 tonnespermonthtarget thiswill meanone blastwith30 holes. The total
yieldwill be 20172 tonnespermonth.The extratonnage can be stockpiledorusedforconstruction
of ramps.Each blastwill consistof three rowswith10 holesperrow ina square pattern.(See figure
3)
8 | P a g e
Burden 4.1m
Burden
4.1m
4.1m stemming
Column Charge 11.90 m
Sub Drill 1.0 m
Spacing 4.1 m
Drill hole diameter
110mm
Toe
Bench face
Crest
Figure 3: Design drawing not to scale
FREE FACE
Figure 4: Blast Design for starter bench, Delay timings and blast
direction
9 | P a g e
Timing Design
Bench1 will have the same designas benches2,3,4,5and 6 despite beingshallower.The design
calculationsshowthatthe same burdensandspacing’sandall the holeswill containlessexplosive
whichwill notaffectthe MIC calculation. The blastingpatternforthe starterbench will beginfrom
the middle andpropagate outward. The designisderivedfromDynoNobel’sshotfiringguide [5]
.
The designsincorporatesacentral startingblastwiththe 5th
hole fromthe leftinitiatingafter0ms
delay.Fromthere the blastfiresfromthe leftfirstwitha8ms delay,tothe rightthere isa delayof
16ms forthe 3rd
hole. There are a total of 15 delaysforthe 30 hole blast.There are 10 holesperrow
and eachrow will initiate16msafterthe firstblastfrom the previousrow. See figure 4.
For the all otherblaststhat aren’tstarter benchblaststhe designwill be showninfigure 5.
Figure 5: Blast pattern for Nonstarter blasts
Thispatternis double rowtominimise riskof backbreak.The starterhole firesfromthe middle
similartothe starter benchdesign.Howeverthisdesignhasevenholeseitherside of the middle.
The resultingthrowwill be similartothe startingbenchesbutovera greaterdistance inwidth.The
blastis basedoff informationpasseddownviaOrica.Timingsbetweenholesare setat 8ms as thisis
shownto be optimumtime delay.16msdelaysbetweenrows.
10 | P a g e
Production
Thissectionwill outline the productionschedule forthe quarrywithrecommendedinpitvehicles
and crusherchoice.
6.1 Fragmentation (KUZ RAM)
It ispossible tomodel the fragmentationusingthe crushedzone model (definedfromKuz-ram).This
wouldgenerate apredicteddistributioncurve forthe blast. WCA isinterestedinlookingatthe 80%
average size fromthe blastcalculatedthroughspreadsheetsoftware.Assumptionsonblockspacing
and otherfactorshave been made [9]
.Figure 6is a table showingthe percentage oversize and
undersize baseduponamaximumoversize aloudbythe jaw crusherselected.
Figure 6: Kuz Ram predicted fragmentation
Figure 7: Fragmentation distribution predicted by Kuz Ram for blast parameters.
6.2 Excavator
The chosenexcavatoristhe KomatsuPC360LC-10 HydraulicExcavatorwitha 2.66 cubic meter
bucketattached. The operatingweightis35.6 tonnes. [6]
6.3 In-Pit Crusher
The chosencrusherwill be a 200 t/hMC 100 R EVOKleemanprimaryjaw crusher.Thiscrushersis
mobile trackmounted. [7]
Maximumsizefeedis0.9mX0.5m.
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0 0.2 0.4 0.6 0.8 1 1.2
PercentPassing
Size (m)
11 | P a g e
6.4 Front end Loader
The chosenfrontend loaderwill be aCAT926 M witha 5 cubicmeterbucket.
6.5 ADT
Cat’s745C isthe ADT of choice witha rated payloadof 41.0 tons.
6.5 Productivity Cycle
Assumptionsmade:
- 2.5% moisture contentinrock
- 25% swell factor
- 4 daysa weekoperating,1day maintenance andhammeringoversize
- 9 to 5 workingdaywith1 hour lunchbreak.
- 60 secondcycle time
For a 7 hour shift,the crushercan process1400 tonnespershift.Assuminga90% utilisationof the
crusherthiswouldresultin1260 tonnescrushedpershift. 4 daysa weekoperatingequatedto5040
producedperweek.Permonththisproduces20160 tonnesof crushedmaterial.
The buckethas a capacity of 2.66 cubicmeters.The followingequationworksoutthe tonnesper
cycle of the excavatortocrusher.Where 2.65 is the specificgravityof the rock,1.25 representsthe
swell factorand0.9 representsthe 90%fill factor.
(
2.65
1.25
× 2.66) × 0.9 = 3.96 𝑡𝑜𝑛𝑛𝑒𝑠 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒
A shiftlengthis420 minutesor25200 seconds.Withone cycle taking60 secondsthiswill resultina
total of 420 cyclesper shift.Thisworksoutas 60 cyclesperhour.
Maximumthroughputtothe crusher worksoutas: 3.96 × 60 = 237.6 𝑡𝑜𝑛𝑛𝑒𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟
Thisis slightlylargerthanthe 200 tonneshourthat the crushercan achieve butassuming some
downtime inthe day and extendedbreaksthiswill matchup.
The CAT 926M withits 5 cubic meterbucketwill take 4passesto loadthe 41 tonne CAT 6745C. it will
take 7 minutesforthe ADT to loadand travel 500m to the secondaryplantwitha20kmh average
speedanda 60 secondcycle per passfor loading.Thismeansthat the loadercan load200 tonnesin
35 minutesthiswill leave 25minutesperhourwhere the loaderisn’toperating.Howeverfactoring
inthe time ittakesto getthe pile large enoughtobeginloading(takenas3 hoursto gaina pile of
600 tonnes).The loaderdriver’sshiftcanbe cutto 4 hours a day.A 4 hourshiftwill resultin1400
tonnesanhour beingtransportedtothe processingplant.Withthe lasthourjustremovingthe final
endsof the crushedpile of 840 tonnes.
12 | P a g e
Conclusion
- Use of square blast patternwith4.1 meterspacingandburden.
- Programmable detonatorswithminimum8msdelay
- 30 holesperblast,triple rowof tenfor starterbenchblastsand double row of 15 for
standardblasts
- CentraGold 70 bulkemulsionexplosiveused
- Ikondetonatorsystemforprecisiontiming
- 20172 tonnesblastedpermonthinone blast
- 88% of material withincrushablesize
- 12% oversize tobe reducedbyhammerattachmentduringmaintenance day
- 4 dayoperatingweek
- 8 hourshiftwith1 hour breakfor excavatorandcrusher
- 4 hourloaderand adt shift
- Crusher200t/h
- Roughly1300 tonnescrushedperday
- Equatesto justover20000 tonnespermonth
References
[1]: "Centra™ Gold70". Oricaminingservices.com.N.p.,2016. Web.21 Apr.2016.
[2]: "T 500 Data Sheet". Brexco.N.p.,2016. Web.21 Apr. 2016.
[3]: Wetherelt,Andrew."Surface ExcavationDesignPart2".2016. Presentation.
[4]: Wetherelt,Andrew."Surface ExcavationDesignPart5".2016. Presentation.
[5]: "ShotPatternGuide". Dyno Nobel.N.p.,2001. Web.20 Apr.2016.
[6]: "Excavators| Komatsu| PC360LC-10 Tracked HydraulicExcavator". Marubeni-komatsu.co.uk.
N.p.,2016. Web.20 Apr.2016.
[7]: "MC 100 R EVO - KleemannGmbh". Kleemann.info.N.p.,2016. Web.21 Apr. 2016.
[8]: "Cat | 926M Wheel Loader|Caterpillar". Cat.com.N.p.,2016. Web.21 Apr.2016.
[9]: "BlockVolume EstimationFromThe DiscontinuitySpacingMeasurementsOf Mesozoic
Limestone Quarries,KaraburunPeninsula,Turkey:Table 1". Hindawi.com.N.p.,2016.Web. 24 Apr.
2016.

More Related Content

What's hot

Modeling of dynamic break in underground ring blasting
Modeling of dynamic break in underground ring blastingModeling of dynamic break in underground ring blasting
Modeling of dynamic break in underground ring blastingStroma Service Consulting
 
Schmidt's Hammer Rebound Value Analysis for finding Uniaxial Compressive Stre...
Schmidt's Hammer Rebound Value Analysis for finding Uniaxial Compressive Stre...Schmidt's Hammer Rebound Value Analysis for finding Uniaxial Compressive Stre...
Schmidt's Hammer Rebound Value Analysis for finding Uniaxial Compressive Stre...Jasmeet Singh Saluja
 
Assessment of powder factor in surface bench blasting
Assessment of powder factor in surface bench blastingAssessment of powder factor in surface bench blasting
Assessment of powder factor in surface bench blastingeSAT Publishing House
 
Shear strength of soils
Shear strength of soils Shear strength of soils
Shear strength of soils Bashirul Islam
 
Rock mass properties
Rock mass propertiesRock mass properties
Rock mass propertiesakash yadav
 
Strength sivakugan(Complete Soil Mech. Undestanding Pakage: ABHAY)
Strength sivakugan(Complete Soil Mech. Undestanding Pakage: ABHAY)Strength sivakugan(Complete Soil Mech. Undestanding Pakage: ABHAY)
Strength sivakugan(Complete Soil Mech. Undestanding Pakage: ABHAY)Abhay Kumar
 
Chapter 13 Of Rock Engineering
Chapter 13 Of  Rock  EngineeringChapter 13 Of  Rock  Engineering
Chapter 13 Of Rock EngineeringNgo Hung Long
 
Shear Strength of Soils ( Soil Mechanics )
Shear Strength of Soils ( Soil Mechanics )Shear Strength of Soils ( Soil Mechanics )
Shear Strength of Soils ( Soil Mechanics )pankajdrolia
 
Chapter 11 Of Rock Engineering
Chapter 11 Of  Rock  EngineeringChapter 11 Of  Rock  Engineering
Chapter 11 Of Rock EngineeringNgo Hung Long
 
Chapter 4 Of Rock Engineering
Chapter 4 Of  Rock  EngineeringChapter 4 Of  Rock  Engineering
Chapter 4 Of Rock EngineeringNgo Hung Long
 
Lefm approach
Lefm approachLefm approach
Lefm approachRudresh M
 
Shear strength of rock discontinuities
Shear strength of rock discontinuitiesShear strength of rock discontinuities
Shear strength of rock discontinuitiesStan Vitton
 
Pile cap two pile laod 50 t desigh and drawing
Pile cap  two pile laod 50 t  desigh and drawingPile cap  two pile laod 50 t  desigh and drawing
Pile cap two pile laod 50 t desigh and drawingRAJESH JAIN
 
Section 2-gte-i
Section  2-gte-iSection  2-gte-i
Section 2-gte-iDYPCET
 
Critical State Model (Advance Soil Mechanics)
Critical State Model (Advance Soil Mechanics)Critical State Model (Advance Soil Mechanics)
Critical State Model (Advance Soil Mechanics)pankajdrolia
 
shear strength of soil
shear strength of soilshear strength of soil
shear strength of soilAamir Ali
 

What's hot (19)

Mechanics of blasting
Mechanics of blasting Mechanics of blasting
Mechanics of blasting
 
05 chapter 3_rock_excavation_methods
05 chapter 3_rock_excavation_methods05 chapter 3_rock_excavation_methods
05 chapter 3_rock_excavation_methods
 
Modeling of dynamic break in underground ring blasting
Modeling of dynamic break in underground ring blastingModeling of dynamic break in underground ring blasting
Modeling of dynamic break in underground ring blasting
 
Schmidt's Hammer Rebound Value Analysis for finding Uniaxial Compressive Stre...
Schmidt's Hammer Rebound Value Analysis for finding Uniaxial Compressive Stre...Schmidt's Hammer Rebound Value Analysis for finding Uniaxial Compressive Stre...
Schmidt's Hammer Rebound Value Analysis for finding Uniaxial Compressive Stre...
 
Assessment of powder factor in surface bench blasting
Assessment of powder factor in surface bench blastingAssessment of powder factor in surface bench blasting
Assessment of powder factor in surface bench blasting
 
Shear strength of soils
Shear strength of soils Shear strength of soils
Shear strength of soils
 
Rock mass properties
Rock mass propertiesRock mass properties
Rock mass properties
 
Strength sivakugan(Complete Soil Mech. Undestanding Pakage: ABHAY)
Strength sivakugan(Complete Soil Mech. Undestanding Pakage: ABHAY)Strength sivakugan(Complete Soil Mech. Undestanding Pakage: ABHAY)
Strength sivakugan(Complete Soil Mech. Undestanding Pakage: ABHAY)
 
Chapter 13 Of Rock Engineering
Chapter 13 Of  Rock  EngineeringChapter 13 Of  Rock  Engineering
Chapter 13 Of Rock Engineering
 
Shear Strength of Soils ( Soil Mechanics )
Shear Strength of Soils ( Soil Mechanics )Shear Strength of Soils ( Soil Mechanics )
Shear Strength of Soils ( Soil Mechanics )
 
Chapter 11 Of Rock Engineering
Chapter 11 Of  Rock  EngineeringChapter 11 Of  Rock  Engineering
Chapter 11 Of Rock Engineering
 
Chapter 4 Of Rock Engineering
Chapter 4 Of  Rock  EngineeringChapter 4 Of  Rock  Engineering
Chapter 4 Of Rock Engineering
 
In situ stress
In situ stressIn situ stress
In situ stress
 
Lefm approach
Lefm approachLefm approach
Lefm approach
 
Shear strength of rock discontinuities
Shear strength of rock discontinuitiesShear strength of rock discontinuities
Shear strength of rock discontinuities
 
Pile cap two pile laod 50 t desigh and drawing
Pile cap  two pile laod 50 t  desigh and drawingPile cap  two pile laod 50 t  desigh and drawing
Pile cap two pile laod 50 t desigh and drawing
 
Section 2-gte-i
Section  2-gte-iSection  2-gte-i
Section 2-gte-i
 
Critical State Model (Advance Soil Mechanics)
Critical State Model (Advance Soil Mechanics)Critical State Model (Advance Soil Mechanics)
Critical State Model (Advance Soil Mechanics)
 
shear strength of soil
shear strength of soilshear strength of soil
shear strength of soil
 

Viewers also liked

Open Pit Design Analysis
Open Pit Design AnalysisOpen Pit Design Analysis
Open Pit Design AnalysisJames Dunford
 
Underground Workshop Cavern Design
Underground Workshop Cavern DesignUnderground Workshop Cavern Design
Underground Workshop Cavern DesignJames Dunford
 
Unconstrained Benefits Assignment
Unconstrained Benefits AssignmentUnconstrained Benefits Assignment
Unconstrained Benefits AssignmentJames Dunford
 
Synchronous machines and Induction motors
Synchronous machines and Induction motorsSynchronous machines and Induction motors
Synchronous machines and Induction motorsJames Dunford
 
Analisis y Diseño de Puestos
Analisis y Diseño de PuestosAnalisis y Diseño de Puestos
Analisis y Diseño de Puestosloree7
 

Viewers also liked (8)

Open Pit Design Analysis
Open Pit Design AnalysisOpen Pit Design Analysis
Open Pit Design Analysis
 
Underground Workshop Cavern Design
Underground Workshop Cavern DesignUnderground Workshop Cavern Design
Underground Workshop Cavern Design
 
Unconstrained Benefits Assignment
Unconstrained Benefits AssignmentUnconstrained Benefits Assignment
Unconstrained Benefits Assignment
 
Synchronous machines and Induction motors
Synchronous machines and Induction motorsSynchronous machines and Induction motors
Synchronous machines and Induction motors
 
La Línea
La  LíneaLa  Línea
La Línea
 
Analisis y Diseño de Puestos
Analisis y Diseño de PuestosAnalisis y Diseño de Puestos
Analisis y Diseño de Puestos
 
Surface mining planning and design of open pit mining
Surface mining planning and design of open pit miningSurface mining planning and design of open pit mining
Surface mining planning and design of open pit mining
 
Las texturas v2011
Las texturas v2011Las texturas v2011
Las texturas v2011
 

Similar to Report

FWD report by priyanshu kumar ,960868480
FWD report by priyanshu kumar ,960868480FWD report by priyanshu kumar ,960868480
FWD report by priyanshu kumar ,960868480PRIYANSHU KUMAR
 
Research on mean partical size after drilling & blasting by Abhijit pal
Research on mean partical size after drilling & blasting by Abhijit  palResearch on mean partical size after drilling & blasting by Abhijit  pal
Research on mean partical size after drilling & blasting by Abhijit palAbhijit Pal
 
Pillar design - a case study
Pillar design - a case studyPillar design - a case study
Pillar design - a case studyTIKESHWAR MAHTO
 
Seismic Capacity Assessment of Sanyi Old Railway Tunnel
Seismic Capacity Assessment of Sanyi Old Railway TunnelSeismic Capacity Assessment of Sanyi Old Railway Tunnel
Seismic Capacity Assessment of Sanyi Old Railway TunnelCes Nit Silchar
 
2010 Blast Hole Slotting Conference Paper_Aug2010
2010 Blast Hole Slotting Conference Paper_Aug20102010 Blast Hole Slotting Conference Paper_Aug2010
2010 Blast Hole Slotting Conference Paper_Aug2010Matt Stockwell
 
Support system (Underground Coal Mining) by Prof. S Jayantu.pdf
Support system (Underground Coal Mining) by Prof. S Jayantu.pdfSupport system (Underground Coal Mining) by Prof. S Jayantu.pdf
Support system (Underground Coal Mining) by Prof. S Jayantu.pdfpraanyakishore
 
Tests of aggregates
Tests of aggregatesTests of aggregates
Tests of aggregatesKaran Patel
 
AN INVESTIGATION ON MINE OVERBURDEN DUMP SLOPE STABILITY
AN INVESTIGATION ON MINE OVERBURDEN DUMP SLOPE STABILITYAN INVESTIGATION ON MINE OVERBURDEN DUMP SLOPE STABILITY
AN INVESTIGATION ON MINE OVERBURDEN DUMP SLOPE STABILITYIRJET Journal
 
Design of Auger highwall mining
Design of Auger highwall miningDesign of Auger highwall mining
Design of Auger highwall miningBoeut Sophea
 
Design mix method of bitumenous materials by Marshall stability method
Design mix method of bitumenous materials by Marshall stability methodDesign mix method of bitumenous materials by Marshall stability method
Design mix method of bitumenous materials by Marshall stability methodAmardeep Singh
 
An analysis of material behavior during processing and under In
An analysis of material behavior during processing and under InAn analysis of material behavior during processing and under In
An analysis of material behavior during processing and under InJamie Sawdon
 
Evaluación de riesgo sísmico del perú
Evaluación de riesgo sísmico del perúEvaluación de riesgo sísmico del perú
Evaluación de riesgo sísmico del perúMelissaElizabeth5
 
Evaluation of slope stability for waste rock dumps in a mine
Evaluation of slope stability for waste rock dumps in a mineEvaluation of slope stability for waste rock dumps in a mine
Evaluation of slope stability for waste rock dumps in a mineSafdar Ali
 

Similar to Report (20)

FWD report by priyanshu kumar ,960868480
FWD report by priyanshu kumar ,960868480FWD report by priyanshu kumar ,960868480
FWD report by priyanshu kumar ,960868480
 
Research on mean partical size after drilling & blasting by Abhijit pal
Research on mean partical size after drilling & blasting by Abhijit  palResearch on mean partical size after drilling & blasting by Abhijit  pal
Research on mean partical size after drilling & blasting by Abhijit pal
 
Pillar design
Pillar designPillar design
Pillar design
 
Pillar design
Pillar designPillar design
Pillar design
 
Pillar design - a case study
Pillar design - a case studyPillar design - a case study
Pillar design - a case study
 
ICF 2017
ICF 2017ICF 2017
ICF 2017
 
Pillar design
Pillar designPillar design
Pillar design
 
Pillar design
Pillar designPillar design
Pillar design
 
Seismic Capacity Assessment of Sanyi Old Railway Tunnel
Seismic Capacity Assessment of Sanyi Old Railway TunnelSeismic Capacity Assessment of Sanyi Old Railway Tunnel
Seismic Capacity Assessment of Sanyi Old Railway Tunnel
 
2010 Blast Hole Slotting Conference Paper_Aug2010
2010 Blast Hole Slotting Conference Paper_Aug20102010 Blast Hole Slotting Conference Paper_Aug2010
2010 Blast Hole Slotting Conference Paper_Aug2010
 
ISEE_CJP_2016_Version FINAL_Return
ISEE_CJP_2016_Version FINAL_ReturnISEE_CJP_2016_Version FINAL_Return
ISEE_CJP_2016_Version FINAL_Return
 
Support system (Underground Coal Mining) by Prof. S Jayantu.pdf
Support system (Underground Coal Mining) by Prof. S Jayantu.pdfSupport system (Underground Coal Mining) by Prof. S Jayantu.pdf
Support system (Underground Coal Mining) by Prof. S Jayantu.pdf
 
Tests of aggregates
Tests of aggregatesTests of aggregates
Tests of aggregates
 
AN INVESTIGATION ON MINE OVERBURDEN DUMP SLOPE STABILITY
AN INVESTIGATION ON MINE OVERBURDEN DUMP SLOPE STABILITYAN INVESTIGATION ON MINE OVERBURDEN DUMP SLOPE STABILITY
AN INVESTIGATION ON MINE OVERBURDEN DUMP SLOPE STABILITY
 
Design of Auger highwall mining
Design of Auger highwall miningDesign of Auger highwall mining
Design of Auger highwall mining
 
Design mix method of bitumenous materials by Marshall stability method
Design mix method of bitumenous materials by Marshall stability methodDesign mix method of bitumenous materials by Marshall stability method
Design mix method of bitumenous materials by Marshall stability method
 
An analysis of material behavior during processing and under In
An analysis of material behavior during processing and under InAn analysis of material behavior during processing and under In
An analysis of material behavior during processing and under In
 
Evaluación de riesgo sísmico del perú
Evaluación de riesgo sísmico del perúEvaluación de riesgo sísmico del perú
Evaluación de riesgo sísmico del perú
 
BAR MIB
BAR MIBBAR MIB
BAR MIB
 
Evaluation of slope stability for waste rock dumps in a mine
Evaluation of slope stability for waste rock dumps in a mineEvaluation of slope stability for waste rock dumps in a mine
Evaluation of slope stability for waste rock dumps in a mine
 

Report

  • 1. West Country Aggregates: Quarry Design 2016 BLASTING AND PRODUCTIONSCHEDULE JAMES DUNFORD CAMBORNE SCHOL OF MINES | Penryn campus, Cornwall
  • 2. 1 | P a g e Contents Introduction.................................................................................................................................2 Quarry Parameters....................................................................................................................... 3 1.1 Bench Height................................................................................................................. 3 1.2 Bench Angle .................................................................................................................. 3 Vibration Prediction...................................................................................................................... 4 Blast Parameters .......................................................................................................................... 4 3.1 Number of Blasts per Month................................................................................................ 4 3.2 Hole Diameter..................................................................................................................... 5 3.3 Burden................................................................................................................................ 5 3.4 Spacing............................................................................................................................... 5 3.5 Sub Drill.............................................................................................................................. 5 3.6 Stemming........................................................................................................................... 5 3.7 Hole Volume....................................................................................................................... 6 3.8 Column Charge.................................................................................................................... 6 3.9 Blast Ratio........................................................................................................................... 6 Explosive Parameters.................................................................................................................... 6 2.1 Explosive properties............................................................................................................ 6 2.2 Primer................................................................................................................................ 6 2.3 Detonation system.............................................................................................................. 6 Calculation Results........................................................................................................................ 7 Timing Design............................................................................................................................... 9 Production................................................................................................................................. 10 6.1 Fragmentation (KUZ RAM) ................................................................................................. 10 6.2 Excavator.......................................................................................................................... 10 6.3 In-Pit Crusher.................................................................................................................... 10 6.4 Front end Loader............................................................................................................... 11 6.5 ADT .................................................................................................................................. 11 6.5 Productivity Cycle.............................................................................................................. 11 Conclusion................................................................................................................................. 12 References................................................................................................................................. 12
  • 3. 2 | P a g e Introduction The aggregatessectorin the UK is showingstronggrowthcoupledwithrise ininfrastructure projects.Manycompanies WestCountryAggregates(WCA) have beenaskedtoforma comprehensivedesignforthe blasting and productionsequence fora proposedlimestone quarryonbehalf of the Camborne school of Mines(CSM). Provisional projectionsshow areserve of material toa depthof 900m withplanning permissionlimitingthe depthof the site to90m below surface elevation.2mof overburdenhas alreadybeenstrippedawaytobeginproduction.Regulationspermitthatbenchheightbe nogreater than 15m andfor safetyoverall slopeangle mustnotexceed47degrees. Benchwidthsare set10m to accommodate the widthof one ADT, withall levelshaving anaccessramp to the next.Any changesto accessramp designcan be plannedandconstructedduringproduction. The geologyof the depositisa limestonewiththree jointsetsconfirmedthroughlogging(See Table 1). A horizontal zone of weaknessof 1.5m thicknesswasinterceptedthroughinvestigationworkata depthof 36m. Investigationworkanticipatesthatthe workingswill be belowthe watertable. Table 1: Geotechnical data for joint sets from site investigation To the North-Westof the site there isa domesticpropertyapproximately250mfrom the proposed workings.The excavationwill be predominatelyoval shaped. The quarry has beenaskedtoproduce 20,000 tonnesof limestoneaggregate permonthforthe aggregatesindustry.Thisresultsinanannual productionof 240,000 tonnes.The quarryissmall to mediumscale. Rockpile muckingwillbe achieved throughone 35 tonne track mountedswing shovel feedingintothe primaryinpitmobilecrushingunit.The crushedpilewillbe muckedbyone frontendloaderand fedintoa 45 tonne ADT to be transferredtothe secondarycrushingplant. 500m is the approximatedaverage distance the ADTwill coverinone cycle. The rock masspropertiesforthe site are as follows: UCS = 170 MPa SpecificGravity= 2.65 t/m3 Jointset Dip° Direction Persistence Spacing(m) 1 32° NNE High 0.9 2 89° SSE Medium 2.5 3 18° WSW Low 6.0
  • 4. 3 | P a g e Quarry Parameters 1.1 Bench Height Regulationsimpose alimitof quarryingtoa depthof 90m. A 2m overburdenstriphasalreadybeen completed.Thisleaves88mof mineral depthtobe quarried.Witha maximumallowable bench heightsetat 15m itis proposedthatthe quarry be splitinto6 bencheswiththe firstbeing13mand the followingbenches15minheight. BenchNo. 1 2 3 4 5 6 Benchstart height fromsurface (m) 0 -13 -28 -43 -58 -63 Benchheight(m) 13 15 15 15 15 15 Benchfinishheight fromsurface (m) -13 -28 -43 -58 -63 -88 1.2 Bench Angle Most UK quarriesoperate abenchangle between5-15 degreesdependingonthe rocktype and stability (assumedvaluethroughworkexperience).Vertical benchespresenttoomanyissueswith drillinganddonotsupportslope stability. WCA recommenda10 degree benchangle asthe most efficientfordrillingblastholesandaidingslope stability. For6 benchesthisgivesanoverall slope angle of 37 degrees. Figure 1: 2D side view for quarry bench parameters
  • 5. 4 | P a g e Vibration Prediction Before the timingsforthe holescanbe established,firstitisimportanttopredictthe vibrationof the blast.A domesticpropertyissituated 250 metersfrom the quarry boundary. BS 6472 part 2 dictates that no blast should exceed a peak particle velocity (PPV) of 6mm/s. PPV can be affected by the geology, the Maximum instantaneous charge (MIC) and the amount of explosive detonating at the same time. The main cause of increased PPV is the MIC. MIC is the square of separation distance betweenblastandreceiveri.e.the propertydividedbythe scale distancecorrespondingthevibration level required. The equation is shown below: 𝑀𝐼𝐶 = ( 𝑠 𝑠𝑑 ) 2 To work outthe scaleddistance inmKg-0.5 requiresthe followingequation: 𝑃𝑃𝑉 = 𝛼( 𝑠𝑑) 𝛽 α andβ representdimensionlesssite factors.Theypermitforthe use of local geologyinfluencingthe attenuationof blastvibration.Theyare the resultof specificsite investigationandare resultantfrom the leastsquaresregressionmethod. [4] No data hasbeenprovidedforthe dimensionlesssite factors.WCA assumesthatfurthervibrational analysiswill be conductedatthe site inorderto change the blastdesigntofitwithinthe allowable limitsof vibration.Usingpreviousexperience workinginlimestonequarries,WCA assumes thatthe valueof α for thislimestone quarryata 95% confidence levelis180.00 (forprogrammable detonation) and βhas a value of -1.1. With this information calculated it’s possibleto determine the scaled distance. 6.0 ( 𝑃𝑃𝑉) = 180.00( 𝛼) × ( 𝑠𝑑)−1.1( 𝛽) Therefore scaled distance=22.02 m From this MIC can be calculated: 𝑀𝐼𝐶 = ( 250 22.02 ) 2 This gives an MIC of: 128.9 Kg Blast Parameters The following section outlines the key parameters for every blast to be undertaken at the quarry. A breakdown for individual benches can be seen in Chapter 4. 3.1 Number of Blasts per Month As there isa limitationonequipmentavailabilityit’sthe recommendationof WCA thatthe quarry operatesone blastpercalendarmonth.Thisshouldmaximise the utilisationof the equipmentand ensure minimal overbreakandback breakthroughlargerscale blasting.
  • 6. 5 | P a g e 3.2 Hole Diameter Hole diameterischosentosuitthe blastratio forthe rock type andto supplysufficientyield.Inthe UK it iscommon to findquarriesblastingwitha110mm drill hole.WCA recommendsa110m drill hole withnumerical calculationinthissectionprovidingevidence forthe choice. 3.3 Burden Burdeniscalculatedthroughthe followingequation: 𝐵 = (30 𝑡𝑜 45)𝐷 Where: B= Burdeninmeters D= Hole Diameterinmeters 30 to 45 is a value representsthe type of rock.Where 30 is hardrock and 45 is softrock. For lime stone the value istypicallychosenas37. Withthisinformationthe burdeniscalculatesas: 37 × 0.110 = 4.07 𝑚 3.4 Spacing Spacingiscalculatedthroughthe followingequation: 𝑆 = 𝐵 × (1 𝑜𝑟 1.25) Where: S = Spacinginmeters 1 or 1.25 is the multiplierchosenbaseduponthe geologyof the rock.If the jointingpreferable then the spacingcan calculatedwitha 1.25 multiplierbutinmostcasesthe multiplieris1 resultingina square pattern.For thisdesignandgeologyamultiplierof 1is sufficient. Therefore spacingisalso: 4.07 𝑚 3.5 Sub Drill Subdrill iscalculatedas: 𝑈 = 0.3𝐵 Thiswouldgive asub drill of: 0.3 × 4.07 = 1.221 𝑚 Thisisn’ta practical value forsubdrill forthe drill operator.Toensure a cleanbench floorand removal of the toe it isrecommendedthatthe subdrill value be roundedto1.0 meters. 3.6 Stemming Stemmingatthe top of the hole isusedtoavoidflyrock by ensuringthe gaspressure of the blast doesnotventout the top of the hole.Stemmingwillbe made of 6-10mm gradedaggregate.The stemmingvalue isequal tothe calculatedburdenforthe hole diameterwhichis4.07mpractically thisisharder to achieve therefore valuesbetween4.0and 4.2 metersare allowed.
  • 7. 6 | P a g e 3.7 Hole Volume The volume allocatedtoone hole isequal tothe burdenmultipliedbythe spacingandthe heightof the hole.The heightof the hole includessubdrill,thereforeeachhole willbe 15+1 whichis16 meters.Forthisdesignthatwouldresultin: 4.07 × 4.07 × 16 = 265.04 𝑚3 3.8 Column Charge The columncharge isthe heightof the explosiveinthe hole.Thisisequal tothe hole heightminus the stemmingheight.Forthisdesignitisequal to16m – 4.07 m whichis11.93 m. 3.9 Blast Ratio There are typical blastingratiosforhardrock, softrock and mediumstrengthrockbasedonANFO. These are: Hard rock – 4t/Kg Mediumrock – 6t/Kg Softrock – 10t/Kg Explosive Parameters The followingsectionoutlinesthe explosivesanddetonationsystemusedforall blasts. 2.1 Explosive properties The chosenexplosive isOrica’sCentraTM Gold70 bulkemulsion.The technical dataforthisexplosive isoutlinedin Table2. Product CentraTM Gold 70 Density(Kg/m3 ) 1200 MinimumBlasthole Diameter(mm) 45 Hole Type Wet & Dry Delivery System Pumped Typical VOD(m/s) 3600 Relative WeightStrength(%) 70 Relative BulkStrength 102 Gassingtime 20 minutesbetweenloadingandstemming Table 2: Explosive technical data [1] 2.2 Primer The chosenprimerisBrexco’sT-500 Booster. Colour Red– outersleeve VOD 6800 m/s Mass 500g (+/- 20g) Density 1500 kg/m3 Sensitivity –impact/friction 14.7 J / >353 N Table 3: Primer technical data [2] 2.3 Detonation system WCA recommendsandwill calculatethe blastingschedule baseduponaprogrammable system providedbyOrica.The systemisknownas IKON.Ithas beenusedbyNordkalkinFinlandand
  • 8. 7 | P a g e Glendenninginthe UK.The systemhasa highaccuracy withdelaysprogrammedaslow as1ms. The optimumdelaytime isconsidered8ms. Figure 2: Simple layout of programmable detonator [3] Calculation Results Takingthe informationabove WCA hascreateda table foroptimumblastdesignsforthislimestone quarriesbenchblasts. Burden (m) 4.07 4.10 4.20 4.30 Spacing(m) 4.07 4.10 4.20 4.30 Total columncharge for 16m hole length(incsub drill) (m) 11.93 11.90 11.80 11.70 Volume (m3 ) 265.04 268.96 282.24 295.84 Hole tonnage (t) 662.60 672.40 705.60 739.60 Requiredexplosive(based on 6t/Kg ratio) (kg) 110.43 112.07 117.60 123.27 Explosive BulkStrength (%) 102 102 102 102 Explosive Density(t/m3 ) 1.2 1.2 1.2 1.2 Loadingrate (Kg/m) 9.83 9.83 9.83 9.83 Loadedhole (Kg) 117.28 116.98 116.00 115.02 Table 4: Blast design parameter calculation results From the table it’sthe recommendationof WCA thatthe parametershighlightedinblue be implementedinthe general blastdesign.The holesare slightlyoverchargedby4.91 Kg butthisis manageable withthe slightexpansionof Burdenandspacing.Eachhole theoreticallywill yield672 tonnesof rock. For 20000 tonnespermonthtarget thiswill meanone blastwith30 holes. The total yieldwill be 20172 tonnespermonth.The extratonnage can be stockpiledorusedforconstruction of ramps.Each blastwill consistof three rowswith10 holesperrow ina square pattern.(See figure 3)
  • 9. 8 | P a g e Burden 4.1m Burden 4.1m 4.1m stemming Column Charge 11.90 m Sub Drill 1.0 m Spacing 4.1 m Drill hole diameter 110mm Toe Bench face Crest Figure 3: Design drawing not to scale FREE FACE Figure 4: Blast Design for starter bench, Delay timings and blast direction
  • 10. 9 | P a g e Timing Design Bench1 will have the same designas benches2,3,4,5and 6 despite beingshallower.The design calculationsshowthatthe same burdensandspacing’sandall the holeswill containlessexplosive whichwill notaffectthe MIC calculation. The blastingpatternforthe starterbench will beginfrom the middle andpropagate outward. The designisderivedfromDynoNobel’sshotfiringguide [5] . The designsincorporatesacentral startingblastwiththe 5th hole fromthe leftinitiatingafter0ms delay.Fromthere the blastfiresfromthe leftfirstwitha8ms delay,tothe rightthere isa delayof 16ms forthe 3rd hole. There are a total of 15 delaysforthe 30 hole blast.There are 10 holesperrow and eachrow will initiate16msafterthe firstblastfrom the previousrow. See figure 4. For the all otherblaststhat aren’tstarter benchblaststhe designwill be showninfigure 5. Figure 5: Blast pattern for Nonstarter blasts Thispatternis double rowtominimise riskof backbreak.The starterhole firesfromthe middle similartothe starter benchdesign.Howeverthisdesignhasevenholeseitherside of the middle. The resultingthrowwill be similartothe startingbenchesbutovera greaterdistance inwidth.The blastis basedoff informationpasseddownviaOrica.Timingsbetweenholesare setat 8ms as thisis shownto be optimumtime delay.16msdelaysbetweenrows.
  • 11. 10 | P a g e Production Thissectionwill outline the productionschedule forthe quarrywithrecommendedinpitvehicles and crusherchoice. 6.1 Fragmentation (KUZ RAM) It ispossible tomodel the fragmentationusingthe crushedzone model (definedfromKuz-ram).This wouldgenerate apredicteddistributioncurve forthe blast. WCA isinterestedinlookingatthe 80% average size fromthe blastcalculatedthroughspreadsheetsoftware.Assumptionsonblockspacing and otherfactorshave been made [9] .Figure 6is a table showingthe percentage oversize and undersize baseduponamaximumoversize aloudbythe jaw crusherselected. Figure 6: Kuz Ram predicted fragmentation Figure 7: Fragmentation distribution predicted by Kuz Ram for blast parameters. 6.2 Excavator The chosenexcavatoristhe KomatsuPC360LC-10 HydraulicExcavatorwitha 2.66 cubic meter bucketattached. The operatingweightis35.6 tonnes. [6] 6.3 In-Pit Crusher The chosencrusherwill be a 200 t/hMC 100 R EVOKleemanprimaryjaw crusher.Thiscrushersis mobile trackmounted. [7] Maximumsizefeedis0.9mX0.5m. 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0 0.2 0.4 0.6 0.8 1 1.2 PercentPassing Size (m)
  • 12. 11 | P a g e 6.4 Front end Loader The chosenfrontend loaderwill be aCAT926 M witha 5 cubicmeterbucket. 6.5 ADT Cat’s745C isthe ADT of choice witha rated payloadof 41.0 tons. 6.5 Productivity Cycle Assumptionsmade: - 2.5% moisture contentinrock - 25% swell factor - 4 daysa weekoperating,1day maintenance andhammeringoversize - 9 to 5 workingdaywith1 hour lunchbreak. - 60 secondcycle time For a 7 hour shift,the crushercan process1400 tonnespershift.Assuminga90% utilisationof the crusherthiswouldresultin1260 tonnescrushedpershift. 4 daysa weekoperatingequatedto5040 producedperweek.Permonththisproduces20160 tonnesof crushedmaterial. The buckethas a capacity of 2.66 cubicmeters.The followingequationworksoutthe tonnesper cycle of the excavatortocrusher.Where 2.65 is the specificgravityof the rock,1.25 representsthe swell factorand0.9 representsthe 90%fill factor. ( 2.65 1.25 × 2.66) × 0.9 = 3.96 𝑡𝑜𝑛𝑛𝑒𝑠 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 A shiftlengthis420 minutesor25200 seconds.Withone cycle taking60 secondsthiswill resultina total of 420 cyclesper shift.Thisworksoutas 60 cyclesperhour. Maximumthroughputtothe crusher worksoutas: 3.96 × 60 = 237.6 𝑡𝑜𝑛𝑛𝑒𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 Thisis slightlylargerthanthe 200 tonneshourthat the crushercan achieve butassuming some downtime inthe day and extendedbreaksthiswill matchup. The CAT 926M withits 5 cubic meterbucketwill take 4passesto loadthe 41 tonne CAT 6745C. it will take 7 minutesforthe ADT to loadand travel 500m to the secondaryplantwitha20kmh average speedanda 60 secondcycle per passfor loading.Thismeansthat the loadercan load200 tonnesin 35 minutesthiswill leave 25minutesperhourwhere the loaderisn’toperating.Howeverfactoring inthe time ittakesto getthe pile large enoughtobeginloading(takenas3 hoursto gaina pile of 600 tonnes).The loaderdriver’sshiftcanbe cutto 4 hours a day.A 4 hourshiftwill resultin1400 tonnesanhour beingtransportedtothe processingplant.Withthe lasthourjustremovingthe final endsof the crushedpile of 840 tonnes.
  • 13. 12 | P a g e Conclusion - Use of square blast patternwith4.1 meterspacingandburden. - Programmable detonatorswithminimum8msdelay - 30 holesperblast,triple rowof tenfor starterbenchblastsand double row of 15 for standardblasts - CentraGold 70 bulkemulsionexplosiveused - Ikondetonatorsystemforprecisiontiming - 20172 tonnesblastedpermonthinone blast - 88% of material withincrushablesize - 12% oversize tobe reducedbyhammerattachmentduringmaintenance day - 4 dayoperatingweek - 8 hourshiftwith1 hour breakfor excavatorandcrusher - 4 hourloaderand adt shift - Crusher200t/h - Roughly1300 tonnescrushedperday - Equatesto justover20000 tonnespermonth References [1]: "Centra™ Gold70". Oricaminingservices.com.N.p.,2016. Web.21 Apr.2016. [2]: "T 500 Data Sheet". Brexco.N.p.,2016. Web.21 Apr. 2016. [3]: Wetherelt,Andrew."Surface ExcavationDesignPart2".2016. Presentation. [4]: Wetherelt,Andrew."Surface ExcavationDesignPart5".2016. Presentation. [5]: "ShotPatternGuide". Dyno Nobel.N.p.,2001. Web.20 Apr.2016. [6]: "Excavators| Komatsu| PC360LC-10 Tracked HydraulicExcavator". Marubeni-komatsu.co.uk. N.p.,2016. Web.20 Apr.2016. [7]: "MC 100 R EVO - KleemannGmbh". Kleemann.info.N.p.,2016. Web.21 Apr. 2016. [8]: "Cat | 926M Wheel Loader|Caterpillar". Cat.com.N.p.,2016. Web.21 Apr.2016. [9]: "BlockVolume EstimationFromThe DiscontinuitySpacingMeasurementsOf Mesozoic Limestone Quarries,KaraburunPeninsula,Turkey:Table 1". Hindawi.com.N.p.,2016.Web. 24 Apr. 2016.