Realtime Analytics
  with Apache
   Cassandra
        Tom Wilkie
 Founder & CTO, Acunu Ltd
       @tom_wilkie
Combining “big” and “real-time” is hard

    Live & historical                    Drill downs
                         Trends...
      aggregates...                      and roll ups




2
                                                        Analytics
Solution              Con

                       Scalability
                         $$$


                      Not realtime


               Spartan query semantics =>
                 complex, DIY solutions

3
                                            Analytics
Example I
    eg “show me the number of mentions of
        ‘Acunu’ per day, between May and
          November 2011, on Twitter”


    Batch (Hadoop) approach would require
    processing ~30 billion tweets, or ~4.2
                 TB of data
                  http://blog.twitter.com/2011/03/numbers.html


4
                                                                 Analytics
Okay, so how are we going to
                   do it?

    For each tweet,
    increment a bunch of counters,
    such that answering a query
    is as easy as reading some counters


5
                                          Analytics
Preparing the data
                              12:32:15 I like #trafficlights
Step 1: Get a feed of    12:33:43 Nobody expects...
        the tweets     12:33:49 I ate a #bee; woe is...
                      12:34:04 Man, @acunu rocks!

Step 2: Tokenise the
        tweet

Step 3: Increment counters            [1234, man]   +1
        in time buckets for           [1234, acunu] +1
        each token                    [1234, rock] +1
6
                                                              Analytics
Querying
                            start: [01/05/11, acunu]
Step 1: Do a range query    end:   [30/05/11, acunu]

                                       Key            #Mentions
                              [01/05/11 00:01, acunu]    3
Step 2: Result table          [01/05/11 00:02, acunu]    5
                                        ...              ...


                              90

Step 3: Plot pretty graph     45
                               0
                                   May Jun Jul Aug Sept Oct Nov
7
                                                              Analytics
Instead of this...
                                  Key            #Mentions
                         [01/05/11 00:01, acunu]    3
                         [01/05/11 00:02, acunu]    5
                                   ...              ...




                         We do this
                      Key           00:01       00:02        ...
                [01/05/11, acunu]     3           5          ...
                [02/05/11, acunu]    12           4          ...
                        ...           ...                    ...

    Row key is ‘big’                     Column key is ‘small’
     time bucket                             time bucket
8
                                                                   Analytics
Towards a more
    general solution...
      (Example II)



9
                          Analytics
count
                grouped by ...
                    day
  count
 distinct
(session)
     count       ... geography

avg(duration)
                  ... browser


10
                          Analytics
21:00      all→1345    :00→45      :01→62      :02→87       ...

                         22:00      all→3221    :00→22      :00→19     :02→104       ...
{
     cust_id: user01,      ...                                                       ...

     session_id: 102,      UK        all→228    user01→1   user14→12   user99→7      ...
     geography: UK,
                           US        all→354    user01→4   user04→8    user56→17     ...
     browser: IE,
     time: 22:02,          ...

}                       UK, 22:00   all→1904       ...

                           ∅        all→87314   UK→238     US→354         ...




11
                                                                                 Analytics
21:00      all→1345     :00→45     :01→62      :02→87       ...

                         22:00      all→3222     :00→22     :00→19     :02→105       ...
{
     cust_id: user01,      ...                                                       ...

     session_id: 102,      UK        all→229    user01→2   user14→12   user99→7      ...
     geography: UK,
                           US        all→354    user01→4   user04→8    user56→17     ...
     browser: IE,
     time: 22:02,          ...

}                       UK, 22:00   all→1905       ...

                           ∅        all→87315   UK→239     US→354         ...




12
                                                                                 Analytics
21:00      all→1345    :00→45      :01→62      :02→87       ...

      22:00      all→3221    :00→22      :00→19     :02→104       ...

        ...                                                       ...

        UK        all→228    user01→1   user14→12   user99→7      ...

        US        all→354    user01→4   user04→8    user56→17     ...

        ...

     UK, 22:00   all→1904       ...

        ∅        all→87314   UK→238     US→354         ...




13
                                                              Analytics
where time 21:00-22:00
 count(*)
                          21:00      all→1345    :00→45      :01→62      :02→87       ...

                          22:00      all→3222    :00→22      :01→19     :02→105       ...

                            ...                                                       ...

                            UK        all→229    user01→2   user14→12   user99→7      ...

                            US        all→354    user01→4   user04→8    user56→17     ...

                            ...

                         UK, 22:00   all→1905       ...

                            ∅        all→87315   UK→239     US→354         ...




14
                                                                                  Analytics
where time 21:00-22:00
 count(*)
                           21:00      all→1345    :00→45      :01→62      :02→87       ...


where time 22:00-23:00,    22:00      all→3222    :00→22      :01→19     :02→105       ...


 group by minute             ...                                                       ...

                             UK        all→229    user01→2   user14→12   user99→7      ...

                             US        all→354    user01→4   user04→8    user56→17     ...

                             ...

                          UK, 22:00   all→1905       ...

                             ∅        all→87315   UK→239     US→354         ...




15
                                                                                   Analytics
where time 21:00-22:00
 count(*)
                           21:00      all→1345     :00→45     :01→62      :02→87       ...


where time 22:00-23:00,    22:00      all→3222    :00→22      :01→19     :02→105       ...


 group by minute             ...                                                       ...

                             UK        all→229    user01→2   user14→12   user99→7      ...


where geography=UK           US        all→354    user01→4   user04→8    user56→17     ...


 group all by user,          ...

                          UK, 22:00   all→1905       ...

                             ∅        all→87315   UK→239      US→354        ...




16
                                                                                   Analytics
where time 21:00-22:00
 count(*)
                           21:00      all→1345     :00→45     :01→62      :02→87       ...


where time 22:00-23:00,    22:00      all→3222    :00→22      :01→19     :02→105       ...


 group by minute             ...                                                       ...

                             UK        all→229    user01→2   user14→12   user99→7      ...


where geography=UK           US        all→354    user01→4   user04→8    user56→17     ...


 group all by user,          ...

                          UK, 22:00   all→1905       ...

count all                    ∅        all→87315   UK→239      US→354        ...




17
                                                                                   Analytics
where time 21:00-22:00
 count(*)
                           21:00      all→1345     :00→45     :01→62      :02→87       ...


where time 22:00-23:00,    22:00      all→3222    :00→22      :01→19     :02→105       ...


 group by minute             ...                                                       ...

                             UK        all→229    user01→2   user14→12   user99→7      ...


where geography=UK           US        all→354    user01→4   user04→8    user56→17     ...


 group all by user,          ...

                          UK, 22:00   all→1905       ...

count all                    ∅        all→87315   UK→239      US→354        ...




group all by geo
18
                                                                                   Analytics
What about more than
       just aggregates?



19
                            Analytics
Approximate Analytics
                 Exact




     Real-time           Large Scale


20
                                       Analytics
Count Distinct

     Plan A: keep a list of all the things you’ve seen
               count them at query time


                Quick to update
                  ... but at scale ...
                Takes lots of space
                Takes a long time to query
21
                                                         Analytics
Approximate Distinct

     max # leading zeroes seen so far
         item          hash        leading zeroes   max so far

         x        00101001110...          2            2
         y        11010100111...          0            2
         z        00011101011...          3            3
                       ...
     ... to see a max of M takes about        2M    items

22
                                                                 Analytics
Approximate Distinct

            to reduce var, average over m=2k sub-streams

     item          hash          index, zeroes   max so far

     x       00101001110...          0, 0        0,0,0,0
     y       11010100111...          3, 1        0,0,0,1
     z       00011101011...          0, 1        1,0,0,1
                   ...
            take the harmonic mean
23
                                                              Analytics
Okay... now what?




                    Analytics
Analytics

                                     counter
                                     updates
Click stream    events
                          Acunu
Sensor data
                         Analytics
     etc




     •   Aggregate incrementally, on the fly
     •   Store live + historical aggregates
10x vs MySQL...




                  Analytics
Dashboard UI




27
                    Analytics
“Up and running in about 4 hours”
“We found out a competitor
  was scraping our data”

                      “We keep discovering use cases
                         we hadn’t thought of ”




                                                 Analytics
"Quick, efficient and easy to
        get started"
                       "We're still finding new and
                     interesting use cases, which just
                         aren't possible with our
                           current datastores."

                                                         Analytics
Thanks!

     Questions?


30
                  Analytics

Realtime Analytics with Apache Cassandra - JAX London

  • 1.
    Realtime Analytics with Apache Cassandra Tom Wilkie Founder & CTO, Acunu Ltd @tom_wilkie
  • 2.
    Combining “big” and“real-time” is hard Live & historical Drill downs Trends... aggregates... and roll ups 2 Analytics
  • 3.
    Solution Con Scalability $$$ Not realtime Spartan query semantics => complex, DIY solutions 3 Analytics
  • 4.
    Example I eg “show me the number of mentions of ‘Acunu’ per day, between May and November 2011, on Twitter” Batch (Hadoop) approach would require processing ~30 billion tweets, or ~4.2 TB of data http://blog.twitter.com/2011/03/numbers.html 4 Analytics
  • 5.
    Okay, so howare we going to do it? For each tweet, increment a bunch of counters, such that answering a query is as easy as reading some counters 5 Analytics
  • 6.
    Preparing the data 12:32:15 I like #trafficlights Step 1: Get a feed of 12:33:43 Nobody expects... the tweets 12:33:49 I ate a #bee; woe is... 12:34:04 Man, @acunu rocks! Step 2: Tokenise the tweet Step 3: Increment counters [1234, man] +1 in time buckets for [1234, acunu] +1 each token [1234, rock] +1 6 Analytics
  • 7.
    Querying start: [01/05/11, acunu] Step 1: Do a range query end: [30/05/11, acunu] Key #Mentions [01/05/11 00:01, acunu] 3 Step 2: Result table [01/05/11 00:02, acunu] 5 ... ... 90 Step 3: Plot pretty graph 45 0 May Jun Jul Aug Sept Oct Nov 7 Analytics
  • 8.
    Instead of this... Key #Mentions [01/05/11 00:01, acunu] 3 [01/05/11 00:02, acunu] 5 ... ... We do this Key 00:01 00:02 ... [01/05/11, acunu] 3 5 ... [02/05/11, acunu] 12 4 ... ... ... ... Row key is ‘big’ Column key is ‘small’ time bucket time bucket 8 Analytics
  • 9.
    Towards a more general solution... (Example II) 9 Analytics
  • 10.
    count grouped by ... day count distinct (session) count ... geography avg(duration) ... browser 10 Analytics
  • 11.
    21:00 all→1345 :00→45 :01→62 :02→87 ... 22:00 all→3221 :00→22 :00→19 :02→104 ... { cust_id: user01, ... ... session_id: 102, UK all→228 user01→1 user14→12 user99→7 ... geography: UK, US all→354 user01→4 user04→8 user56→17 ... browser: IE, time: 22:02, ... } UK, 22:00 all→1904 ... ∅ all→87314 UK→238 US→354 ... 11 Analytics
  • 12.
    21:00 all→1345 :00→45 :01→62 :02→87 ... 22:00 all→3222 :00→22 :00→19 :02→105 ... { cust_id: user01, ... ... session_id: 102, UK all→229 user01→2 user14→12 user99→7 ... geography: UK, US all→354 user01→4 user04→8 user56→17 ... browser: IE, time: 22:02, ... } UK, 22:00 all→1905 ... ∅ all→87315 UK→239 US→354 ... 12 Analytics
  • 13.
    21:00 all→1345 :00→45 :01→62 :02→87 ... 22:00 all→3221 :00→22 :00→19 :02→104 ... ... ... UK all→228 user01→1 user14→12 user99→7 ... US all→354 user01→4 user04→8 user56→17 ... ... UK, 22:00 all→1904 ... ∅ all→87314 UK→238 US→354 ... 13 Analytics
  • 14.
    where time 21:00-22:00 count(*) 21:00 all→1345 :00→45 :01→62 :02→87 ... 22:00 all→3222 :00→22 :01→19 :02→105 ... ... ... UK all→229 user01→2 user14→12 user99→7 ... US all→354 user01→4 user04→8 user56→17 ... ... UK, 22:00 all→1905 ... ∅ all→87315 UK→239 US→354 ... 14 Analytics
  • 15.
    where time 21:00-22:00 count(*) 21:00 all→1345 :00→45 :01→62 :02→87 ... where time 22:00-23:00, 22:00 all→3222 :00→22 :01→19 :02→105 ... group by minute ... ... UK all→229 user01→2 user14→12 user99→7 ... US all→354 user01→4 user04→8 user56→17 ... ... UK, 22:00 all→1905 ... ∅ all→87315 UK→239 US→354 ... 15 Analytics
  • 16.
    where time 21:00-22:00 count(*) 21:00 all→1345 :00→45 :01→62 :02→87 ... where time 22:00-23:00, 22:00 all→3222 :00→22 :01→19 :02→105 ... group by minute ... ... UK all→229 user01→2 user14→12 user99→7 ... where geography=UK US all→354 user01→4 user04→8 user56→17 ... group all by user, ... UK, 22:00 all→1905 ... ∅ all→87315 UK→239 US→354 ... 16 Analytics
  • 17.
    where time 21:00-22:00 count(*) 21:00 all→1345 :00→45 :01→62 :02→87 ... where time 22:00-23:00, 22:00 all→3222 :00→22 :01→19 :02→105 ... group by minute ... ... UK all→229 user01→2 user14→12 user99→7 ... where geography=UK US all→354 user01→4 user04→8 user56→17 ... group all by user, ... UK, 22:00 all→1905 ... count all ∅ all→87315 UK→239 US→354 ... 17 Analytics
  • 18.
    where time 21:00-22:00 count(*) 21:00 all→1345 :00→45 :01→62 :02→87 ... where time 22:00-23:00, 22:00 all→3222 :00→22 :01→19 :02→105 ... group by minute ... ... UK all→229 user01→2 user14→12 user99→7 ... where geography=UK US all→354 user01→4 user04→8 user56→17 ... group all by user, ... UK, 22:00 all→1905 ... count all ∅ all→87315 UK→239 US→354 ... group all by geo 18 Analytics
  • 19.
    What about morethan just aggregates? 19 Analytics
  • 20.
    Approximate Analytics Exact Real-time Large Scale 20 Analytics
  • 21.
    Count Distinct Plan A: keep a list of all the things you’ve seen count them at query time Quick to update ... but at scale ... Takes lots of space Takes a long time to query 21 Analytics
  • 22.
    Approximate Distinct max # leading zeroes seen so far item hash leading zeroes max so far x 00101001110... 2 2 y 11010100111... 0 2 z 00011101011... 3 3 ... ... to see a max of M takes about 2M items 22 Analytics
  • 23.
    Approximate Distinct to reduce var, average over m=2k sub-streams item hash index, zeroes max so far x 00101001110... 0, 0 0,0,0,0 y 11010100111... 3, 1 0,0,0,1 z 00011101011... 0, 1 1,0,0,1 ... take the harmonic mean 23 Analytics
  • 24.
  • 25.
    Analytics counter updates Click stream events Acunu Sensor data Analytics etc • Aggregate incrementally, on the fly • Store live + historical aggregates
  • 26.
  • 27.
  • 28.
    “Up and runningin about 4 hours” “We found out a competitor was scraping our data” “We keep discovering use cases we hadn’t thought of ” Analytics
  • 29.
    "Quick, efficient and easy to get started" "We're still finding new and interesting use cases, which just aren't possible with our current datastores." Analytics
  • 30.
    Thanks! Questions? 30 Analytics