Microsoft Power BI: Introduction to
Data Visualization & Dashboard
Creation
• Unlocking Insights from Your Data
• Date: 28th June 2025
• Audience: 2nd Year Analytics Students
• Trainer: Mr. Shivaraj (Analytics Trainer, ISDC)
What is Business Intelligence (BI)?
• • Collect, process, analyze, and visualize data
• • Transform raw data into insights
• • Visuals make complex data understandable
Why Microsoft Power BI?
• • Industry Leader
• • End-to-end workflow: Connect to Share
• • Easy to learn, integrates with Excel
• • Strong community & cost-effective
Power BI Ecosystem: The
Components
• • Power BI Desktop – Development
• • Power BI Service – Cloud sharing
• • Mobile Apps – iOS/Android
• • Gateways, Report Server
Connecting to Diverse Data
Sources
• • Files (Excel, CSV, JSON), Databases (SQL,
Oracle)
• • Online services (GA, Salesforce)
• • Access via 'Get Data'
Navigating the Data Import Process
• • Navigator Window: preview and select
tables
• • Options: Load vs Transform Data
• • Best practice: Inspect before loading
Power Query Editor: Your Data
Preparation Hub (ETL)
• • Extract, Transform, Load (ETL)
• • Clean and reshape data
• • Access: 'Transform Data'
Basic Data Transformations in
Power Query
• • Change data types
• • Remove rows/columns
• • Rename/split/merge
• • Review in Applied Steps
Introduction to Data Models:
Building Relationships
• • Fact vs Dimension tables
• • Enable correct filtering and aggregations
• • Create relationships in Model View
Understanding Relationship Types
& Cardinality
• • One-to-Many, Many-to-One, One-to-One
• • Filter directions
• • Import vs Direct Query
Power BI Desktop Interface Deep
Dive
• • Report View – Design visuals
• • Data View – See raw data
• • Model View – Manage relationships
Choosing the Right Visual: Telling
Your Data Story
• • Bar, Line, Pie, Cards, Scatter, Table, Map
• • Use visuals to communicate message
effectively
Building Your First Visuals (Hands-
on)
• • Steps: Click > Select visual > Drag fields
• • Examples: Sales by Category, Line chart by
Time
Formatting Your Visuals: Enhancing
Readability
• • Adjust axes, labels, colors, titles
• • Use Format pane for clean, consistent
visuals
Interactivity with Slicers & Filtering
Data
• • Slicers: region, year
• • Filter types: Visual, Page, Report
Dashboard Design Principles:
Telling Your Data Story
• • Clarity, Simplicity, Storytelling
• • KPIs top-left, consistent layout and theme
Creating a Simple Report Page /
Dashboard
• • Arrange visuals, slicers, titles
• • Use shapes/text for structure
Publishing Reports & Power BI
Service (Sharing Insights)
• • Publish from Desktop to Service
• • Use workspaces, dashboards
• • Share with permissions

PowerBI_Workshdddddddddddddddddddddddddd

  • 1.
    Microsoft Power BI:Introduction to Data Visualization & Dashboard Creation • Unlocking Insights from Your Data • Date: 28th June 2025 • Audience: 2nd Year Analytics Students • Trainer: Mr. Shivaraj (Analytics Trainer, ISDC)
  • 2.
    What is BusinessIntelligence (BI)? • • Collect, process, analyze, and visualize data • • Transform raw data into insights • • Visuals make complex data understandable
  • 3.
    Why Microsoft PowerBI? • • Industry Leader • • End-to-end workflow: Connect to Share • • Easy to learn, integrates with Excel • • Strong community & cost-effective
  • 4.
    Power BI Ecosystem:The Components • • Power BI Desktop – Development • • Power BI Service – Cloud sharing • • Mobile Apps – iOS/Android • • Gateways, Report Server
  • 5.
    Connecting to DiverseData Sources • • Files (Excel, CSV, JSON), Databases (SQL, Oracle) • • Online services (GA, Salesforce) • • Access via 'Get Data'
  • 6.
    Navigating the DataImport Process • • Navigator Window: preview and select tables • • Options: Load vs Transform Data • • Best practice: Inspect before loading
  • 7.
    Power Query Editor:Your Data Preparation Hub (ETL) • • Extract, Transform, Load (ETL) • • Clean and reshape data • • Access: 'Transform Data'
  • 8.
    Basic Data Transformationsin Power Query • • Change data types • • Remove rows/columns • • Rename/split/merge • • Review in Applied Steps
  • 9.
    Introduction to DataModels: Building Relationships • • Fact vs Dimension tables • • Enable correct filtering and aggregations • • Create relationships in Model View
  • 10.
    Understanding Relationship Types &Cardinality • • One-to-Many, Many-to-One, One-to-One • • Filter directions • • Import vs Direct Query
  • 11.
    Power BI DesktopInterface Deep Dive • • Report View – Design visuals • • Data View – See raw data • • Model View – Manage relationships
  • 12.
    Choosing the RightVisual: Telling Your Data Story • • Bar, Line, Pie, Cards, Scatter, Table, Map • • Use visuals to communicate message effectively
  • 13.
    Building Your FirstVisuals (Hands- on) • • Steps: Click > Select visual > Drag fields • • Examples: Sales by Category, Line chart by Time
  • 14.
    Formatting Your Visuals:Enhancing Readability • • Adjust axes, labels, colors, titles • • Use Format pane for clean, consistent visuals
  • 15.
    Interactivity with Slicers& Filtering Data • • Slicers: region, year • • Filter types: Visual, Page, Report
  • 16.
    Dashboard Design Principles: TellingYour Data Story • • Clarity, Simplicity, Storytelling • • KPIs top-left, consistent layout and theme
  • 17.
    Creating a SimpleReport Page / Dashboard • • Arrange visuals, slicers, titles • • Use shapes/text for structure
  • 18.
    Publishing Reports &Power BI Service (Sharing Insights) • • Publish from Desktop to Service • • Use workspaces, dashboards • • Share with permissions