SlideShare a Scribd company logo
1 of 1
Download to read offline
Fabrica on and Characteriza on of Polymer Solar Cells
Max McIntyre, Raquel Cossel, Marian Tzolov 
Lock Haven University, Department of Physics 
 
Results:
 The average illuminated Voc of our devices was .25V. 
 The average illuminated Isc of our devices was 19.6μA. 
 The func onal area of our devices was 2.6x10‐5
 m2
 . 
 The average illuminated Jsc of our devices was .75A/m2
. 
 The average illuminated Pmax of our devices was .17W/m2
. 
 The average FF of our devices was .48. 
 The dielectric constant (k) of our devices polymer layer was calculated to be 5.15 a er 
determining the thickness of our devices to be 46nm. 
 The photocurrent doesn’t decrease substan ally for light modulated up to 50 kHz, which 
suggests that the life me of the photocurrent is less than  3 s.  
Figure 4 : (A) Photocurrent spectrum with intensity in voltage, also converted to amps per wa . B) Op cal 
transmission spectrum of the PCPBTDT and PCBM film. 
Figure 3 : (A) Current‐voltage characteris cs under illumina on and dark condi ons. (B) Cur‐
rent‐voltage characteris cs under illumina on and dark condi ons in semi‐log scale. (C) Im‐
pedance spectroscopy under illumina on  and dark condi ons.  (D) Current‐voltage charac‐
teris c diagram showing how Isc, Voc, MPP, and FF are determined. 
Introduc on:  
 The polymer solar cells fabricated had an ac ve region consis ng of both PCPBTBT and PCBM polymers. The 
PCPDTBT acts as the donor and the PCBM acts as the acceptor in the solar cell. 
 Two electrodes were used in the device structure. The anode is a transparent conduc ng oxide, Indium Tin 
Oxide. The ITO accepts the electron holes. The cathode is a strip of aluminum.  The aluminum accepts the 
electron. 
 The polymer solar cell generates photocurrent when it is exposed to light and a photon is absorbed. The 
photon creates an exciton in the ac ve region of the device. The exciton diffuses toward the junc on. It 
then disassociates at the interface between PCPDTBT and PCBM and the electron moves into the acceptor 
PCBM. The electron and hole move to the cathode and anode, respec vely.  
 Electrical characteriza on of the devices were preformed to determine its quality and efficiency. The current
‐voltage characteris cs were used to calculate fill factors. Impedance spectroscopy was done to determine 
the dielectric constant of the PCPDTBT/PCBM mixture. 
 Op cal characteriza on of the devices were preformed to evaluate the presence of PCPDTBT and PCBM and 
the devices’ response  me. 
Fabrica on: 
 Cut ITO glass covered slides into 2.54cm squares. Put a 1.3cm piece of tape down the middle of the cut 
slides. 
 Pa ern the slide with a 3:1 solu on of HCl:H2O heated to 55°C‐60°C for 1 minute. Then submerge in two 
separate water baths for 30 seconds each. 
 Sonicate the pa erned slides in Acetone, IPA, and deionized water for 15 minutes each. 
 Oxygen plasma treatment for approximately a minute. 
 Coat each slide with a filtered hole injec on layer (HIL) using sta c dispense then spin the slides for 10 
seconds at 400rpm followed by 40 seconds at 1,200rpm. Anneal the HIL coated slides for 15 minutes each at 
170°C. 
 Coat each slide with a filtered polymer that is a mixture of PCBM and PCPDTBT using sta c dispense then 
spin the slides for 10 seconds at 400rpm followed by 40 seconds at 1,200rpm. Anneal the polymer coated 
slides for 15 minutes each at 100°C. 
 Thermal evaporate aluminum strips that are 2.54cm x 0.2cm on to the annealed slides. 
 Apply silver paste to the edges of the aluminum strips to increase the strength of the contacts.  
Experiment:  
 Current‐Voltage characteriza on tests were preformed under illuminated and dark condi ons. 
Illuminated condi ons included a fully lite room and a flashlight beam directed on the device. 
The dark condi on was a black cloth completely covering the device. 
 The open circuit voltage (Voc), short circuit current (Isc), and max power point (MPP) were 
obtained from the current‐voltage characteriza on data for each device, and the fill factor 
(FF) was calculated. 
 Impedance spectroscopy tests were preformed for each device under illuminated and dark 
condi ons. 
 The dielectric constant  of the polymer region of the devices was determined from the 
impedance spectroscopy data. 
 Op cal transmission tests were performed on the devices to determine the op cal 
transmission of the PCBM and PCPDTBT polymer mixture, with a wavelength range of 300nm‐
900nm. This was done to confirm the presence of each polymer in the devices. 
 Photocurrent measurements were performed in the spectral 300nm‐1,000nm. A calibrated 
photodiode was used to normalize the photocurrent to A/W. 
 The op cal transmission graph and the photocurrent graph were compared.  Discussion:  
‐ Op cal transmission: the polymer PCPDTBT and PCBM are present. Figure 4 (B) shows the presence of PCBM 
with the 350nm wavelength. The figure also shows PCPDTBT at the wavelength of 800nm. PCBM has larger 
volume frac on 
‐ Photocurrent spectrum: Reflects the bands of the op cal transmission with peaks at 350nm and 800nm. Ex‐
citons are equally created and separated in the PCPDTBT polymer and PCBM. 
Figure 2: Cross‐sec onal view of the fabrica on process steps. a) ITO glass slide b) pa erned ITO glass slide c) 
HIL layer spincoa ng d) polymer layer spincoa ng e) aluminum strip layer thermal evapora on f) silver paste 
contact points. 
Figure 1: (A) Schema c representa on of bulk heterojunc on solar cell illustra ng the processes of light ab‐
sorp on and photocurrent genera on, supported by an energy diagram. (i) absorbed photon generates exci‐
ton. (ii) exciton diffusion. (iii) exciton disassocia on in electronega ve acceptor. (iv) electron‐hole separa on 
due to electric field and material. (v) electron and hole move to cathode and anode, respec vely. (vi) photo‐
current. (B) Top view of complete device. 

More Related Content

What's hot

Comparison of Different types of Solar Cells – a Review
Comparison of Different types of Solar Cells – a ReviewComparison of Different types of Solar Cells – a Review
Comparison of Different types of Solar Cells – a Reviewiosrjce
 
Studying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear mediaStudying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear mediaIslam Kotb Ismail
 
Superresolution Correlative Light and Electron Microscopy - DELMIC
Superresolution Correlative Light and Electron Microscopy - DELMICSuperresolution Correlative Light and Electron Microscopy - DELMIC
Superresolution Correlative Light and Electron Microscopy - DELMICDelmic B.V.
 
Perovskite material characterization and photovoltaic performance of planar s...
Perovskite material characterization and photovoltaic performance of planar s...Perovskite material characterization and photovoltaic performance of planar s...
Perovskite material characterization and photovoltaic performance of planar s...Shaimum Shahriar
 
Quantum dot lasers
Quantum dot lasersQuantum dot lasers
Quantum dot lasersBise Mond
 
Quantum Dots_MEEE_AIUB
Quantum Dots_MEEE_AIUBQuantum Dots_MEEE_AIUB
Quantum Dots_MEEE_AIUBNusrat Mary
 
Simulation of Soft Photon Calorimeter @ 2011 JINR, Dubna Student Practice
Simulation of Soft Photon Calorimeter @ 2011 JINR, Dubna Student PracticeSimulation of Soft Photon Calorimeter @ 2011 JINR, Dubna Student Practice
Simulation of Soft Photon Calorimeter @ 2011 JINR, Dubna Student PracticeVaclav Kosar
 

What's hot (19)

Final
FinalFinal
Final
 
Ptf V8
Ptf V8Ptf V8
Ptf V8
 
Comparison of Different types of Solar Cells – a Review
Comparison of Different types of Solar Cells – a ReviewComparison of Different types of Solar Cells – a Review
Comparison of Different types of Solar Cells – a Review
 
Photonic crystals
Photonic crystalsPhotonic crystals
Photonic crystals
 
Studying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear mediaStudying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear media
 
Device etc090212
Device etc090212Device etc090212
Device etc090212
 
Pbg good
Pbg  goodPbg  good
Pbg good
 
Superresolution Correlative Light and Electron Microscopy - DELMIC
Superresolution Correlative Light and Electron Microscopy - DELMICSuperresolution Correlative Light and Electron Microscopy - DELMIC
Superresolution Correlative Light and Electron Microscopy - DELMIC
 
Perovskite material characterization and photovoltaic performance of planar s...
Perovskite material characterization and photovoltaic performance of planar s...Perovskite material characterization and photovoltaic performance of planar s...
Perovskite material characterization and photovoltaic performance of planar s...
 
Quantum dot lasers
Quantum dot lasersQuantum dot lasers
Quantum dot lasers
 
Optical fibre 2
Optical fibre 2Optical fibre 2
Optical fibre 2
 
Ferro2016
Ferro2016Ferro2016
Ferro2016
 
Quantum Dots_MEEE_AIUB
Quantum Dots_MEEE_AIUBQuantum Dots_MEEE_AIUB
Quantum Dots_MEEE_AIUB
 
Schuler-posterKSU
Schuler-posterKSUSchuler-posterKSU
Schuler-posterKSU
 
Simulation of Soft Photon Calorimeter @ 2011 JINR, Dubna Student Practice
Simulation of Soft Photon Calorimeter @ 2011 JINR, Dubna Student PracticeSimulation of Soft Photon Calorimeter @ 2011 JINR, Dubna Student Practice
Simulation of Soft Photon Calorimeter @ 2011 JINR, Dubna Student Practice
 
APS meeting
APS meetingAPS meeting
APS meeting
 
Prsntn
PrsntnPrsntn
Prsntn
 
JAP-Avril02_SALAHUN
JAP-Avril02_SALAHUNJAP-Avril02_SALAHUN
JAP-Avril02_SALAHUN
 
ns_jb_pushpin_plasmons
ns_jb_pushpin_plasmonsns_jb_pushpin_plasmons
ns_jb_pushpin_plasmons
 

Viewers also liked

Understanding the physics of degradation of polymer solar cells
Understanding the physics of degradation of polymer solar cellsUnderstanding the physics of degradation of polymer solar cells
Understanding the physics of degradation of polymer solar cellsJoydeep Bhattacharya
 
Loss mechanisms in Polymer-Fullerene Solar Cells
Loss mechanisms in Polymer-Fullerene Solar CellsLoss mechanisms in Polymer-Fullerene Solar Cells
Loss mechanisms in Polymer-Fullerene Solar Cellsdisorderedmatter
 
Monte Carlo Modeling:Solar Cell
Monte Carlo Modeling:Solar Cell Monte Carlo Modeling:Solar Cell
Monte Carlo Modeling:Solar Cell Daniel Lee
 
Influence of Trap-Assisted Recombination on Polymer–Fullerene Solar Cells, Ca...
Influence of Trap-Assisted Recombination on Polymer–Fullerene Solar Cells, Ca...Influence of Trap-Assisted Recombination on Polymer–Fullerene Solar Cells, Ca...
Influence of Trap-Assisted Recombination on Polymer–Fullerene Solar Cells, Ca...disorderedmatter
 
Polymer nanomaterial composite solar cells, friday, 5th november, 2010
Polymer nanomaterial composite solar cells, friday, 5th november, 2010Polymer nanomaterial composite solar cells, friday, 5th november, 2010
Polymer nanomaterial composite solar cells, friday, 5th november, 2010M. Faisal Halim
 
Organic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerationscdtpv
 
Research summary for Yi Yang
Research summary for Yi YangResearch summary for Yi Yang
Research summary for Yi Yangyxy081020
 
The Role of Molecular Structure and Conformation in Polymer Opto-Electronics
The Role of Molecular Structure and Conformation in Polymer Opto-ElectronicsThe Role of Molecular Structure and Conformation in Polymer Opto-Electronics
The Role of Molecular Structure and Conformation in Polymer Opto-Electronicscdtpv
 
Plasmon Enhanced Solar Cells, Jan-Henrik Smått
Plasmon Enhanced Solar Cells, Jan-Henrik SmåttPlasmon Enhanced Solar Cells, Jan-Henrik Smått
Plasmon Enhanced Solar Cells, Jan-Henrik SmåttBusiness Turku
 
Fyp slide polymer solar cells
Fyp slide polymer solar cells Fyp slide polymer solar cells
Fyp slide polymer solar cells Faizzwan Fazil
 
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofules
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, BiofulesLectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofules
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofulescdtpv
 
Organic Solar Cell
Organic Solar CellOrganic Solar Cell
Organic Solar CellAbhas Dash
 
Organic solar cell
Organic solar cellOrganic solar cell
Organic solar cellAnish Das
 
Models for organic solar cell and impedance spectroscopy results
Models for organic solar cell and impedance spectroscopy resultsModels for organic solar cell and impedance spectroscopy results
Models for organic solar cell and impedance spectroscopy resultsbisquertGroup
 
Solar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsSolar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsTuong Do
 

Viewers also liked (20)

porro_msh_2012
porro_msh_2012porro_msh_2012
porro_msh_2012
 
Universitat estiu2011 j_ferre
Universitat estiu2011 j_ferreUniversitat estiu2011 j_ferre
Universitat estiu2011 j_ferre
 
Understanding the physics of degradation of polymer solar cells
Understanding the physics of degradation of polymer solar cellsUnderstanding the physics of degradation of polymer solar cells
Understanding the physics of degradation of polymer solar cells
 
Loss mechanisms in Polymer-Fullerene Solar Cells
Loss mechanisms in Polymer-Fullerene Solar CellsLoss mechanisms in Polymer-Fullerene Solar Cells
Loss mechanisms in Polymer-Fullerene Solar Cells
 
Monte Carlo Modeling:Solar Cell
Monte Carlo Modeling:Solar Cell Monte Carlo Modeling:Solar Cell
Monte Carlo Modeling:Solar Cell
 
FINAL ORAL
FINAL ORALFINAL ORAL
FINAL ORAL
 
Influence of Trap-Assisted Recombination on Polymer–Fullerene Solar Cells, Ca...
Influence of Trap-Assisted Recombination on Polymer–Fullerene Solar Cells, Ca...Influence of Trap-Assisted Recombination on Polymer–Fullerene Solar Cells, Ca...
Influence of Trap-Assisted Recombination on Polymer–Fullerene Solar Cells, Ca...
 
Polymer nanomaterial composite solar cells, friday, 5th november, 2010
Polymer nanomaterial composite solar cells, friday, 5th november, 2010Polymer nanomaterial composite solar cells, friday, 5th november, 2010
Polymer nanomaterial composite solar cells, friday, 5th november, 2010
 
Organic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerations
 
Research summary for Yi Yang
Research summary for Yi YangResearch summary for Yi Yang
Research summary for Yi Yang
 
Courtney Klosterman Presentation
Courtney Klosterman PresentationCourtney Klosterman Presentation
Courtney Klosterman Presentation
 
The Role of Molecular Structure and Conformation in Polymer Opto-Electronics
The Role of Molecular Structure and Conformation in Polymer Opto-ElectronicsThe Role of Molecular Structure and Conformation in Polymer Opto-Electronics
The Role of Molecular Structure and Conformation in Polymer Opto-Electronics
 
Plasmon Enhanced Solar Cells, Jan-Henrik Smått
Plasmon Enhanced Solar Cells, Jan-Henrik SmåttPlasmon Enhanced Solar Cells, Jan-Henrik Smått
Plasmon Enhanced Solar Cells, Jan-Henrik Smått
 
Fyp slide polymer solar cells
Fyp slide polymer solar cells Fyp slide polymer solar cells
Fyp slide polymer solar cells
 
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofules
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, BiofulesLectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofules
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofules
 
Polymer based-solar-cells
Polymer based-solar-cellsPolymer based-solar-cells
Polymer based-solar-cells
 
Organic Solar Cell
Organic Solar CellOrganic Solar Cell
Organic Solar Cell
 
Organic solar cell
Organic solar cellOrganic solar cell
Organic solar cell
 
Models for organic solar cell and impedance spectroscopy results
Models for organic solar cell and impedance spectroscopy resultsModels for organic solar cell and impedance spectroscopy results
Models for organic solar cell and impedance spectroscopy results
 
Solar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsSolar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic Photovoltaics
 

Similar to PolymerSolarCellsDraft

daniel_manuscript
daniel_manuscriptdaniel_manuscript
daniel_manuscriptDaniel Oler
 
Effect of bcp_buffer_layer_on_eliminating_charge_a
Effect of bcp_buffer_layer_on_eliminating_charge_aEffect of bcp_buffer_layer_on_eliminating_charge_a
Effect of bcp_buffer_layer_on_eliminating_charge_aZahid Qaisar
 
Chapter5 treatment machines for external beam
Chapter5 treatment machines for external beamChapter5 treatment machines for external beam
Chapter5 treatment machines for external beamJeju National University
 
Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2Dennis Dang
 
Kelvin probe microscop
Kelvin probe microscopKelvin probe microscop
Kelvin probe microscopAhmed Elsayes
 
22 m. abdel salam--218-232
22 m. abdel salam--218-23222 m. abdel salam--218-232
22 m. abdel salam--218-232Alexander Decker
 
Carnot - efficiency based Nanoantenna Systems
Carnot - efficiency based Nanoantenna Systems Carnot - efficiency based Nanoantenna Systems
Carnot - efficiency based Nanoantenna Systems Bhupendra Subedi
 
JOHN_RAE_1102333_PROJECTREPORT
JOHN_RAE_1102333_PROJECTREPORTJOHN_RAE_1102333_PROJECTREPORT
JOHN_RAE_1102333_PROJECTREPORTJohn Rae
 
Optical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film SemiconductorsOptical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film SemiconductorsEnrico Castro
 
RF MEMS in Energy Harvesting
RF MEMS in Energy HarvestingRF MEMS in Energy Harvesting
RF MEMS in Energy HarvestingAalay Kapadia
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
X- Ray physics- X-Ray Tube, Transformer, Generator and Rectifiers by kajalsra...
X- Ray physics- X-Ray Tube, Transformer, Generator and Rectifiers by kajalsra...X- Ray physics- X-Ray Tube, Transformer, Generator and Rectifiers by kajalsra...
X- Ray physics- X-Ray Tube, Transformer, Generator and Rectifiers by kajalsra...DrKajalLimbad
 
Nonuniform Membranes In Capacitive Micromachined Ultrasonic Transducers
Nonuniform Membranes In Capacitive Micromachined Ultrasonic TransducersNonuniform Membranes In Capacitive Micromachined Ultrasonic Transducers
Nonuniform Membranes In Capacitive Micromachined Ultrasonic TransducersMuhammed N. Senlik
 
Development of Energy-Efficient Cryogenic Optical (ECO) Data Link
Development of Energy-Efficient Cryogenic Optical (ECO) Data LinkDevelopment of Energy-Efficient Cryogenic Optical (ECO) Data Link
Development of Energy-Efficient Cryogenic Optical (ECO) Data LinkAlexander Cohen
 
Multipactor prevention mulcopim 11 technology description
Multipactor prevention mulcopim 11 technology descriptionMultipactor prevention mulcopim 11 technology description
Multipactor prevention mulcopim 11 technology descriptionIgor_Kossyi
 

Similar to PolymerSolarCellsDraft (20)

daniel_manuscript
daniel_manuscriptdaniel_manuscript
daniel_manuscript
 
Effect of bcp_buffer_layer_on_eliminating_charge_a
Effect of bcp_buffer_layer_on_eliminating_charge_aEffect of bcp_buffer_layer_on_eliminating_charge_a
Effect of bcp_buffer_layer_on_eliminating_charge_a
 
Chapter5 treatment machines for external beam
Chapter5 treatment machines for external beamChapter5 treatment machines for external beam
Chapter5 treatment machines for external beam
 
Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2
 
1311.6071
1311.60711311.6071
1311.6071
 
Kelvin probe microscop
Kelvin probe microscopKelvin probe microscop
Kelvin probe microscop
 
AXIS pop paper
AXIS pop paperAXIS pop paper
AXIS pop paper
 
22 m. abdel salam--218-232
22 m. abdel salam--218-23222 m. abdel salam--218-232
22 m. abdel salam--218-232
 
1202 mccormack[2]
1202 mccormack[2]1202 mccormack[2]
1202 mccormack[2]
 
Carnot - efficiency based Nanoantenna Systems
Carnot - efficiency based Nanoantenna Systems Carnot - efficiency based Nanoantenna Systems
Carnot - efficiency based Nanoantenna Systems
 
JOHN_RAE_1102333_PROJECTREPORT
JOHN_RAE_1102333_PROJECTREPORTJOHN_RAE_1102333_PROJECTREPORT
JOHN_RAE_1102333_PROJECTREPORT
 
Optical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film SemiconductorsOptical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film Semiconductors
 
HgI2 As X-Ray Imager: Modulation Transfer Function Approach
HgI2 As X-Ray Imager: Modulation Transfer Function Approach HgI2 As X-Ray Imager: Modulation Transfer Function Approach
HgI2 As X-Ray Imager: Modulation Transfer Function Approach
 
RF MEMS in Energy Harvesting
RF MEMS in Energy HarvestingRF MEMS in Energy Harvesting
RF MEMS in Energy Harvesting
 
K010436772
K010436772K010436772
K010436772
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
X- Ray physics- X-Ray Tube, Transformer, Generator and Rectifiers by kajalsra...
X- Ray physics- X-Ray Tube, Transformer, Generator and Rectifiers by kajalsra...X- Ray physics- X-Ray Tube, Transformer, Generator and Rectifiers by kajalsra...
X- Ray physics- X-Ray Tube, Transformer, Generator and Rectifiers by kajalsra...
 
Nonuniform Membranes In Capacitive Micromachined Ultrasonic Transducers
Nonuniform Membranes In Capacitive Micromachined Ultrasonic TransducersNonuniform Membranes In Capacitive Micromachined Ultrasonic Transducers
Nonuniform Membranes In Capacitive Micromachined Ultrasonic Transducers
 
Development of Energy-Efficient Cryogenic Optical (ECO) Data Link
Development of Energy-Efficient Cryogenic Optical (ECO) Data LinkDevelopment of Energy-Efficient Cryogenic Optical (ECO) Data Link
Development of Energy-Efficient Cryogenic Optical (ECO) Data Link
 
Multipactor prevention mulcopim 11 technology description
Multipactor prevention mulcopim 11 technology descriptionMultipactor prevention mulcopim 11 technology description
Multipactor prevention mulcopim 11 technology description
 

PolymerSolarCellsDraft

  • 1. Fabrica on and Characteriza on of Polymer Solar Cells Max McIntyre, Raquel Cossel, Marian Tzolov  Lock Haven University, Department of Physics    Results:  The average illuminated Voc of our devices was .25V.   The average illuminated Isc of our devices was 19.6μA.   The func onal area of our devices was 2.6x10‐5  m2  .   The average illuminated Jsc of our devices was .75A/m2 .   The average illuminated Pmax of our devices was .17W/m2 .   The average FF of our devices was .48.   The dielectric constant (k) of our devices polymer layer was calculated to be 5.15 a er  determining the thickness of our devices to be 46nm.   The photocurrent doesn’t decrease substan ally for light modulated up to 50 kHz, which  suggests that the life me of the photocurrent is less than  3 s.   Figure 4 : (A) Photocurrent spectrum with intensity in voltage, also converted to amps per wa . B) Op cal  transmission spectrum of the PCPBTDT and PCBM film.  Figure 3 : (A) Current‐voltage characteris cs under illumina on and dark condi ons. (B) Cur‐ rent‐voltage characteris cs under illumina on and dark condi ons in semi‐log scale. (C) Im‐ pedance spectroscopy under illumina on  and dark condi ons.  (D) Current‐voltage charac‐ teris c diagram showing how Isc, Voc, MPP, and FF are determined.  Introduc on:    The polymer solar cells fabricated had an ac ve region consis ng of both PCPBTBT and PCBM polymers. The  PCPDTBT acts as the donor and the PCBM acts as the acceptor in the solar cell.   Two electrodes were used in the device structure. The anode is a transparent conduc ng oxide, Indium Tin  Oxide. The ITO accepts the electron holes. The cathode is a strip of aluminum.  The aluminum accepts the  electron.   The polymer solar cell generates photocurrent when it is exposed to light and a photon is absorbed. The  photon creates an exciton in the ac ve region of the device. The exciton diffuses toward the junc on. It  then disassociates at the interface between PCPDTBT and PCBM and the electron moves into the acceptor  PCBM. The electron and hole move to the cathode and anode, respec vely.    Electrical characteriza on of the devices were preformed to determine its quality and efficiency. The current ‐voltage characteris cs were used to calculate fill factors. Impedance spectroscopy was done to determine  the dielectric constant of the PCPDTBT/PCBM mixture.   Op cal characteriza on of the devices were preformed to evaluate the presence of PCPDTBT and PCBM and  the devices’ response  me.  Fabrica on:   Cut ITO glass covered slides into 2.54cm squares. Put a 1.3cm piece of tape down the middle of the cut  slides.   Pa ern the slide with a 3:1 solu on of HCl:H2O heated to 55°C‐60°C for 1 minute. Then submerge in two  separate water baths for 30 seconds each.   Sonicate the pa erned slides in Acetone, IPA, and deionized water for 15 minutes each.   Oxygen plasma treatment for approximately a minute.   Coat each slide with a filtered hole injec on layer (HIL) using sta c dispense then spin the slides for 10  seconds at 400rpm followed by 40 seconds at 1,200rpm. Anneal the HIL coated slides for 15 minutes each at  170°C.   Coat each slide with a filtered polymer that is a mixture of PCBM and PCPDTBT using sta c dispense then  spin the slides for 10 seconds at 400rpm followed by 40 seconds at 1,200rpm. Anneal the polymer coated  slides for 15 minutes each at 100°C.   Thermal evaporate aluminum strips that are 2.54cm x 0.2cm on to the annealed slides.   Apply silver paste to the edges of the aluminum strips to increase the strength of the contacts.   Experiment:    Current‐Voltage characteriza on tests were preformed under illuminated and dark condi ons.  Illuminated condi ons included a fully lite room and a flashlight beam directed on the device.  The dark condi on was a black cloth completely covering the device.   The open circuit voltage (Voc), short circuit current (Isc), and max power point (MPP) were  obtained from the current‐voltage characteriza on data for each device, and the fill factor  (FF) was calculated.   Impedance spectroscopy tests were preformed for each device under illuminated and dark  condi ons.   The dielectric constant  of the polymer region of the devices was determined from the  impedance spectroscopy data.   Op cal transmission tests were performed on the devices to determine the op cal  transmission of the PCBM and PCPDTBT polymer mixture, with a wavelength range of 300nm‐ 900nm. This was done to confirm the presence of each polymer in the devices.   Photocurrent measurements were performed in the spectral 300nm‐1,000nm. A calibrated  photodiode was used to normalize the photocurrent to A/W.   The op cal transmission graph and the photocurrent graph were compared.  Discussion:   ‐ Op cal transmission: the polymer PCPDTBT and PCBM are present. Figure 4 (B) shows the presence of PCBM  with the 350nm wavelength. The figure also shows PCPDTBT at the wavelength of 800nm. PCBM has larger  volume frac on  ‐ Photocurrent spectrum: Reflects the bands of the op cal transmission with peaks at 350nm and 800nm. Ex‐ citons are equally created and separated in the PCPDTBT polymer and PCBM.  Figure 2: Cross‐sec onal view of the fabrica on process steps. a) ITO glass slide b) pa erned ITO glass slide c)  HIL layer spincoa ng d) polymer layer spincoa ng e) aluminum strip layer thermal evapora on f) silver paste  contact points.  Figure 1: (A) Schema c representa on of bulk heterojunc on solar cell illustra ng the processes of light ab‐ sorp on and photocurrent genera on, supported by an energy diagram. (i) absorbed photon generates exci‐ ton. (ii) exciton diffusion. (iii) exciton disassocia on in electronega ve acceptor. (iv) electron‐hole separa on  due to electric field and material. (v) electron and hole move to cathode and anode, respec vely. (vi) photo‐ current. (B) Top view of complete device.