SlideShare a Scribd company logo
AMD EPYC™
Processors for AI
Nov 2023
2 |
[Public]
Broad Industry Impact
Self-driving cars can
recognize signage,
pedestrians, and
other vehicles to be
avoided
Monitor quality of
manufactured
products from food
items to printed
circuit boards
Automate checkout
lines and use product
recommendation
engines to offer
suggestions, whether
online or in
the store
Detect anomalies
including fractures
and tumors.
Use the same models
in research to assess
in vitro cell growth
and proliferation
Natural language
processing can use
spoken requests and
recommendation
engines to help point
customers to
solutions
AI-powered anomaly
detection helps stop
credit-card fraud,
while computer vision
models watch for
suspicious documents
Automotive Manufacturing Retail
Financial
Services
Medical
Service
Automation
AI extends and enriches common business workloads and activities
3 |
[Public]
AMD Propels theAI Lifecycle
TRAINING
The most data- and processing-intensive
part of the AI lifecycle. Significant
computing power is required, and servers
equipped with AMD Instinct™ accelerators
are designed to accelerate the process
INFERENCING
Once trained, AI requires comparatively
less processing power to process
incoming data and business records in
real time. Inferencing happens close to
the data and AMD EPYC™ processors
are ideal for inferencing.
4 |
[Public]
AMD EPYC™ Processors:
Inference Performance
1.78x
Up
to
SERVERS BASED ON AMD EPYC™ 9654 CPUS
RECOGNIZE VEHICLES AT 1.78X THE RATE OF
INTEL® XEON® Platinum 8940H CPU BASED SERVERS
Phoronix used the OpenVINO benchmark using INT8-FP16 data types to compare multiple CPU types. They measured a whopping 78% speedup on vehicle detection,
and a 14% speedup on age-gender recognition comparing a 2P Intel Xeon 8490H processor-powered server to a 2P AMD EPYC 9654 processor-powered server with
ATX-512 on. See endnotes SP5-192, -193
6207
11029
0 2000 4000 6000 8000 10000 12000
2 x Intel Xeon Platinum 8940H
2 x AMD EPYC 9654
OpenVINO FP16-INT8
Vehicle Detection FPS
(Higher is Better)
103184
118104
0 20000 40000 60000 80000 100000 120000 140000
2 x Intel Xeon Platinum 8940H
2 x AMD EPYC 9654
OpenVINO FP16-INT8
Age Gender Recognition Faces per Second
(Higher is Better)
5 |
[Public]
256 Threads for End-to-EndAI Boost
Results may vary due to factors including system configurations, software versions and BIOS settings. As of 6/13/2023, see endnotes: SP5-051.
• Comparison derived from TPCx-AI benchmark
covering 10 end-to-end use cases covering
training, serving and throughput
• 128C AMD EPYC 9754 delivers up to an aggregate
of ~2.2x the AI test cases per min. vs. 60C Intel
Xeon Platinum 8490H
Outstanding end-to-end AI throughput
performance on a wide variety of use cases
831
1841
120 total cores/
240 threads
4 instances / 30 vCPUs per
256 total cores/
512 threads
8 instances / 30 vCPU per
Xeon® Platinum 8490H AMD EPYC™ 9754
~2.2x
Running 2Pserverswith 128C4thGenAMDEPYC™ 9754vs.60C4thGenIntel® Xeon® Platinum8490H
End-to-end AI data science pipeline
aggregate AI
use cases/min
6 |
[Public]
ROCm™ Platform Vitis™ AI Platform
CPU Stack
Unified Inferencing Model StreamlinesAdoption
The Unified Inference Frontend (blue) provides a uniform way to link your inferencing software with the acceleration capabilities of
EPYC™ CPUs, AMD Instinct™ accelerators, and Versal™ and Zynq™ adaptive SoCs
The CPU-specific software stack includes a robust set of tools that accelerate deep learning and inference workloads
7 |
[Public]
AI Ecosystem Enablement
Model Optimization
• ResNet50, ResNet101,
ResNet152
• MobileNet-v1, MobileNet-v2
• Inception V3, Inception V4
• AlexNet, GoogleNet
• RNNs, LSTMs, GRUs
• BERT-Base, BERT-Large
• DLRM
• Wide and Deep
Key Models that use Optimized ZenDNN Primitives
Computer
Vision
Natural Language
Processing
Recommendation
Systems
8 |
[Public]
AMD Solutions forAI
Workload-optimized engines enableAI efficiency
AI Accelerators
Server CPUs
FPGAs and
Adaptive SoCs
Thank You
11 |
[Public]
End Notes
SP5-051: TPCx-AI SF3 derivative workload comparison based on AMD internal testing running multiple VM instances as of 6/13/2023. The aggregate end-to-end AI throughput test is derived from the TPCx-AI
benchmark and as such is not comparable to published TPCx-AI results, as the end-to-end AI throughput test results do not comply with the TPCx-AI Specification. Configurations: 2 x AMD EPYC 9754 on Titanite
(BIOS and Settings: AMI Core Ver. 5.25, Project Ver. RTI1000F and Default BIOS settings (SMT=on, Determinism=Auto, NPS=1)), 1.5TB (24) Dual-Rank DDR5-4800 64GB DIMMs, 1DPC, SK Hynix SHGP31-500GM
500GB NVMe, Ubuntu® 22.04 LTS (8-instances, 30 vCPUs/instance, 1841 AI test cases/min); 2 x AMD EPYC 9654 on Titanite (BIOS and Settings: AMI Core Ver. 5.25, Project Ver. RTI1000F and Default BIOS
settings (SMT=on, Determinism=Auto, NPS=1)), 1.5TB (24) Dual-Rank DDR5-4800 64GB DIMMs, 1DPC, Samsung SSD 983 DCT 960GB, Ubuntu 22.04.1 LTS (6-instance, 28 vCPUs/instance, 1554 AI test cases/min);
2 x Intel(R) Xeon(R) Platinum 8490H on Dell PowerEdge R760 (BIOS and Settings: ESE110Q-1.10 and Package C1E, Default BIOS settings (C State=Disabled, Hyper-Threading, Turbo boost= enabled (ALL)=Enabled,
SNC (Sub NUMA)=Disabled)), 2TB (32) Dual-Rank DDR5-4800 64GB DIMMs, 1DPC, Dell 1.7TB NVMe, Ubuntu 22.04.2 LTS (4-instance, 30 vCPUs/instance, 831 AI test cases/min). Results may vary due to factors
including system configurations, software versions and BIOS settings. TPC Benchmark is a trademark of the TPC.
SP5-192: OpenVINO 2022.2 FP16-INT8 Vehicle Detection FPS with AVX-512 on comparison based on Phoronix Test as of 18 Jan 2023. Configurations: 2P 96-core AMD EPYC™ 9654 (11029 FPS) powered server
versus 2P 60-core Intel® Xeon® Platinum 8940H (6207 FPS) for 1.78x the performance. https://www.phoronix.com/review/intel-sapphirerapids-avx512/7. Testing not independently verified by AMD. Scores will vary
based on system configuration and determinism mode used.
SP5-193: OpenVINO 2022.3 FP16-INT8 Age Gender Recognition Faces per Second comparison based on Phoronix Test as of 18 Jan 2023. Configurations: 2P 96-core AMD EPYC™ 9654 (118104 Faces per Second)
powered server versus 2P 60-core Intel® Xeon® Platinum 8940H (103184 Faces per Second) for 1.14x the performance. https://www.phoronix.com/review/intel-sapphirerapids-avx512/7. Testing not independently
verified by AMD. Scores will vary based on system configuration and determinism mode used.
Reference “AI Inferencing with AMD EPYC Processors” : https://www.amd.com/content/dam/amd/en/documents/solutions/ai/ai-inferencing-amd-epyc-processors-white-paper.pdf
12 |
[Public]
DISCLAIMERS AND ATTRIBUTIONS
The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to
the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and
limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18
©2023 Advanced Micro Devices, Inc. all rights reserved. AMD, the AMD arrow, EPYC, and combinations thereof are trademarks of Advanced Micro Devices, Inc Intel, the Intel logo and Xeon are trademarks of Intel
Corporation or its subsidiaries. SPEC®, SPECrate® and SPEC CPU® are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information. Other product names
used in this publication are for identification purposes only and may be trademarks of their respective companies.

More Related Content

Similar to PCCC23:日本AMD株式会社 テーマ2「AMD EPYC™ プロセッサーを用いたAIソリューション」

Accelerating Virtual Machine Access with the Storage Performance Development ...
Accelerating Virtual Machine Access with the Storage Performance Development ...Accelerating Virtual Machine Access with the Storage Performance Development ...
Accelerating Virtual Machine Access with the Storage Performance Development ...
Michelle Holley
 
Amax Gpu Hpc
Amax Gpu HpcAmax Gpu Hpc
Amax Gpu Hpc
guest0284cc2
 
NVMe_Infrastructure_final1.pdf
NVMe_Infrastructure_final1.pdfNVMe_Infrastructure_final1.pdf
NVMe_Infrastructure_final1.pdf
IrfanBroadband
 
IBM System Storage TS7650G ProtecTIER Deduplication Gateway
IBM System Storage TS7650G ProtecTIER Deduplication GatewayIBM System Storage TS7650G ProtecTIER Deduplication Gateway
IBM System Storage TS7650G ProtecTIER Deduplication Gateway
IBM India Smarter Computing
 
Dell NVIDIA AI Powered Transformation Webinar
Dell NVIDIA AI Powered Transformation WebinarDell NVIDIA AI Powered Transformation Webinar
Dell NVIDIA AI Powered Transformation Webinar
Bill Wong
 
DUG'20: 11 - Platform Performance Evolution from bring-up to reaching link sa...
DUG'20: 11 - Platform Performance Evolution from bring-up to reaching link sa...DUG'20: 11 - Platform Performance Evolution from bring-up to reaching link sa...
DUG'20: 11 - Platform Performance Evolution from bring-up to reaching link sa...
Andrey Kudryavtsev
 
High Memory Bandwidth Demo @ One Intel Station
High Memory Bandwidth Demo @ One Intel StationHigh Memory Bandwidth Demo @ One Intel Station
High Memory Bandwidth Demo @ One Intel Station
Intel IT Center
 
Deep Dive On Intel Optane SSDs And New Server Platforms
Deep Dive On Intel Optane SSDs And New Server PlatformsDeep Dive On Intel Optane SSDs And New Server Platforms
Deep Dive On Intel Optane SSDs And New Server Platforms
NEXTtour
 
Supermicro’s Universal GPU: Modular, Standards Based and Built for the Future
Supermicro’s Universal GPU: Modular, Standards Based and Built for the FutureSupermicro’s Universal GPU: Modular, Standards Based and Built for the Future
Supermicro’s Universal GPU: Modular, Standards Based and Built for the Future
Rebekah Rodriguez
 
Ibm power 824
Ibm power 824Ibm power 824
Ibm power 824
Diego Rodriguez
 
Chipsets amd
Chipsets amdChipsets amd
Chipsets amd
abinegrete
 
AMD Opteron 6000 Series Platform Press Presentation
AMD Opteron 6000 Series Platform Press PresentationAMD Opteron 6000 Series Platform Press Presentation
AMD Opteron 6000 Series Platform Press Presentation
AMD
 
Re-Imagining the Data Center with Intel
Re-Imagining the Data Center with IntelRe-Imagining the Data Center with Intel
Re-Imagining the Data Center with Intel
Intel IT Center
 
hbaseconasia2019 HBase Bucket Cache on Persistent Memory
hbaseconasia2019 HBase Bucket Cache on Persistent Memoryhbaseconasia2019 HBase Bucket Cache on Persistent Memory
hbaseconasia2019 HBase Bucket Cache on Persistent Memory
Michael Stack
 
Enabling ARM® Server Technology for the Datacenter
Enabling ARM® Server Technology for the DatacenterEnabling ARM® Server Technology for the Datacenter
Enabling ARM® Server Technology for the Datacenter
AMD
 
TDC2019 Intel Software Day - Tecnicas de Programacao Paralela em Machine Lear...
TDC2019 Intel Software Day - Tecnicas de Programacao Paralela em Machine Lear...TDC2019 Intel Software Day - Tecnicas de Programacao Paralela em Machine Lear...
TDC2019 Intel Software Day - Tecnicas de Programacao Paralela em Machine Lear...
tdc-globalcode
 
Innovation with ai at scale on the edge vt sept 2019 v0
Innovation with ai at scale  on the edge vt sept 2019 v0Innovation with ai at scale  on the edge vt sept 2019 v0
Innovation with ai at scale on the edge vt sept 2019 v0
Ganesan Narayanasamy
 
Extend HPC Workloads to Amazon EC2 Instances with Intel and Rescale (CMP373-S...
Extend HPC Workloads to Amazon EC2 Instances with Intel and Rescale (CMP373-S...Extend HPC Workloads to Amazon EC2 Instances with Intel and Rescale (CMP373-S...
Extend HPC Workloads to Amazon EC2 Instances with Intel and Rescale (CMP373-S...
Amazon Web Services
 
HPC DAY 2017 | Accelerating tomorrow's HPC and AI workflows with Intel Archit...
HPC DAY 2017 | Accelerating tomorrow's HPC and AI workflows with Intel Archit...HPC DAY 2017 | Accelerating tomorrow's HPC and AI workflows with Intel Archit...
HPC DAY 2017 | Accelerating tomorrow's HPC and AI workflows with Intel Archit...
HPC DAY
 
Summit workshop thompto
Summit workshop thomptoSummit workshop thompto
Summit workshop thompto
Ganesan Narayanasamy
 

Similar to PCCC23:日本AMD株式会社 テーマ2「AMD EPYC™ プロセッサーを用いたAIソリューション」 (20)

Accelerating Virtual Machine Access with the Storage Performance Development ...
Accelerating Virtual Machine Access with the Storage Performance Development ...Accelerating Virtual Machine Access with the Storage Performance Development ...
Accelerating Virtual Machine Access with the Storage Performance Development ...
 
Amax Gpu Hpc
Amax Gpu HpcAmax Gpu Hpc
Amax Gpu Hpc
 
NVMe_Infrastructure_final1.pdf
NVMe_Infrastructure_final1.pdfNVMe_Infrastructure_final1.pdf
NVMe_Infrastructure_final1.pdf
 
IBM System Storage TS7650G ProtecTIER Deduplication Gateway
IBM System Storage TS7650G ProtecTIER Deduplication GatewayIBM System Storage TS7650G ProtecTIER Deduplication Gateway
IBM System Storage TS7650G ProtecTIER Deduplication Gateway
 
Dell NVIDIA AI Powered Transformation Webinar
Dell NVIDIA AI Powered Transformation WebinarDell NVIDIA AI Powered Transformation Webinar
Dell NVIDIA AI Powered Transformation Webinar
 
DUG'20: 11 - Platform Performance Evolution from bring-up to reaching link sa...
DUG'20: 11 - Platform Performance Evolution from bring-up to reaching link sa...DUG'20: 11 - Platform Performance Evolution from bring-up to reaching link sa...
DUG'20: 11 - Platform Performance Evolution from bring-up to reaching link sa...
 
High Memory Bandwidth Demo @ One Intel Station
High Memory Bandwidth Demo @ One Intel StationHigh Memory Bandwidth Demo @ One Intel Station
High Memory Bandwidth Demo @ One Intel Station
 
Deep Dive On Intel Optane SSDs And New Server Platforms
Deep Dive On Intel Optane SSDs And New Server PlatformsDeep Dive On Intel Optane SSDs And New Server Platforms
Deep Dive On Intel Optane SSDs And New Server Platforms
 
Supermicro’s Universal GPU: Modular, Standards Based and Built for the Future
Supermicro’s Universal GPU: Modular, Standards Based and Built for the FutureSupermicro’s Universal GPU: Modular, Standards Based and Built for the Future
Supermicro’s Universal GPU: Modular, Standards Based and Built for the Future
 
Ibm power 824
Ibm power 824Ibm power 824
Ibm power 824
 
Chipsets amd
Chipsets amdChipsets amd
Chipsets amd
 
AMD Opteron 6000 Series Platform Press Presentation
AMD Opteron 6000 Series Platform Press PresentationAMD Opteron 6000 Series Platform Press Presentation
AMD Opteron 6000 Series Platform Press Presentation
 
Re-Imagining the Data Center with Intel
Re-Imagining the Data Center with IntelRe-Imagining the Data Center with Intel
Re-Imagining the Data Center with Intel
 
hbaseconasia2019 HBase Bucket Cache on Persistent Memory
hbaseconasia2019 HBase Bucket Cache on Persistent Memoryhbaseconasia2019 HBase Bucket Cache on Persistent Memory
hbaseconasia2019 HBase Bucket Cache on Persistent Memory
 
Enabling ARM® Server Technology for the Datacenter
Enabling ARM® Server Technology for the DatacenterEnabling ARM® Server Technology for the Datacenter
Enabling ARM® Server Technology for the Datacenter
 
TDC2019 Intel Software Day - Tecnicas de Programacao Paralela em Machine Lear...
TDC2019 Intel Software Day - Tecnicas de Programacao Paralela em Machine Lear...TDC2019 Intel Software Day - Tecnicas de Programacao Paralela em Machine Lear...
TDC2019 Intel Software Day - Tecnicas de Programacao Paralela em Machine Lear...
 
Innovation with ai at scale on the edge vt sept 2019 v0
Innovation with ai at scale  on the edge vt sept 2019 v0Innovation with ai at scale  on the edge vt sept 2019 v0
Innovation with ai at scale on the edge vt sept 2019 v0
 
Extend HPC Workloads to Amazon EC2 Instances with Intel and Rescale (CMP373-S...
Extend HPC Workloads to Amazon EC2 Instances with Intel and Rescale (CMP373-S...Extend HPC Workloads to Amazon EC2 Instances with Intel and Rescale (CMP373-S...
Extend HPC Workloads to Amazon EC2 Instances with Intel and Rescale (CMP373-S...
 
HPC DAY 2017 | Accelerating tomorrow's HPC and AI workflows with Intel Archit...
HPC DAY 2017 | Accelerating tomorrow's HPC and AI workflows with Intel Archit...HPC DAY 2017 | Accelerating tomorrow's HPC and AI workflows with Intel Archit...
HPC DAY 2017 | Accelerating tomorrow's HPC and AI workflows with Intel Archit...
 
Summit workshop thompto
Summit workshop thomptoSummit workshop thompto
Summit workshop thompto
 

More from PC Cluster Consortium

PCCC23:SCSK株式会社 テーマ1「『Azure OpenAI Service』導入支援サービス」
PCCC23:SCSK株式会社 テーマ1「『Azure OpenAI Service』導入支援サービス」PCCC23:SCSK株式会社 テーマ1「『Azure OpenAI Service』導入支援サービス」
PCCC23:SCSK株式会社 テーマ1「『Azure OpenAI Service』導入支援サービス」
PC Cluster Consortium
 
PCCC23:富士通株式会社 テーマ1「次世代高性能・省電力プロセッサ『FUJITSU-MONAKA』」
PCCC23:富士通株式会社 テーマ1「次世代高性能・省電力プロセッサ『FUJITSU-MONAKA』」PCCC23:富士通株式会社 テーマ1「次世代高性能・省電力プロセッサ『FUJITSU-MONAKA』」
PCCC23:富士通株式会社 テーマ1「次世代高性能・省電力プロセッサ『FUJITSU-MONAKA』」
PC Cluster Consortium
 
PCCC23:東京大学情報基盤センター 「Society5.0の実現を目指す『計算・データ・学習』の融合による革新的スーパーコンピューティング」
PCCC23:東京大学情報基盤センター 「Society5.0の実現を目指す『計算・データ・学習』の融合による革新的スーパーコンピューティング」PCCC23:東京大学情報基盤センター 「Society5.0の実現を目指す『計算・データ・学習』の融合による革新的スーパーコンピューティング」
PCCC23:東京大学情報基盤センター 「Society5.0の実現を目指す『計算・データ・学習』の融合による革新的スーパーコンピューティング」
PC Cluster Consortium
 
PCCC23:日本AMD株式会社 テーマ1「AMD Instinct™ アクセラレーターの概要」
PCCC23:日本AMD株式会社 テーマ1「AMD Instinct™ アクセラレーターの概要」PCCC23:日本AMD株式会社 テーマ1「AMD Instinct™ アクセラレーターの概要」
PCCC23:日本AMD株式会社 テーマ1「AMD Instinct™ アクセラレーターの概要」
PC Cluster Consortium
 
PCCC23:富士通株式会社 テーマ3「Fujitsu Computing as a Service (CaaS)」
PCCC23:富士通株式会社 テーマ3「Fujitsu Computing as a Service (CaaS)」PCCC23:富士通株式会社 テーマ3「Fujitsu Computing as a Service (CaaS)」
PCCC23:富士通株式会社 テーマ3「Fujitsu Computing as a Service (CaaS)」
PC Cluster Consortium
 
PCCC23:日本オラクル株式会社 テーマ1「OCIのHPC基盤技術と生成AI」
PCCC23:日本オラクル株式会社 テーマ1「OCIのHPC基盤技術と生成AI」PCCC23:日本オラクル株式会社 テーマ1「OCIのHPC基盤技術と生成AI」
PCCC23:日本オラクル株式会社 テーマ1「OCIのHPC基盤技術と生成AI」
PC Cluster Consortium
 
PCCC23:筑波大学計算科学研究センター テーマ1「スーパーコンピュータCygnus / Pegasus」
PCCC23:筑波大学計算科学研究センター テーマ1「スーパーコンピュータCygnus / Pegasus」PCCC23:筑波大学計算科学研究センター テーマ1「スーパーコンピュータCygnus / Pegasus」
PCCC23:筑波大学計算科学研究センター テーマ1「スーパーコンピュータCygnus / Pegasus」
PC Cluster Consortium
 
PCCC23:Pacific Teck Japan テーマ1「データがデータを生む時代に即したストレージソリューション」
PCCC23:Pacific Teck Japan テーマ1「データがデータを生む時代に即したストレージソリューション」PCCC23:Pacific Teck Japan テーマ1「データがデータを生む時代に即したストレージソリューション」
PCCC23:Pacific Teck Japan テーマ1「データがデータを生む時代に即したストレージソリューション」
PC Cluster Consortium
 
PCCC23:株式会社計算科学 テーマ1「VRシミュレーションシステム」
PCCC23:株式会社計算科学 テーマ1「VRシミュレーションシステム」PCCC23:株式会社計算科学 テーマ1「VRシミュレーションシステム」
PCCC23:株式会社計算科学 テーマ1「VRシミュレーションシステム」
PC Cluster Consortium
 
PCCC22:株式会社アックス テーマ1「俺ASICとロボットと論理推論AI」
PCCC22:株式会社アックス テーマ1「俺ASICとロボットと論理推論AI」PCCC22:株式会社アックス テーマ1「俺ASICとロボットと論理推論AI」
PCCC22:株式会社アックス テーマ1「俺ASICとロボットと論理推論AI」
PC Cluster Consortium
 
PCCC22:日本AMD株式会社 テーマ1「第4世代AMD EPYC™ プロセッサー (Genoa) の概要」
PCCC22:日本AMD株式会社 テーマ1「第4世代AMD EPYC™ プロセッサー (Genoa) の概要」PCCC22:日本AMD株式会社 テーマ1「第4世代AMD EPYC™ プロセッサー (Genoa) の概要」
PCCC22:日本AMD株式会社 テーマ1「第4世代AMD EPYC™ プロセッサー (Genoa) の概要」
PC Cluster Consortium
 
PCCC22:富士通株式会社 テーマ3「量子シミュレータ」
PCCC22:富士通株式会社 テーマ3「量子シミュレータ」PCCC22:富士通株式会社 テーマ3「量子シミュレータ」
PCCC22:富士通株式会社 テーマ3「量子シミュレータ」
PC Cluster Consortium
 
PCCC22:富士通株式会社 テーマ1「Fujitsu Computing as a Service (CaaS)」
PCCC22:富士通株式会社 テーマ1「Fujitsu Computing as a Service (CaaS)」PCCC22:富士通株式会社 テーマ1「Fujitsu Computing as a Service (CaaS)」
PCCC22:富士通株式会社 テーマ1「Fujitsu Computing as a Service (CaaS)」
PC Cluster Consortium
 
PCCC22:日本電気株式会社 テーマ1「AI/ビッグデータ分析に最適なプラットフォーム NECのベクトルプロセッサ『SX-Aurora TSUBASA』」
PCCC22:日本電気株式会社 テーマ1「AI/ビッグデータ分析に最適なプラットフォーム NECのベクトルプロセッサ『SX-Aurora TSUBASA』」PCCC22:日本電気株式会社 テーマ1「AI/ビッグデータ分析に最適なプラットフォーム NECのベクトルプロセッサ『SX-Aurora TSUBASA』」
PCCC22:日本電気株式会社 テーマ1「AI/ビッグデータ分析に最適なプラットフォーム NECのベクトルプロセッサ『SX-Aurora TSUBASA』」
PC Cluster Consortium
 
PCCC22:東京大学情報基盤センター 「Society5.0の実現を目指す「計算・データ・学習」の融合による革新的スーパーコンピューティング」
PCCC22:東京大学情報基盤センター 「Society5.0の実現を目指す「計算・データ・学習」の融合による革新的スーパーコンピューティング」PCCC22:東京大学情報基盤センター 「Society5.0の実現を目指す「計算・データ・学習」の融合による革新的スーパーコンピューティング」
PCCC22:東京大学情報基盤センター 「Society5.0の実現を目指す「計算・データ・学習」の融合による革新的スーパーコンピューティング」
PC Cluster Consortium
 
PCCC22:日本マイクロソフト株式会社 テーマ2「HPC on Azureのお客様事例」03
PCCC22:日本マイクロソフト株式会社 テーマ2「HPC on Azureのお客様事例」03PCCC22:日本マイクロソフト株式会社 テーマ2「HPC on Azureのお客様事例」03
PCCC22:日本マイクロソフト株式会社 テーマ2「HPC on Azureのお客様事例」03
PC Cluster Consortium
 
PCCC22:日本マイクロソフト株式会社 テーマ2「HPC on Azureのお客様事例」01
PCCC22:日本マイクロソフト株式会社 テーマ2「HPC on Azureのお客様事例」01PCCC22:日本マイクロソフト株式会社 テーマ2「HPC on Azureのお客様事例」01
PCCC22:日本マイクロソフト株式会社 テーマ2「HPC on Azureのお客様事例」01
PC Cluster Consortium
 
PCCC22:日本マイクロソフト株式会社 テーマ1「HPC on Microsoft Azure」
PCCC22:日本マイクロソフト株式会社 テーマ1「HPC on Microsoft Azure」PCCC22:日本マイクロソフト株式会社 テーマ1「HPC on Microsoft Azure」
PCCC22:日本マイクロソフト株式会社 テーマ1「HPC on Microsoft Azure」
PC Cluster Consortium
 
PCCC22:インテル株式会社 テーマ3「インテル® oneAPI ツールキット 最新情報のご紹介」
PCCC22:インテル株式会社 テーマ3「インテル® oneAPI ツールキット 最新情報のご紹介」PCCC22:インテル株式会社 テーマ3「インテル® oneAPI ツールキット 最新情報のご紹介」
PCCC22:インテル株式会社 テーマ3「インテル® oneAPI ツールキット 最新情報のご紹介」
PC Cluster Consortium
 
PCCC22:インテル株式会社 テーマ2「次世代インテル® Xeon™ プロセッサーを中心としたインテルのHPC-AI最新情報」
PCCC22:インテル株式会社 テーマ2「次世代インテル® Xeon™ プロセッサーを中心としたインテルのHPC-AI最新情報」PCCC22:インテル株式会社 テーマ2「次世代インテル® Xeon™ プロセッサーを中心としたインテルのHPC-AI最新情報」
PCCC22:インテル株式会社 テーマ2「次世代インテル® Xeon™ プロセッサーを中心としたインテルのHPC-AI最新情報」
PC Cluster Consortium
 

More from PC Cluster Consortium (20)

PCCC23:SCSK株式会社 テーマ1「『Azure OpenAI Service』導入支援サービス」
PCCC23:SCSK株式会社 テーマ1「『Azure OpenAI Service』導入支援サービス」PCCC23:SCSK株式会社 テーマ1「『Azure OpenAI Service』導入支援サービス」
PCCC23:SCSK株式会社 テーマ1「『Azure OpenAI Service』導入支援サービス」
 
PCCC23:富士通株式会社 テーマ1「次世代高性能・省電力プロセッサ『FUJITSU-MONAKA』」
PCCC23:富士通株式会社 テーマ1「次世代高性能・省電力プロセッサ『FUJITSU-MONAKA』」PCCC23:富士通株式会社 テーマ1「次世代高性能・省電力プロセッサ『FUJITSU-MONAKA』」
PCCC23:富士通株式会社 テーマ1「次世代高性能・省電力プロセッサ『FUJITSU-MONAKA』」
 
PCCC23:東京大学情報基盤センター 「Society5.0の実現を目指す『計算・データ・学習』の融合による革新的スーパーコンピューティング」
PCCC23:東京大学情報基盤センター 「Society5.0の実現を目指す『計算・データ・学習』の融合による革新的スーパーコンピューティング」PCCC23:東京大学情報基盤センター 「Society5.0の実現を目指す『計算・データ・学習』の融合による革新的スーパーコンピューティング」
PCCC23:東京大学情報基盤センター 「Society5.0の実現を目指す『計算・データ・学習』の融合による革新的スーパーコンピューティング」
 
PCCC23:日本AMD株式会社 テーマ1「AMD Instinct™ アクセラレーターの概要」
PCCC23:日本AMD株式会社 テーマ1「AMD Instinct™ アクセラレーターの概要」PCCC23:日本AMD株式会社 テーマ1「AMD Instinct™ アクセラレーターの概要」
PCCC23:日本AMD株式会社 テーマ1「AMD Instinct™ アクセラレーターの概要」
 
PCCC23:富士通株式会社 テーマ3「Fujitsu Computing as a Service (CaaS)」
PCCC23:富士通株式会社 テーマ3「Fujitsu Computing as a Service (CaaS)」PCCC23:富士通株式会社 テーマ3「Fujitsu Computing as a Service (CaaS)」
PCCC23:富士通株式会社 テーマ3「Fujitsu Computing as a Service (CaaS)」
 
PCCC23:日本オラクル株式会社 テーマ1「OCIのHPC基盤技術と生成AI」
PCCC23:日本オラクル株式会社 テーマ1「OCIのHPC基盤技術と生成AI」PCCC23:日本オラクル株式会社 テーマ1「OCIのHPC基盤技術と生成AI」
PCCC23:日本オラクル株式会社 テーマ1「OCIのHPC基盤技術と生成AI」
 
PCCC23:筑波大学計算科学研究センター テーマ1「スーパーコンピュータCygnus / Pegasus」
PCCC23:筑波大学計算科学研究センター テーマ1「スーパーコンピュータCygnus / Pegasus」PCCC23:筑波大学計算科学研究センター テーマ1「スーパーコンピュータCygnus / Pegasus」
PCCC23:筑波大学計算科学研究センター テーマ1「スーパーコンピュータCygnus / Pegasus」
 
PCCC23:Pacific Teck Japan テーマ1「データがデータを生む時代に即したストレージソリューション」
PCCC23:Pacific Teck Japan テーマ1「データがデータを生む時代に即したストレージソリューション」PCCC23:Pacific Teck Japan テーマ1「データがデータを生む時代に即したストレージソリューション」
PCCC23:Pacific Teck Japan テーマ1「データがデータを生む時代に即したストレージソリューション」
 
PCCC23:株式会社計算科学 テーマ1「VRシミュレーションシステム」
PCCC23:株式会社計算科学 テーマ1「VRシミュレーションシステム」PCCC23:株式会社計算科学 テーマ1「VRシミュレーションシステム」
PCCC23:株式会社計算科学 テーマ1「VRシミュレーションシステム」
 
PCCC22:株式会社アックス テーマ1「俺ASICとロボットと論理推論AI」
PCCC22:株式会社アックス テーマ1「俺ASICとロボットと論理推論AI」PCCC22:株式会社アックス テーマ1「俺ASICとロボットと論理推論AI」
PCCC22:株式会社アックス テーマ1「俺ASICとロボットと論理推論AI」
 
PCCC22:日本AMD株式会社 テーマ1「第4世代AMD EPYC™ プロセッサー (Genoa) の概要」
PCCC22:日本AMD株式会社 テーマ1「第4世代AMD EPYC™ プロセッサー (Genoa) の概要」PCCC22:日本AMD株式会社 テーマ1「第4世代AMD EPYC™ プロセッサー (Genoa) の概要」
PCCC22:日本AMD株式会社 テーマ1「第4世代AMD EPYC™ プロセッサー (Genoa) の概要」
 
PCCC22:富士通株式会社 テーマ3「量子シミュレータ」
PCCC22:富士通株式会社 テーマ3「量子シミュレータ」PCCC22:富士通株式会社 テーマ3「量子シミュレータ」
PCCC22:富士通株式会社 テーマ3「量子シミュレータ」
 
PCCC22:富士通株式会社 テーマ1「Fujitsu Computing as a Service (CaaS)」
PCCC22:富士通株式会社 テーマ1「Fujitsu Computing as a Service (CaaS)」PCCC22:富士通株式会社 テーマ1「Fujitsu Computing as a Service (CaaS)」
PCCC22:富士通株式会社 テーマ1「Fujitsu Computing as a Service (CaaS)」
 
PCCC22:日本電気株式会社 テーマ1「AI/ビッグデータ分析に最適なプラットフォーム NECのベクトルプロセッサ『SX-Aurora TSUBASA』」
PCCC22:日本電気株式会社 テーマ1「AI/ビッグデータ分析に最適なプラットフォーム NECのベクトルプロセッサ『SX-Aurora TSUBASA』」PCCC22:日本電気株式会社 テーマ1「AI/ビッグデータ分析に最適なプラットフォーム NECのベクトルプロセッサ『SX-Aurora TSUBASA』」
PCCC22:日本電気株式会社 テーマ1「AI/ビッグデータ分析に最適なプラットフォーム NECのベクトルプロセッサ『SX-Aurora TSUBASA』」
 
PCCC22:東京大学情報基盤センター 「Society5.0の実現を目指す「計算・データ・学習」の融合による革新的スーパーコンピューティング」
PCCC22:東京大学情報基盤センター 「Society5.0の実現を目指す「計算・データ・学習」の融合による革新的スーパーコンピューティング」PCCC22:東京大学情報基盤センター 「Society5.0の実現を目指す「計算・データ・学習」の融合による革新的スーパーコンピューティング」
PCCC22:東京大学情報基盤センター 「Society5.0の実現を目指す「計算・データ・学習」の融合による革新的スーパーコンピューティング」
 
PCCC22:日本マイクロソフト株式会社 テーマ2「HPC on Azureのお客様事例」03
PCCC22:日本マイクロソフト株式会社 テーマ2「HPC on Azureのお客様事例」03PCCC22:日本マイクロソフト株式会社 テーマ2「HPC on Azureのお客様事例」03
PCCC22:日本マイクロソフト株式会社 テーマ2「HPC on Azureのお客様事例」03
 
PCCC22:日本マイクロソフト株式会社 テーマ2「HPC on Azureのお客様事例」01
PCCC22:日本マイクロソフト株式会社 テーマ2「HPC on Azureのお客様事例」01PCCC22:日本マイクロソフト株式会社 テーマ2「HPC on Azureのお客様事例」01
PCCC22:日本マイクロソフト株式会社 テーマ2「HPC on Azureのお客様事例」01
 
PCCC22:日本マイクロソフト株式会社 テーマ1「HPC on Microsoft Azure」
PCCC22:日本マイクロソフト株式会社 テーマ1「HPC on Microsoft Azure」PCCC22:日本マイクロソフト株式会社 テーマ1「HPC on Microsoft Azure」
PCCC22:日本マイクロソフト株式会社 テーマ1「HPC on Microsoft Azure」
 
PCCC22:インテル株式会社 テーマ3「インテル® oneAPI ツールキット 最新情報のご紹介」
PCCC22:インテル株式会社 テーマ3「インテル® oneAPI ツールキット 最新情報のご紹介」PCCC22:インテル株式会社 テーマ3「インテル® oneAPI ツールキット 最新情報のご紹介」
PCCC22:インテル株式会社 テーマ3「インテル® oneAPI ツールキット 最新情報のご紹介」
 
PCCC22:インテル株式会社 テーマ2「次世代インテル® Xeon™ プロセッサーを中心としたインテルのHPC-AI最新情報」
PCCC22:インテル株式会社 テーマ2「次世代インテル® Xeon™ プロセッサーを中心としたインテルのHPC-AI最新情報」PCCC22:インテル株式会社 テーマ2「次世代インテル® Xeon™ プロセッサーを中心としたインテルのHPC-AI最新情報」
PCCC22:インテル株式会社 テーマ2「次世代インテル® Xeon™ プロセッサーを中心としたインテルのHPC-AI最新情報」
 

Recently uploaded

Choosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptxChoosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptx
Brandon Minnick, MBA
 
Biomedical Knowledge Graphs for Data Scientists and Bioinformaticians
Biomedical Knowledge Graphs for Data Scientists and BioinformaticiansBiomedical Knowledge Graphs for Data Scientists and Bioinformaticians
Biomedical Knowledge Graphs for Data Scientists and Bioinformaticians
Neo4j
 
Generating privacy-protected synthetic data using Secludy and Milvus
Generating privacy-protected synthetic data using Secludy and MilvusGenerating privacy-protected synthetic data using Secludy and Milvus
Generating privacy-protected synthetic data using Secludy and Milvus
Zilliz
 
GNSS spoofing via SDR (Criptored Talks 2024)
GNSS spoofing via SDR (Criptored Talks 2024)GNSS spoofing via SDR (Criptored Talks 2024)
GNSS spoofing via SDR (Criptored Talks 2024)
Javier Junquera
 
Skybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoptionSkybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoption
Tatiana Kojar
 
What is an RPA CoE? Session 1 – CoE Vision
What is an RPA CoE?  Session 1 – CoE VisionWhat is an RPA CoE?  Session 1 – CoE Vision
What is an RPA CoE? Session 1 – CoE Vision
DianaGray10
 
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
Edge AI and Vision Alliance
 
Dandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity serverDandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity server
Antonios Katsarakis
 
Y-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PPY-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PP
c5vrf27qcz
 
9 CEO's who hit $100m ARR Share Their Top Growth Tactics Nathan Latka, Founde...
9 CEO's who hit $100m ARR Share Their Top Growth Tactics Nathan Latka, Founde...9 CEO's who hit $100m ARR Share Their Top Growth Tactics Nathan Latka, Founde...
9 CEO's who hit $100m ARR Share Their Top Growth Tactics Nathan Latka, Founde...
saastr
 
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
Alex Pruden
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
Jason Packer
 
The Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptxThe Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptx
operationspcvita
 
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
saastr
 
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
Edge AI and Vision Alliance
 
AppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSFAppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSF
Ajin Abraham
 
Leveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and StandardsLeveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and Standards
Neo4j
 
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Pitangent Analytics & Technology Solutions Pvt. Ltd
 
Connector Corner: Seamlessly power UiPath Apps, GenAI with prebuilt connectors
Connector Corner: Seamlessly power UiPath Apps, GenAI with prebuilt connectorsConnector Corner: Seamlessly power UiPath Apps, GenAI with prebuilt connectors
Connector Corner: Seamlessly power UiPath Apps, GenAI with prebuilt connectors
DianaGray10
 
Taking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdfTaking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdf
ssuserfac0301
 

Recently uploaded (20)

Choosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptxChoosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptx
 
Biomedical Knowledge Graphs for Data Scientists and Bioinformaticians
Biomedical Knowledge Graphs for Data Scientists and BioinformaticiansBiomedical Knowledge Graphs for Data Scientists and Bioinformaticians
Biomedical Knowledge Graphs for Data Scientists and Bioinformaticians
 
Generating privacy-protected synthetic data using Secludy and Milvus
Generating privacy-protected synthetic data using Secludy and MilvusGenerating privacy-protected synthetic data using Secludy and Milvus
Generating privacy-protected synthetic data using Secludy and Milvus
 
GNSS spoofing via SDR (Criptored Talks 2024)
GNSS spoofing via SDR (Criptored Talks 2024)GNSS spoofing via SDR (Criptored Talks 2024)
GNSS spoofing via SDR (Criptored Talks 2024)
 
Skybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoptionSkybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoption
 
What is an RPA CoE? Session 1 – CoE Vision
What is an RPA CoE?  Session 1 – CoE VisionWhat is an RPA CoE?  Session 1 – CoE Vision
What is an RPA CoE? Session 1 – CoE Vision
 
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
 
Dandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity serverDandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity server
 
Y-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PPY-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PP
 
9 CEO's who hit $100m ARR Share Their Top Growth Tactics Nathan Latka, Founde...
9 CEO's who hit $100m ARR Share Their Top Growth Tactics Nathan Latka, Founde...9 CEO's who hit $100m ARR Share Their Top Growth Tactics Nathan Latka, Founde...
9 CEO's who hit $100m ARR Share Their Top Growth Tactics Nathan Latka, Founde...
 
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
 
The Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptxThe Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptx
 
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
 
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
 
AppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSFAppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSF
 
Leveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and StandardsLeveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and Standards
 
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
 
Connector Corner: Seamlessly power UiPath Apps, GenAI with prebuilt connectors
Connector Corner: Seamlessly power UiPath Apps, GenAI with prebuilt connectorsConnector Corner: Seamlessly power UiPath Apps, GenAI with prebuilt connectors
Connector Corner: Seamlessly power UiPath Apps, GenAI with prebuilt connectors
 
Taking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdfTaking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdf
 

PCCC23:日本AMD株式会社 テーマ2「AMD EPYC™ プロセッサーを用いたAIソリューション」

  • 2. 2 | [Public] Broad Industry Impact Self-driving cars can recognize signage, pedestrians, and other vehicles to be avoided Monitor quality of manufactured products from food items to printed circuit boards Automate checkout lines and use product recommendation engines to offer suggestions, whether online or in the store Detect anomalies including fractures and tumors. Use the same models in research to assess in vitro cell growth and proliferation Natural language processing can use spoken requests and recommendation engines to help point customers to solutions AI-powered anomaly detection helps stop credit-card fraud, while computer vision models watch for suspicious documents Automotive Manufacturing Retail Financial Services Medical Service Automation AI extends and enriches common business workloads and activities
  • 3. 3 | [Public] AMD Propels theAI Lifecycle TRAINING The most data- and processing-intensive part of the AI lifecycle. Significant computing power is required, and servers equipped with AMD Instinct™ accelerators are designed to accelerate the process INFERENCING Once trained, AI requires comparatively less processing power to process incoming data and business records in real time. Inferencing happens close to the data and AMD EPYC™ processors are ideal for inferencing.
  • 4. 4 | [Public] AMD EPYC™ Processors: Inference Performance 1.78x Up to SERVERS BASED ON AMD EPYC™ 9654 CPUS RECOGNIZE VEHICLES AT 1.78X THE RATE OF INTEL® XEON® Platinum 8940H CPU BASED SERVERS Phoronix used the OpenVINO benchmark using INT8-FP16 data types to compare multiple CPU types. They measured a whopping 78% speedup on vehicle detection, and a 14% speedup on age-gender recognition comparing a 2P Intel Xeon 8490H processor-powered server to a 2P AMD EPYC 9654 processor-powered server with ATX-512 on. See endnotes SP5-192, -193 6207 11029 0 2000 4000 6000 8000 10000 12000 2 x Intel Xeon Platinum 8940H 2 x AMD EPYC 9654 OpenVINO FP16-INT8 Vehicle Detection FPS (Higher is Better) 103184 118104 0 20000 40000 60000 80000 100000 120000 140000 2 x Intel Xeon Platinum 8940H 2 x AMD EPYC 9654 OpenVINO FP16-INT8 Age Gender Recognition Faces per Second (Higher is Better)
  • 5. 5 | [Public] 256 Threads for End-to-EndAI Boost Results may vary due to factors including system configurations, software versions and BIOS settings. As of 6/13/2023, see endnotes: SP5-051. • Comparison derived from TPCx-AI benchmark covering 10 end-to-end use cases covering training, serving and throughput • 128C AMD EPYC 9754 delivers up to an aggregate of ~2.2x the AI test cases per min. vs. 60C Intel Xeon Platinum 8490H Outstanding end-to-end AI throughput performance on a wide variety of use cases 831 1841 120 total cores/ 240 threads 4 instances / 30 vCPUs per 256 total cores/ 512 threads 8 instances / 30 vCPU per Xeon® Platinum 8490H AMD EPYC™ 9754 ~2.2x Running 2Pserverswith 128C4thGenAMDEPYC™ 9754vs.60C4thGenIntel® Xeon® Platinum8490H End-to-end AI data science pipeline aggregate AI use cases/min
  • 6. 6 | [Public] ROCm™ Platform Vitis™ AI Platform CPU Stack Unified Inferencing Model StreamlinesAdoption The Unified Inference Frontend (blue) provides a uniform way to link your inferencing software with the acceleration capabilities of EPYC™ CPUs, AMD Instinct™ accelerators, and Versal™ and Zynq™ adaptive SoCs The CPU-specific software stack includes a robust set of tools that accelerate deep learning and inference workloads
  • 7. 7 | [Public] AI Ecosystem Enablement Model Optimization • ResNet50, ResNet101, ResNet152 • MobileNet-v1, MobileNet-v2 • Inception V3, Inception V4 • AlexNet, GoogleNet • RNNs, LSTMs, GRUs • BERT-Base, BERT-Large • DLRM • Wide and Deep Key Models that use Optimized ZenDNN Primitives Computer Vision Natural Language Processing Recommendation Systems
  • 8. 8 | [Public] AMD Solutions forAI Workload-optimized engines enableAI efficiency AI Accelerators Server CPUs FPGAs and Adaptive SoCs
  • 10.
  • 11. 11 | [Public] End Notes SP5-051: TPCx-AI SF3 derivative workload comparison based on AMD internal testing running multiple VM instances as of 6/13/2023. The aggregate end-to-end AI throughput test is derived from the TPCx-AI benchmark and as such is not comparable to published TPCx-AI results, as the end-to-end AI throughput test results do not comply with the TPCx-AI Specification. Configurations: 2 x AMD EPYC 9754 on Titanite (BIOS and Settings: AMI Core Ver. 5.25, Project Ver. RTI1000F and Default BIOS settings (SMT=on, Determinism=Auto, NPS=1)), 1.5TB (24) Dual-Rank DDR5-4800 64GB DIMMs, 1DPC, SK Hynix SHGP31-500GM 500GB NVMe, Ubuntu® 22.04 LTS (8-instances, 30 vCPUs/instance, 1841 AI test cases/min); 2 x AMD EPYC 9654 on Titanite (BIOS and Settings: AMI Core Ver. 5.25, Project Ver. RTI1000F and Default BIOS settings (SMT=on, Determinism=Auto, NPS=1)), 1.5TB (24) Dual-Rank DDR5-4800 64GB DIMMs, 1DPC, Samsung SSD 983 DCT 960GB, Ubuntu 22.04.1 LTS (6-instance, 28 vCPUs/instance, 1554 AI test cases/min); 2 x Intel(R) Xeon(R) Platinum 8490H on Dell PowerEdge R760 (BIOS and Settings: ESE110Q-1.10 and Package C1E, Default BIOS settings (C State=Disabled, Hyper-Threading, Turbo boost= enabled (ALL)=Enabled, SNC (Sub NUMA)=Disabled)), 2TB (32) Dual-Rank DDR5-4800 64GB DIMMs, 1DPC, Dell 1.7TB NVMe, Ubuntu 22.04.2 LTS (4-instance, 30 vCPUs/instance, 831 AI test cases/min). Results may vary due to factors including system configurations, software versions and BIOS settings. TPC Benchmark is a trademark of the TPC. SP5-192: OpenVINO 2022.2 FP16-INT8 Vehicle Detection FPS with AVX-512 on comparison based on Phoronix Test as of 18 Jan 2023. Configurations: 2P 96-core AMD EPYC™ 9654 (11029 FPS) powered server versus 2P 60-core Intel® Xeon® Platinum 8940H (6207 FPS) for 1.78x the performance. https://www.phoronix.com/review/intel-sapphirerapids-avx512/7. Testing not independently verified by AMD. Scores will vary based on system configuration and determinism mode used. SP5-193: OpenVINO 2022.3 FP16-INT8 Age Gender Recognition Faces per Second comparison based on Phoronix Test as of 18 Jan 2023. Configurations: 2P 96-core AMD EPYC™ 9654 (118104 Faces per Second) powered server versus 2P 60-core Intel® Xeon® Platinum 8940H (103184 Faces per Second) for 1.14x the performance. https://www.phoronix.com/review/intel-sapphirerapids-avx512/7. Testing not independently verified by AMD. Scores will vary based on system configuration and determinism mode used. Reference “AI Inferencing with AMD EPYC Processors” : https://www.amd.com/content/dam/amd/en/documents/solutions/ai/ai-inferencing-amd-epyc-processors-white-paper.pdf
  • 12. 12 | [Public] DISCLAIMERS AND ATTRIBUTIONS The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18 ©2023 Advanced Micro Devices, Inc. all rights reserved. AMD, the AMD arrow, EPYC, and combinations thereof are trademarks of Advanced Micro Devices, Inc Intel, the Intel logo and Xeon are trademarks of Intel Corporation or its subsidiaries. SPEC®, SPECrate® and SPEC CPU® are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.