Partial Fraction Theorem
• Lecture -16
Yaindrila Barua
Lecturer, GED,
DIU
𝓛−𝟏 𝒇 𝒔 = 𝑭(𝒕) 𝓛−𝟏 𝒈 𝒔 = 𝑮(𝒕)
ℒ−1
𝑓 𝑠 𝑔 𝑠 =? ? ?
=
0
𝑡
𝐹 𝑢 𝐺 𝑡 − 𝑢 𝑑𝑢
= 𝐹 ∗ 𝐺
Convolution Theorem
𝓛−𝟏 𝒇 𝒔 = 𝑭(𝒕) 𝓛−𝟏 𝒈 𝒔 = 𝑮(𝒕)
𝓛−𝟏
𝟑
𝒔 − 𝟒
= 𝟑𝒆 𝟒𝒕 𝓛−𝟏
𝟒
𝒔 + 𝟗
= 𝟒𝒆−𝟗𝒕
ℒ−1
12
(𝑠 − 4)(𝑠 + 9)
=? ? ?
=
0
𝑡
𝐹 𝑢 𝐺 𝑡 − 𝑢 𝑑𝑢
𝐹(𝑡) 𝐺(𝑡)
=
0
𝑡
12𝑒4𝑢
𝑒−9𝑡+9𝑢
𝑑𝑢
= 12𝑒−9𝑡
0
𝑡
𝑒13𝑢
𝑑𝑢 = 12𝑒−9𝑡
[
𝑒13𝑢
13
]0
𝑡
=
12
13
𝑒−9𝑡
[𝑒13𝑡
− 1]
Convolution Theorem
8/8/2020
4
Problems: Evaluate the following using Convolution theorem
Problems on Convolution Theorem
Solution (a):
8/8/2020 5
We can write,
1
(s -1)(s -2)
=
1
(s -1)
×
1
(s -2)
Let f (s)=
1
(s -1)
and g(s)=
1
(s -2)
Problems on Convolution Theorem
8/8/2020
6
= eu
0
t
ò e2(t-u)
du = eu
0
t
ò e2t
e-2u
du
= e2t
e-u
0
t
ò du = e2t
-e-u
é
ë
ù
û0
t
= -e2t
e-t
-e0
é
ë
ù
û
= -e2t
e-t
-1é
ë
ù
û = -e2t-t
+e2t
= e2t
-et
(Ans)
Partial Fraction Method
Problems: Evaluate the following using partial fraction method
8/8/2020 7
Partial Fraction Method
Solution (a):
8/8/2020
8
We can write,
2s2
-4
(s +1)(s -2)(s -3)
º
A
(s +1)
+
B
(s -2)
+
C
(s -3)
××××××(1)
2s2
-4= A(s-2)(s-3)+B(s+1)(s-3)+C(s+1)(s-2)××××××××(2)
Now, putting s = -1, 2, and 3 inequation(2), we get
2×1-4= A(-1-2)(-1-3)+0+0
Þ12A= -2 A=
-1
6
2×22
-4=0+B(2+1)(2-3)+0 B = -
4
3
Partial Fraction Method
Again,
8/8/2020
9
2×32
-4=0+0+C(3+1)(3-2) C =
7
2
Now, putting the values of A,B,and C inequation(1), we get
2s2
-4
(s +1)(s -2)(s -3)
=
-1/6
(s +1)
+
-4/3
(s -2)
+
7/2
(s -3)
=
-1
6
e-1t
+
-4
3
e2t
+
7
2
e3t
(Ans)
Partial Fraction Method
Solution (b):
8/8/2020
10
We can write,
3s +1
(s -1)(s2
+1)
=
A
s -1
+
Bs +c
s2
+1
×××××××××(1)
3s+1= A(s2
+1)+(Bs+C)(s-1)××××××××(2)
Now, putting s =1 inequation(2), we get
3×1+1= A(12
+1)+0
Þ2A=4 A=2
Now, equating the coefficient of s2
and constants form(2)
0= A+B ÞB = -A, therefore B = -2
Partial Fraction Method
8/8/2020
11
Again for constant, 1= A-C
1=2-C C =1
Now, putting the values of A,B,andC inequation(1), we get
3s +1
(s -1)(s2
+1)
=
2
s -1
+
-2s +1
s2
+1
=2et
-2cost +sint (Ans)
=
2
s -1
-2
s
s2
+12
+
1
s2
+12
Partial Fraction Method
Solution (b):
8/8/2020
12
We can write,
5s2
-15s-11
(s+1)(s-2)3
º
A
s+1
+
B
(s-2)
+
C
(s-2)2
+
D
(s-2)3
×××××××××(1)
5s2
-15s-11º A(s-2)3
+B(s+1)(s-2)2
+C(s+1)(s-2)+D(s+1)××××××××(2)
Now, putting s = -1 inequation(2), we get
Now, equating the coefficient of s3
,s2
,s and constants form(2)
Do by yourself
Do by yourself

Partial fraction Laplace transformation Engineering Mathematics

  • 1.
    Partial Fraction Theorem •Lecture -16 Yaindrila Barua Lecturer, GED, DIU
  • 2.
    𝓛−𝟏 𝒇 𝒔= 𝑭(𝒕) 𝓛−𝟏 𝒈 𝒔 = 𝑮(𝒕) ℒ−1 𝑓 𝑠 𝑔 𝑠 =? ? ? = 0 𝑡 𝐹 𝑢 𝐺 𝑡 − 𝑢 𝑑𝑢 = 𝐹 ∗ 𝐺 Convolution Theorem
  • 3.
    𝓛−𝟏 𝒇 𝒔= 𝑭(𝒕) 𝓛−𝟏 𝒈 𝒔 = 𝑮(𝒕) 𝓛−𝟏 𝟑 𝒔 − 𝟒 = 𝟑𝒆 𝟒𝒕 𝓛−𝟏 𝟒 𝒔 + 𝟗 = 𝟒𝒆−𝟗𝒕 ℒ−1 12 (𝑠 − 4)(𝑠 + 9) =? ? ? = 0 𝑡 𝐹 𝑢 𝐺 𝑡 − 𝑢 𝑑𝑢 𝐹(𝑡) 𝐺(𝑡) = 0 𝑡 12𝑒4𝑢 𝑒−9𝑡+9𝑢 𝑑𝑢 = 12𝑒−9𝑡 0 𝑡 𝑒13𝑢 𝑑𝑢 = 12𝑒−9𝑡 [ 𝑒13𝑢 13 ]0 𝑡 = 12 13 𝑒−9𝑡 [𝑒13𝑡 − 1]
  • 4.
    Convolution Theorem 8/8/2020 4 Problems: Evaluatethe following using Convolution theorem
  • 5.
    Problems on ConvolutionTheorem Solution (a): 8/8/2020 5 We can write, 1 (s -1)(s -2) = 1 (s -1) × 1 (s -2) Let f (s)= 1 (s -1) and g(s)= 1 (s -2)
  • 6.
    Problems on ConvolutionTheorem 8/8/2020 6 = eu 0 t ò e2(t-u) du = eu 0 t ò e2t e-2u du = e2t e-u 0 t ò du = e2t -e-u é ë ù û0 t = -e2t e-t -e0 é ë ù û = -e2t e-t -1é ë ù û = -e2t-t +e2t = e2t -et (Ans)
  • 7.
    Partial Fraction Method Problems:Evaluate the following using partial fraction method 8/8/2020 7
  • 8.
    Partial Fraction Method Solution(a): 8/8/2020 8 We can write, 2s2 -4 (s +1)(s -2)(s -3) º A (s +1) + B (s -2) + C (s -3) ××××××(1) 2s2 -4= A(s-2)(s-3)+B(s+1)(s-3)+C(s+1)(s-2)××××××××(2) Now, putting s = -1, 2, and 3 inequation(2), we get 2×1-4= A(-1-2)(-1-3)+0+0 Þ12A= -2 A= -1 6 2×22 -4=0+B(2+1)(2-3)+0 B = - 4 3
  • 9.
    Partial Fraction Method Again, 8/8/2020 9 2×32 -4=0+0+C(3+1)(3-2)C = 7 2 Now, putting the values of A,B,and C inequation(1), we get 2s2 -4 (s +1)(s -2)(s -3) = -1/6 (s +1) + -4/3 (s -2) + 7/2 (s -3) = -1 6 e-1t + -4 3 e2t + 7 2 e3t (Ans)
  • 10.
    Partial Fraction Method Solution(b): 8/8/2020 10 We can write, 3s +1 (s -1)(s2 +1) = A s -1 + Bs +c s2 +1 ×××××××××(1) 3s+1= A(s2 +1)+(Bs+C)(s-1)××××××××(2) Now, putting s =1 inequation(2), we get 3×1+1= A(12 +1)+0 Þ2A=4 A=2 Now, equating the coefficient of s2 and constants form(2) 0= A+B ÞB = -A, therefore B = -2
  • 11.
    Partial Fraction Method 8/8/2020 11 Againfor constant, 1= A-C 1=2-C C =1 Now, putting the values of A,B,andC inequation(1), we get 3s +1 (s -1)(s2 +1) = 2 s -1 + -2s +1 s2 +1 =2et -2cost +sint (Ans) = 2 s -1 -2 s s2 +12 + 1 s2 +12
  • 12.
    Partial Fraction Method Solution(b): 8/8/2020 12 We can write, 5s2 -15s-11 (s+1)(s-2)3 º A s+1 + B (s-2) + C (s-2)2 + D (s-2)3 ×××××××××(1) 5s2 -15s-11º A(s-2)3 +B(s+1)(s-2)2 +C(s+1)(s-2)+D(s+1)××××××××(2) Now, putting s = -1 inequation(2), we get Now, equating the coefficient of s3 ,s2 ,s and constants form(2) Do by yourself Do by yourself