SlideShare a Scribd company logo
1 of 51
Download to read offline
Fall 2008 EE 410/510:
Microfabrication and Semiconductor Processes
M W 12:45 PM – 2:20 PM
EB 239 Engineering Bldg.
Instructor: John D. Williams, Ph.D.
Assistant Professor of Electrical and Computer Engineering
Associate Director of the Nano and Micro Devices Center
University of Alabama in Huntsville
406 Optics Building
Huntsville, AL 35899
Phone: (256) 824-2898
Fax: (256) 824-2898
email: williams@eng.uah.edu
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
2
Basic Vacuum Science
• 1 atm = 101 kPa= 760 torr
• Gass flow is measured in torr liters/ sec
• Flow rate for a vacuum, Q, is determined the difference in pressure on each end of
the system times the conductance across that system
• Conductance for a given tube diameter in a vacuum is
• Pumping speed of the system, Sp = Q/Pinlet. Pinlet = pressure at the pump inlet
• Net speed of the vacuum chamber is
• Time required to pump the system from an initial pressure is (V= chamber volume)
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
3
Vacuum pumps• Rotary-vane (roughing pumps) pull vacuums
from atm to 10-3 torr
• Below 100 mtorr oil in the pump often leaks
back into the pump chamber. This is called
backstreaming and is eliminated by placing a
filter between the pump and the chamber.
• High vacuum pumps are required to operate
chambers under vacuums lower than 10-3 torr
(or vacuums of 10-2 torr for long time periods)
• High vacuums are generated by
– Turbomolecular pumps
• Series of high speed fans that pull molecules
through the spinning blades into a low vacuum
regime
– Diffusion pumps
– Cryo pumps
– Base pressures of 10-7 torr, below which there
are not enough molecules to effectively pull from
the vacuum
• Ultra high vacuum is obtained in high vacuum
conditions by adding an ion pump that
electrostatically captures ionized molecules in
the gas
– Requires outgassing of the vacuum by baking at
350-400oC after high vacuum pumping
– Reaches base pressures of 10-11 torr
Mechanical pump
Turbomolecular pump
http://www.lesker.com/newweb/index.cfm Drawings from Caltech Thin Film Lab no. 3 lab description
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
4
Vacuum pumps (Diffusion Pumps)
Diffusion pump• Require rough vacuum to operate
• Heat oil which evaporates and is cooled along the height of the pump
• Hot oil “grabs” molecules and is condensed by cooling back down
into a liquid near the heat source.
• Oil is cooled by piping liquid nitrogen or cold water around the pump
http://www.lesker.com/newweb/index.cfm
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
5
Vacuum Gauges
http://www.lesker.com/newweb/index.cfm
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
6
High Vacuum System for Physical 
Vapor Deposition
• Vacuum Chamber (in this 
case a bell jar with a 
metallic safety shield 
around it)
• Valves
• Turbo pump
• Capacitive Gauge
• Mechanical Pump
• Question:  Can you spot the 
course vacuum gauge?
http://fie.engrng.pitt.edu/fie98/papers/1228b.pdf
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
7
Thin Film Deposition
• Physical Vapor Deposition (PVD)
– Films formed by physical process of atom transport to the substrate in the gas phase
• Thermal evaporation
• E‐beam evaporation
• Sputtering
– DC, DC magnetron, RF
• Molecular Beam Epitaxy (MBE)
• Chemical Vapor Deposition (CVD)
– Chemically reacted materials at the substrate surface form thin film of product material
• Low‐Pressure CVD (LPVCD)
• Plasma‐Enhanced CVD (PECVD)
• Atmospheric‐Pressure CVD (APCVD)
• Metal‐Organic CVD (MOCVD)
• Laser Assisted CVD
• Atomic Layer Deposition (ALD)
• Combination processes
– Reactive Sputtering – material in gas phase reacts with oxygen, nitrogen, etc. to form oxide or nitride 
film
– Electroplating – electrochemical reactions in the liquid or solid phase produce metallic or organo‐
metallic thin films on a surface 
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
8
General Characteristics
• Deposition Rate
• Film Uniformity
– Across the substrate
– Run to run
• Materials deposited by a particular method
– Metal, dielectric, polymer
• Film Quality
– Adhesion
– Stress
– Stoichiometry
– Density
– Grain size and orientation
– Breakdown voltage (dielectrics)
– Impurities
• Conformality (depends on technique and process)
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
9
Thermal Evaporation
• Sufficient vacuum is pulled on a chamber such that the mean free path of
atoms in the chamber is greater than the distance between the source and
the target
• Mean free path, l, of a molecule in a gas is
• Source material is then heated until it evaporates from the surface
kb = boltzmans constant
T= temperature
D = diameter of the gas molecule
P = pressure of the chamber
http://www.mrsec.harvard.edu/education/ap298r2004/Erli%20chenFabrication%20II%20-%20Deposition-1.pdf http://www.lesker.com/newweb/index.cfm
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
10
E‐beam Evaporation
• Same vacuum conditions as before
• Electrons are emitted from a metallic tip at 10KeV
• Their trajectory is bent using a strong magnetic field
• Electrons are smashed into a crucible containing the source 
material 
• Constant flow of electrons into material heats it until 
evaporation takes place
• Virtually unlimited supply of source material for a single 
deposition
• Electron bombardment heats very effectively allowing 
deposition of very high temperature materials and 
dielectrics
http://www.mrsec.harvard.edu/education/ap298r2004/Erli%20chenFabrication%20II%20-%20Deposition-1.pdf http://www.lesker.com/newweb/index.cfm
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
11
• Evaporation Rate, R, is
– Constant =1/(2πkb)1/2
– M = molecular weight of the evaporant
– T = source temperature in Kelvin
– Pv(T)= capor pressure of the evaporatant in torr
Evaporation Rate from Souce
( ) 2/12
22
)(
)(coscos
10*513.3
MT
TP
r
R vϕθ
=
Of great importance is to note that this is a line of
sight method. Deposition rate depends directly on
the angle between the source and the target
Note: book uses F instead of R
http://www.mrsec.harvard.edu/education/ap298r2004/Erli%20chenFabrication%20II%20-%20Deposition-1.pdf
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
12
• Deposition rate, dh/dt, is
– Ae = source surface area
– ρ = evaporant density
Deposition Rate on Surface
( ) 2/12
22
)(
)(coscos
10*513.3
MT
TPA
r
FA
dt
dh vee
ρ
ϕθ
ρ
==
Pe for Al at 900K is approx 10-10 torr
Which increases to roughly 0.5 at approx. 1500 K
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
13
Deposition Uniformity 
Across the Substrate
http://www.mrsec.harvard.edu/education/ap298r2004/Erli%20chenFabrication%20II%20-%20Deposition-1.pdf
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
14
Uniformity of Films as a Function of 
Distance From the Source
http://www.mrsec.harvard.edu/education/ap298r2004/Erli%20chenFabrication%20II%20-%20Deposition-1.pdf
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
15
Comparing E‐beam and Thermal 
Evaporation
http://www.mrsec.harvard.edu/education/ap298r2004/Erli%20chenFabrication%20II%20-%20Deposition-1.pdf
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
16
Sputter Deposition
• Physical deposition occurs when a
plasma is struck between a target and
a substrate in an inert gas such as (Ar)
• Average voltage placed across the
chamber is between 300 and 1000 V
• Unlike Plasma etching, the cathode
(positive electrode) is the target
• Substrate is the negative surface
(anode) which receives deposited ions
impinged on the surface
• Sputtering occurs at relatively high
pressures where the mean free path is
much smaller than distance between
target and substrate
• Deposition rate is inversely
proportional to both the path length
and the pressure of the system
• Instead deposition is driven by the
working voltage and the discharge
current (or ionic flux) across the
plasma
• Reactive Deposition occurs in the
presence of O2 or N2 plasmas
Sputter Targets
http://www.mrsec.harvard.edu/education/ap298r2004/Erli%20chenFabrication%20II%20-%20Deposition-1.pdf
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
17
Magnetron Sputtering
• Increases deposition rate by up to 100 times
• Lower chamber pressure by up to 100 times
• Magnetic field near cathode allow electrons to
hop near the surface increasing ion milling rate
http://www.mrsec.harvard.edu/education/ap298r2004/Erli%20chenFabrication%20II%20-%20Deposition-1.pdf
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
18
RF Sputtering
• Allows deposition of dielectrics
• Ions cannot follow switching at 
frequencies greater than 1 MHz 
and are accelerated toward 
substrate
• Electrons follow voltage cycles 
maintaining potential matching at 
target and neutralizing positive 
charge buildup that would 
normally inhibit dielectric 
deposition
• Reduced voltage between 
electrodes may require higher 
fields to be used
http://www.mrsec.harvard.edu/education/ap298r2004/Erli%20chenFabrication%20II%20-%20Deposition-1.pdf
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
19
Comparison of Evaporation and 
Sputter Deposition
Nonconformal, Line of sight
process
Conformality Depends on
Plasma Conditions
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
20
Theoretical Models for Thin Film 
Growth
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
21
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
22
Thermal Oxidation and Nitration
H20
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
23
Fick’s First Law of Diffusion
• Fick’s 1st law of diffusion: any material that 
is free to move will experience a net 
redistribution in attempt to eliminate any 
concentration gradient
– C = impurity concentration (mol/m3)
– D = diffusion coefficient (m2/s)
– J = net flux of material (mol/(m2*s)
– Flux moves from high to low 
concentrations (i.e. negative sign)
x
txC
DJ
∂
∂
−=
),(
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛ −
−=
Tk
E
DTD
B
A
o exp)(
Cp Co
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
24
Diffusive Oxide Growth
• For oxide growth, flux is assigned in three 
regions, J1, J2, J3
x
txC
DJ
∂
∂
−=
),(
SiO2 SiGas
Cg Cs Co Ci
)(1
1 2
sgggas
B
g
sl
sg
O
CChJJ
Tk
Pg
V
n
C
t
CC
DJ
−==
==
−
≈
Oxygen molecules diffuse from
bulk to surface concentrations
Bulk gas concentration can be
estimated using ideal gas law
Flux is estimated using mass
transport coefficient, hg
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
25
Diffusive Growth (2)
• Assuming that there are no sources or 
sinks of oxygen at the surface, then the 
flux of oxygen within the growing oxide 
film is based simply on diffusion from the 
surface
– tox is the oxide surface thickness
• The third flux is due to the reaction rage 
of silicon with the oxygen concentration at 
the Si/SiO2 interface
– k3= chemical rate constant
• Finally, under equilibrium conditions, all of 
the individual fluxes must balance
321
33
2 2
JJJ
CkJ
t
CC
DJ
i
ox
io
O
==
=
−
=≈
SiO2 SiGas
Cg Cs Co Ci
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
26
• Accounting for these three fluxes provides 
two equations and three unknown 
concentrations, Cs, Co, Ci.  Solving to find 
the growth rate requires one more 
equation.
• Henry’s Law states that the concentration 
of an adsorbed species at the solid of a 
surface is proportional to the partial 
pressure of the gas just above the solid
– H = Henry’s gas constant
• Now we have 3 eqns. and 3 unknowns
Diffusive Growth (3)
2
1
O
oxs
g
s
g
i
D
tk
h
k
HP
C
++
=
gBgo TCHkHPC ==
yielding,
SiO2 SiGas
Cg Cs Co Ci
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
27
Oxide Growth Rate
• To obtain the growth rate, divide the 
flux, by the number of mol of O2 per 
unit volume SIO2:  N1
• For Oxidations by molecular oxygen,   
N1 is half the number density of SiO2, 
or 2.2*1022 cm‐3
• Assuming that at time = zero, that the 
oxide thickness is to, the solution of 
the differential equation can be 
written as
)(
2
τ+=+ tBAtt oxox
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
++
===
2
11
1
O
oxs
g
s
gox
D
tk
h
k
N
HP
dt
dt
N
J
R
2
)(4
/2
11
2
2
2
1
τ
τ
+++−
=
+
=
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+=
tBAA
t
B
Att
NDHPB
hk
DA
ox
oo
g
gs
SiO2 SiGas
Cg Cs Co Ci
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
28
More Detail
• Most silicon oxidation is performed at 
atmospheric pressure. 
– ks<<hg
• Furthermore, growth rate is nearly independent of 
the gas phase mass transport (and therefore 
reactor geometry)
• Oxides are grown under both wet (H2O)and dry 
(O2) conditions using the same equations.  
However the following changes must be 
accounted for:
– Diffusivity (D)
– Mass transport (hg)
– Reactivity (ks)
– Pressure (Pg)
– Number of molecules/unit volume (N)
• A and B both depend on Diffusivity and are 
therefore both Arrhenhius functions
• τ is the time required for  the initial oxide 
thickness prior to the current growth process. 
Thus, one must account for a growth time that 
includes τ in order to account for the nonlinear 
growth rate associated with prior oxidation when 
growing any thermal oxide layer.
SiO2 SiGas
Cg Cs Co Ci
2
)(4
/2
11
2
2
2
1
τ
τ
+++−
=
+
=
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+=
tBAA
t
B
Att
NDHPB
hk
DA
ox
oo
g
gs
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
29
Wet Vs. Dry Oxidation
• For sufficiently thin oxides, 
one can neglect the 
quadratic term in the 
differential equation for 
thickness, yielding
• For thick oxides, however 
the linear term can be 
neglected and
• Because of these two forms, 
B/A is called the linear rate 
coefficient
• B is called the parabolic rate 
coefficient
• It is these two terms that 
are commonly quoted for 
oxidation
)( τ+= t
A
B
tox
)(
2
τ+= tBtox
Arrhenius plot for B(T) Arrhenius plot for B(T)/A(T)
Dry
Dry
Wet Wet
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
30
Calculating Oxide Thickness
)(
2
τ+=+ tBAtt oxox
ti=
tox
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
31
Oxide Thickness Chart
• Assuming no previous oxide on silicon 
surface prior to growth, τ=0.
• Using the chart to calculate growth of 
oxide assuming a prior layer
– Find initial thickness of oxide on chart at 
the desired process temperature.  
Determine the oxidation time required for 
initial thickness and assign it the value τ.
– Determine process time required to 
oxidize the sample to the desired 
thickness.
– Subtract τ from time t to arrive at the 
optimal process time required.
Table from Wolf and Tauber, Silicon Processing for the VLSI Era vol. II
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
32
Chemical Vapor Deposition
CVD Reactor
Substrate
Continuous film
8) By‐product 
removal
1) Mass transport of 
reactants
By‐products
2) Film precursor 
reactions
3) Diffusion of 
gas molecules
4) Adsorption of 
precursors
5) Precursor 
diffusion into 
substrate
6) Surface reactions
7) Desorption of 
byproducts
Gas delivery
purge
Reference unknown at this time, Plumber Perhaps?
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
33
CVD Growth
• Deal‐Grove Model using Fick’s First Law
• Equilibrium solution involves two cases
– Mass transfer to the surface from the gas
– Reaction kinetics at the surface
sSCKJ =2
x
txC
DJ
∂
∂
−=
),(
)(1
1
sgggas
B
g
sl
sg
CChJJ
Tk
Pg
V
n
C
t
CC
DJ
−==
==
−
≈
Mass transfer by diffusion Reaction Kinetics
gs
g
s
hk
C
C
JJ
/1
21
+
=
=
Equilibrium Condition
• As the value of the surface concentration 
approaches Cg, hg>> ks and the deposition 
process is surface reaction controlled
• When the surface concentration approaches 
zero, then hg<<ks and the deposition is said to 
be mass flow controlled.
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
34
CVD Growth
• CVD Growth rate
• Concentration of the reactant in the gas phase is:
– Y is the mole fraction of the reaction species
– CT is the total number of molecules per cm3 in the gas
• Substitution yields
– Accurately predicting that the growth rate is proportional 
to the mole fraction of the reacting species in gas phase
– And that the growth rate for any constant reactant mole 
fraction, Y, is controlled by the mass flow of Y to the 
surface and the reaction rate kinetics on that surface
• For surface‐reaction rate controlled deposition:
• For mass transfer controlled deposition:
1N
YC
hk
hk
R T
gs
gs
+
=
1
1/
N
C
hk
hk
NFR g
gs
gs
+
==
YCC Tg =
1/ NYkCR sT=
1/ NYhCR gT=
Continuous gas flow
Deposited film     
Silicon substrate
Boundary layer
Diffusion of 
reactants
Reference unknown at this time, Plumber Perhaps?
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
35
CVD Growth
• Chemical reactions are thermally activated and thus can 
be represented using an Arrhenius type equation
• Mass transfer is relatively temperature insensitive and 
depends primarily on gas flow conditions
• At low temperatures growth follows the exponential law 
and the process is primarily dominated by reaction 
kinetics
• At high temperatures, the growth reaction occurs so fast 
that the system becomes governed by the amount of 
reactants that flow across the surface.  Under these 
conditions, mass flow dominates the deposition process 
and there is less control over the exact composition of 
the reactant species
• This model is oversimplified b/c it does not consider the 
flux of reaction products, but only the surface 
concentration.  More complicated models are required 
to examine individual reactant fluxes to generate 
variations on the growth material
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛ −
=
Tk
E
kk
B
a
os exp
gs hk >>
gs hk <<
Wolf and Tauber, Silicon Processing for the VLSI Era vol. II
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
36
Flux Compensation 
in Mass Transport
L
DD
h
L
dUL
x
L
dxx
L
dU
x
CC
DJ
Lg
s
g
g
L
s
L
ss
s
s
sg
2
Re3
Re3
2
3
2
)(
1
0
==
==
=
=
−
=
∫
δ
μ
δ
δδ
μ
δ
δ
Fick’s First Law
Boundary Layer
μ = viscosity
d = gas density
U = free stream velocity
ReL = Reynold’s number
ReL<2000 represents laminar flow
Mass transfer coefficient depends on
diffusivity of the gas, the Reynold’s
number, and the length of the flow
• Boundary layer theory
– Better calculation of hg
– Better representation of events near a surface
Turbulent Flow causes
convective rolls and changes in
thickness along the x direction
Wolf and Tauber, Silicon Processing for the VLSI Era vol. II
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
37
Crystallographic Growth Dependence
• The deposition rate can depend strongly on the crystallographic orientation of 
the substrate
• In GaAs, growth on (111) is 3x to 4x faster than on (100)
• Growth dependence on orientation is amplified at high temperatures where 
epitaxial deposition becomes dominant
• There are several reasons for this:
the densities and geometric
arrangements of surface sites
the number and nature of
surface bonds
the chemical composition of the
surface - GaAs (111A)
vs.(111B)
the presence of surface
features such as steps, kinks,
ledges, vacancies, etc
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
38
Three Major Types of CVD
• Atmospheric pressure chemical vapor deposition (APCVD)
– High deposition rate
– low uniformity
– Moderate film quality
• Low‐pressure chemical vapor deposition (LPCVD) 
– Low pressure (0.1 to 1 torr)
– high film quality
– moderate deposition rate
– Low pressure operation removes many of the restrains of reactor design; problems with gas transport are 
minimized
– Main problem is optimization of temperature profiles (usually resistance heating)
• Plasma‐enhanced chemical vapor deposition (PECVD)
– Plasma Activation allows for deposition at low temperatures and pressures
– Reactive gas species are formed by reactions in the plasma; since the electron temperature is ~100X the 
gas temperature, PECVD creates reactive species that normally occur only at high temperatures
– High deposition rate
– Low quality
• APCVD and LPCVD involve elevated temperatures ranging from 500 0C to 800 0C. These temperatures are too 
high for metals with low eutectic temperature with silicon, such as gold (380 0C) or aluminum (577 0C).
• PECVD has a part of their energy in the plasma; thus, lower substrate temperature is needed, typically on the 
order of 100 0C to 300 0C.
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
39
Continuous‐Processing APCVD 
Reactors
WaferFilm
Reactant gas 2
Reactant gas 1
Inert separator 
gas
(a)  Gas‐injection type N2
Reactant gases
Heater
N2 N2 N2N2 N2
Wafer
(b)  Plenum type
Reference unknown at this time, Plumber Perhaps?
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
40
• GaAs growth by CVD is often performed by chloride transport
• HCl reacts with Ga to form volatile GaCl, which is transported  to the 
substrate
• AsH3 thermally decomposes to from As4 and As2
• GaCl(g) + ¼As4(g) + ½H2(g) → GaAs(s) + HCl(g) is the simplest reaction, 
but others are possible
High temperature APCVD reactor 
for GaAs deposition
gas exhaust
Ga-source
heater
substrate
heater
HCl, H2
AsH3, H2
Ga source substrate
http://ecow.engr.wisc.edu/cgi-bin/get/msae/333/matyi/notes/30_cvd2_00.ppt#324,3,CVD reaction kinetics (5)
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
41
LPCVD
(Ex. TEOS Oxide Deposition)
Pressure controller
Three‐zone 
heater
Heater  TEOS
N2 O2
Vacuum 
pump
Gas flow controller
LPCVD
Furnace
Temp. controller
Computer terminal 
operator interface
Furnace 
microcontroller
Exhaust
Reference unknown at this time, Plumber Perhaps?
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
42
General Schematic of PECVD for Deposition of Oxides, 
Nitrides, Silicon Oxynitride or Tungsten
Process gases
Gas flow controller
Pressure controller
Roughing
pump
Turbo
pump
Gas panel
RF generatorMatching 
network
Microcontroller 
operator Interface
Exhaust
Gas dispersion 
screen
Electrodes
Gate valve
Gas flow
Deposited film    
Silicon substrate
Reaction product
Diffusion of 
reactantsInside the
PECVD Chamber
Typical PECVD
conditions:
Ar-gas at 100 mtorr
RF bias 600 - 1500 volts
250°C to 400°C (high
temp.
reactions can take place
on
temperature sensitive
materials
Reference unknown at this time, Plumber Perhaps?
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
43
Safety issues in CVD
Safety issues represent a major concern 
in CVD!
• toxic gases → TLV (threshold limit value) per 8 hour day
– 0.3 ppm PH3
– 0.05 ppm AsH3 (500 ppm AsH3 lethal in < 2 minutes)
• flammable, corrosive, explosive, pyrophoric gases (SiH4)
• high pressure cylinders ‐‐ handling and transport; store in 
ventilated cabinets
• piping ‐‐ seamless tube (all welded), double wall tubing, purging 
and ventilation
• safety devices ‐‐ monitoring
• exhaust systems ‐‐ dilution and scrubbing
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
44
• Polysilicon (pyrolysis of silane): SiH4 → Si + 2H2
– gas: 100% SiH4 at 0.2 to 1 torr gives a growth rate 
of 10 nm/min but problems with gas phase
nucleation (sol.: dilute to 10% to 20% in H2 or N2)
– deposition temperature:
< 575°C  → amorphous
> 625°C  → columnar structure
700°C  → crystalline grains
>1100°C  → single crystal
– doped polysilicon: B2H6, PH3, AsH3
Silicon CVD Processes
1420oC 1100oC 1000oC
0.80.6
Poly- Region
0.7
10-2
1
102
104
103/T (K-1)
GrowthRate(μm/min)
Monocrystalline
Region
Bloem, J. Crsytal Growth, 50, 581 (1980).
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
45
• Silicon Epitaxy
– 4 commercial methods: Silicon Tetrachloride (SiCl4), tricholorosilane (SiHCl3), dichlorosilane (SiH2Cl2), and 
silane (SiH4)
– All have particularly desirable deposition conditions.
– Silicon Tetrachloride was the most widely used and studied
SiCl4 + 2H2 → Si +4HCl
– Demands for very thin silicon layers have moved processes toward SiH2Cl2, and SiH4
– Surface Reactions
SiCl4(ads)+H2(ads) SiHCl3(ads)+HCl(g)
SiHCl3(ads)+ H2(ads) SiH2Cl2(ads)+HCl(g)
SiH2Cl2(ads)+HCl(g) SiCl2(ads)+H2(ads)
SiHCl3(ads) SiCl2(ads)+HCl(g)
SiCl2(ads)+H2(ads) Si(s)+2HCl(g)
– SiCl4 1150‐1250oC  0.4‐1.5 μm/min  good selectivity
– SiHCl3 1100‐1200oC  0.4‐2.9 μm/min  easily reduced
– SiH2Cl2 1050‐1150oC  0.4‐3.0 μm/min  good epi. quality
– SiH4        950‐1050oC  0.2‐0.3 μm/min  (g) dep. problems
used for SOI
less out diffusion
heavy deposits on reactor walls
Silicon CVD Processes
1420oC 1100oC 1000oC
0.80.6
Poly- Region
0.710-2
1
102
104
103/T (K-1)
GrowthRate(μm/min)
Monocrystalline
Region
Bloem, J. Crsytal Growth, 50, 581 (1980).
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
46
Common CVD Processes for MEMS
J. Micromech. Microeng. 6 (1996) 1–13. http://iopscience.iop.org/0960-1317/6/1/001/pdf?ejredirect=.iopscience
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
47
J. Micromech. Microeng. 6 (1996) 1–13. http://iopscience.iop.org/0960-1317/6/1/001/pdf?ejredirect=.iopscience
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
48
Nitride Deposition:
Comparing LPVCD and PECVD
Currently below 200 MPa using ICP
J. Micromech. Microeng. 6 (1996) 1–13. http://iopscience.iop.org/0960-1317/6/1/001/pdf?ejredirect=.iopscience
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
49
Color Charts for Oxide and Nitride 
Deposits on Silicon
Use ellipsometer at known angles and wavelengths to determine film thickness by
measurement of the polarization of the light reflected back to the sensor
Similar calculations can be performed using interferometry
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
50
Conformality Issues in CVD
• Consider a typical reaction:
SiH4 + O2 → SiO2 + 2H2
• Important variables:
– SiH4/O2
– total pressure
– substrate temp.
– dilutent gas
– topography
N2, Ar, 300-500°C
long mean free
path, reduced
pressure
short mean free
path, 1 atm
SiH4+O2 with
surface diffusion
little surface diffusion
10/16/2009
JDW, Electrical and Computer Engineering, 
UAHuntsville
51
Semiconductor Process Example
Liner oxide
p Silicon substrate
p Epitaxial layer
n-well p-well
Trench CVD oxide
TEOS-O3
Trench fill by chemical vapor deposition
Nitride
-
+
LPCVD Oxide
LPCVD Nitride
APCVD

More Related Content

What's hot

Sputtering process and its types
Sputtering process and its typesSputtering process and its types
Sputtering process and its typesMuhammadWajid37
 
Chemical Vapour Deposition
Chemical Vapour DepositionChemical Vapour Deposition
Chemical Vapour Depositionaroosa khan
 
Chemical vapor deposition (cvd)
Chemical vapor deposition (cvd)Chemical vapor deposition (cvd)
Chemical vapor deposition (cvd)Khalid Raza
 
Thin film deposition using spray pyrolysis
Thin film deposition using spray pyrolysisThin film deposition using spray pyrolysis
Thin film deposition using spray pyrolysisMUHAMMAD AADIL
 
Thin_Film_Technology_introduction[1]
Thin_Film_Technology_introduction[1]Thin_Film_Technology_introduction[1]
Thin_Film_Technology_introduction[1]Milan Van Bree
 
Thin film fabrication using thermal evaporation
Thin film fabrication using thermal evaporationThin film fabrication using thermal evaporation
Thin film fabrication using thermal evaporationUdhayasuriyan V
 
Lecture 1 (vacuum technology)
Lecture 1 (vacuum technology) Lecture 1 (vacuum technology)
Lecture 1 (vacuum technology) Chhagan Lal
 
Dielectric Spectroscopy in Time and Frequency Domain
Dielectric Spectroscopy in Time and Frequency DomainDielectric Spectroscopy in Time and Frequency Domain
Dielectric Spectroscopy in Time and Frequency DomainGirish Gupta
 
Know all about diffusion pump part 1
Know all about diffusion pump part 1Know all about diffusion pump part 1
Know all about diffusion pump part 1Anshuman Punj
 
Nickel cadmium battery
Nickel cadmium battery Nickel cadmium battery
Nickel cadmium battery nibindaniel
 
Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)Zaahir Salam
 
Sonochemical method of synthesis of nanoparticles.pptx
Sonochemical method of synthesis of nanoparticles.pptxSonochemical method of synthesis of nanoparticles.pptx
Sonochemical method of synthesis of nanoparticles.pptxMuhammadHashami2
 

What's hot (20)

VSM
VSM VSM
VSM
 
Growth of single crystals
Growth of  single crystalsGrowth of  single crystals
Growth of single crystals
 
Photolithography1
Photolithography1Photolithography1
Photolithography1
 
Sputtering process and its types
Sputtering process and its typesSputtering process and its types
Sputtering process and its types
 
Chemical Vapour Deposition
Chemical Vapour DepositionChemical Vapour Deposition
Chemical Vapour Deposition
 
Chemical vapor deposition (cvd)
Chemical vapor deposition (cvd)Chemical vapor deposition (cvd)
Chemical vapor deposition (cvd)
 
Thin film deposition using spray pyrolysis
Thin film deposition using spray pyrolysisThin film deposition using spray pyrolysis
Thin film deposition using spray pyrolysis
 
Thin_Film_Technology_introduction[1]
Thin_Film_Technology_introduction[1]Thin_Film_Technology_introduction[1]
Thin_Film_Technology_introduction[1]
 
Thin film fabrication using thermal evaporation
Thin film fabrication using thermal evaporationThin film fabrication using thermal evaporation
Thin film fabrication using thermal evaporation
 
Physical Vapour Deposition
Physical Vapour DepositionPhysical Vapour Deposition
Physical Vapour Deposition
 
Lecture 1 (vacuum technology)
Lecture 1 (vacuum technology) Lecture 1 (vacuum technology)
Lecture 1 (vacuum technology)
 
Cvd and pvd
Cvd and pvdCvd and pvd
Cvd and pvd
 
CVD.pptx
CVD.pptxCVD.pptx
CVD.pptx
 
Dielectric Spectroscopy in Time and Frequency Domain
Dielectric Spectroscopy in Time and Frequency DomainDielectric Spectroscopy in Time and Frequency Domain
Dielectric Spectroscopy in Time and Frequency Domain
 
Know all about diffusion pump part 1
Know all about diffusion pump part 1Know all about diffusion pump part 1
Know all about diffusion pump part 1
 
Physical vapor deposition
Physical vapor depositionPhysical vapor deposition
Physical vapor deposition
 
Nickel cadmium battery
Nickel cadmium battery Nickel cadmium battery
Nickel cadmium battery
 
Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)
 
Sonochemical method of synthesis of nanoparticles.pptx
Sonochemical method of synthesis of nanoparticles.pptxSonochemical method of synthesis of nanoparticles.pptx
Sonochemical method of synthesis of nanoparticles.pptx
 
Molecular beam epitaxy
Molecular beam epitaxyMolecular beam epitaxy
Molecular beam epitaxy
 

Similar to Part 6 thin film depositoin

PROPOSAL FOR SETTING UP A 50KW OTEC PLANT IN BANGLADESH
PROPOSAL FOR SETTING UP A 50KW OTEC PLANT IN BANGLADESHPROPOSAL FOR SETTING UP A 50KW OTEC PLANT IN BANGLADESH
PROPOSAL FOR SETTING UP A 50KW OTEC PLANT IN BANGLADESHSabbir Hosen Shovon
 
Cooling towers
Cooling towersCooling towers
Cooling towersctlin5
 
IRJET - Portable Atmospheric Water Generator
IRJET -  	  Portable Atmospheric Water GeneratorIRJET -  	  Portable Atmospheric Water Generator
IRJET - Portable Atmospheric Water GeneratorIRJET Journal
 
Study of Thermoelectric Air Conditioning for Automobiles
Study of Thermoelectric Air Conditioning for AutomobilesStudy of Thermoelectric Air Conditioning for Automobiles
Study of Thermoelectric Air Conditioning for AutomobilesIRJET Journal
 
EVALUATION OF ENERGY LOSS IN GEOTHERMAL PIPING SYSTEM [IIGCE 2016] (Repaired)
EVALUATION OF ENERGY LOSS IN GEOTHERMAL PIPING SYSTEM [IIGCE 2016] (Repaired)EVALUATION OF ENERGY LOSS IN GEOTHERMAL PIPING SYSTEM [IIGCE 2016] (Repaired)
EVALUATION OF ENERGY LOSS IN GEOTHERMAL PIPING SYSTEM [IIGCE 2016] (Repaired)Mahendra Kuntoaji
 
Experimental Study and Investigation of Helical Pipe Heat Exchanger with Vary...
Experimental Study and Investigation of Helical Pipe Heat Exchanger with Vary...Experimental Study and Investigation of Helical Pipe Heat Exchanger with Vary...
Experimental Study and Investigation of Helical Pipe Heat Exchanger with Vary...IRJET Journal
 
Plasma generator: design of six stage cockcroft-walton voltage multiplier 12 ...
Plasma generator: design of six stage cockcroft-walton voltage multiplier 12 ...Plasma generator: design of six stage cockcroft-walton voltage multiplier 12 ...
Plasma generator: design of six stage cockcroft-walton voltage multiplier 12 ...TELKOMNIKA JOURNAL
 
Coolingtowers 111225053103-phpapp02
Coolingtowers 111225053103-phpapp02Coolingtowers 111225053103-phpapp02
Coolingtowers 111225053103-phpapp02mzulwaqar
 
Detlef Stolten at BASF Science Symposium 2015
Detlef Stolten at BASF Science Symposium 2015Detlef Stolten at BASF Science Symposium 2015
Detlef Stolten at BASF Science Symposium 2015BASF
 
Nwtc turb sim workshop september 22 24, 2008- boundary layer dynamics and wi...
Nwtc turb sim workshop september 22 24, 2008-  boundary layer dynamics and wi...Nwtc turb sim workshop september 22 24, 2008-  boundary layer dynamics and wi...
Nwtc turb sim workshop september 22 24, 2008- boundary layer dynamics and wi...ndkelley
 
Wind Turbines: Will they ever become economically feasible?
Wind Turbines: Will they ever become economically feasible? Wind Turbines: Will they ever become economically feasible?
Wind Turbines: Will they ever become economically feasible? Jeffrey Funk
 
Ocean thermal energy (1).pptx
Ocean thermal energy (1).pptxOcean thermal energy (1).pptx
Ocean thermal energy (1).pptxtheonionrouter
 
27.ESP Presentation.ppt
27.ESP Presentation.ppt27.ESP Presentation.ppt
27.ESP Presentation.pptchandra607701
 

Similar to Part 6 thin film depositoin (20)

Thursday, June 29th in the session that is scheduled from 2:00 – 3:30 pm - Pr...
Thursday, June 29th in the session that is scheduled from 2:00 – 3:30 pm - Pr...Thursday, June 29th in the session that is scheduled from 2:00 – 3:30 pm - Pr...
Thursday, June 29th in the session that is scheduled from 2:00 – 3:30 pm - Pr...
 
Thermo Fluid Midterm 2
Thermo Fluid Midterm 2Thermo Fluid Midterm 2
Thermo Fluid Midterm 2
 
PROPOSAL FOR SETTING UP A 50KW OTEC PLANT IN BANGLADESH
PROPOSAL FOR SETTING UP A 50KW OTEC PLANT IN BANGLADESHPROPOSAL FOR SETTING UP A 50KW OTEC PLANT IN BANGLADESH
PROPOSAL FOR SETTING UP A 50KW OTEC PLANT IN BANGLADESH
 
Cooling towers
Cooling towersCooling towers
Cooling towers
 
IRJET - Portable Atmospheric Water Generator
IRJET -  	  Portable Atmospheric Water GeneratorIRJET -  	  Portable Atmospheric Water Generator
IRJET - Portable Atmospheric Water Generator
 
Study of Thermoelectric Air Conditioning for Automobiles
Study of Thermoelectric Air Conditioning for AutomobilesStudy of Thermoelectric Air Conditioning for Automobiles
Study of Thermoelectric Air Conditioning for Automobiles
 
Ocean thermal energy.pptx
Ocean thermal energy.pptxOcean thermal energy.pptx
Ocean thermal energy.pptx
 
EVALUATION OF ENERGY LOSS IN GEOTHERMAL PIPING SYSTEM [IIGCE 2016] (Repaired)
EVALUATION OF ENERGY LOSS IN GEOTHERMAL PIPING SYSTEM [IIGCE 2016] (Repaired)EVALUATION OF ENERGY LOSS IN GEOTHERMAL PIPING SYSTEM [IIGCE 2016] (Repaired)
EVALUATION OF ENERGY LOSS IN GEOTHERMAL PIPING SYSTEM [IIGCE 2016] (Repaired)
 
Experimental Study and Investigation of Helical Pipe Heat Exchanger with Vary...
Experimental Study and Investigation of Helical Pipe Heat Exchanger with Vary...Experimental Study and Investigation of Helical Pipe Heat Exchanger with Vary...
Experimental Study and Investigation of Helical Pipe Heat Exchanger with Vary...
 
Plasma generator: design of six stage cockcroft-walton voltage multiplier 12 ...
Plasma generator: design of six stage cockcroft-walton voltage multiplier 12 ...Plasma generator: design of six stage cockcroft-walton voltage multiplier 12 ...
Plasma generator: design of six stage cockcroft-walton voltage multiplier 12 ...
 
Coolingtowers 111225053103-phpapp02
Coolingtowers 111225053103-phpapp02Coolingtowers 111225053103-phpapp02
Coolingtowers 111225053103-phpapp02
 
Detlef Stolten at BASF Science Symposium 2015
Detlef Stolten at BASF Science Symposium 2015Detlef Stolten at BASF Science Symposium 2015
Detlef Stolten at BASF Science Symposium 2015
 
POWER PLANT.pdf
POWER PLANT.pdfPOWER PLANT.pdf
POWER PLANT.pdf
 
Nwtc turb sim workshop september 22 24, 2008- boundary layer dynamics and wi...
Nwtc turb sim workshop september 22 24, 2008-  boundary layer dynamics and wi...Nwtc turb sim workshop september 22 24, 2008-  boundary layer dynamics and wi...
Nwtc turb sim workshop september 22 24, 2008- boundary layer dynamics and wi...
 
Water Swirled Into Gas Turbine Technology - Combined Cycle + 14% over curren...
Water Swirled Into Gas Turbine Technology -  Combined Cycle + 14% over curren...Water Swirled Into Gas Turbine Technology -  Combined Cycle + 14% over curren...
Water Swirled Into Gas Turbine Technology - Combined Cycle + 14% over curren...
 
Similateur
SimilateurSimilateur
Similateur
 
Wind Turbines: Will they ever become economically feasible?
Wind Turbines: Will they ever become economically feasible? Wind Turbines: Will they ever become economically feasible?
Wind Turbines: Will they ever become economically feasible?
 
Ocean thermal energy (1).pptx
Ocean thermal energy (1).pptxOcean thermal energy (1).pptx
Ocean thermal energy (1).pptx
 
27.ESP Presentation.ppt
27.ESP Presentation.ppt27.ESP Presentation.ppt
27.ESP Presentation.ppt
 
Qt464972qm
Qt464972qmQt464972qm
Qt464972qm
 

Part 6 thin film depositoin