SlideShare a Scribd company logo
1 of 6
Download to read offline
Open Journal of Obstetrics and Gynecology, 2015, 5, 1-5
Published Online January 2015 in SciRes. http://www.scirp.org/journal/ojog
http://dx.doi.org/10.4236/ojog.2015.51001
How to cite this paper: Rao, C.V. (2015) How and Why Do Gestational Trophoblastic Neoplasms Overproduce Human Cho-
rionic Gonadotropin? Open Journal of Obstetrics and Gynecology, 5, 1-5. http://dx.doi.org/10.4236/ojog.2015.51001
How and Why Do Gestational Trophoblastic
Neoplasms Overproduce Human Chorionic
Gonadotropin?
C. V. Rao
Departments of Cellular Biology and Pharmacology, Molecular and Human Genetics and Obstetrics and
Gynecology, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida
International University, Miami, USA
Email: crao@fiu.edu
Received 10 September 2014; revised 18 October 2014; accepted 30 October 2014
Copyright © 2015 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
Abstract
From the published data, the present mini-review attempts to answer two fundamental questions
about the gestational trophoblastic neoplasms. In addition, it extrapolates the findings to other
cancers that produce small amounts of hCG and how a novel therapies could be developed.
Keywords
Human Chorionic Gonadotropin, hCG Receptors, Gestational Trophoblastic Neoplasms, hCG
Biosynthesis, Choriocarcinoma Cells
1. Introduction
Human chorionic gonadotropin (hCG) is a glycoprotein hormone that also belongs to the cystine knot growth
factors family [1] [2]. It is a heterodimer of non-covalently bound α and β subunits [1]. The alpha subunit is en-
coded by a single gene, whereas a gene cluster, consisting of six genes, some of which are pseudogenes, encodes
the beta subunit [3] [4]. hCG is found in humans as well as in subhuman primates. It is produced in copious
amounts by syncytiotrophoblasts in human placenta [5]. In addition, a number of normal tissues and neoplasms
can produce small amounts [5]. The non trophoblast derived hCG is not glycosylated, which results in a rapid
elimination from circulation [5]. Human placenta derived hCG exists in multiple forms due to differences in
glycosylation [6]. These forms as well as free subunits, β-core fragment, etc. are present in circulation. It is not
known, however, whether any of them, except fully (30% by mass) and hyperglycosylated hCG, are biologically
active. None of them, except fully glycosylated hCG, can bind to classical hCG receptors [5]. The distinct
C. V. Rao
2
receptors that others may bind have not been identified.
The hCG receptors are G-protein coupled cell surface receptors [7] [8]. They also bind LH, thus they are also
called as hCG/LH receptors. These receptors have been extensively characterized, sequenced, cloned and
knockout mouse models have been made [9]. The hCG/LH actions are mediated by the receptors, which for a
long time have been thought to be present only in female and male gonads [10]. The published work from
around the world has shown that these receptors are also present in many nongonadal tissues [10]. The paradigm
shift also suggested that hCG probably has many other functions after the completion of luteo-placental shift in
progesterone synthesis at about the 9th
week of pregnancy [5].
2. How Do Gestational Trophoblastic Neoplasms (GTNs) Overproduce hCG
Very high circulatory hCG levels is a hallmark feature of GTNs [11]. These high levels perhaps reflect both an
increased synthesis as well as secretion. These high levels can rarely be seen, if ever, in normal intrauterine
pregnancies. Clinicians take advantage of this feature for differential diagnosis of gestational trophoblastic dis-
eases (GTDs) from normal intrauterine pregnancy as well as for determination of the therapeutic response to
surgical tumor removal followed by chemotherapy. To the best of our knowledge, no one ever questioned until
about 1992 how GTNs can overproduce hCG, when normal placenta cannot [12].
The studies that forced the paradigm shift on the targets of hCG actions have begun to provide the first clues
to this enigma. Normal human trophoblasts are some of the newly discovered targets of hCG actions, with syn-
cytiotrophoblasts containing more receptors than cytotrophoblasts [13]. The trophoblast receptors are functional
in the self-regulation of hCG biosynthesis [14]. The self-regulation is biphasic, thus lower hCG levels stimulate
and higher levels inhibit the synthesis [14]. During this process, hCG downregulates its own receptors [14]. The
biphasic self-regulation may explain a rapid early increase of hCG followed by a gradual slow down, reaching a
peak, then a fall to about one-tenth peak levels. Once fallen, hCG levels can neither go back up to previous high
levels nor fall down to zero, perhaps due to a reset in biphasic self-regulation.
These findings led to studies with hydatidiform moles and choriocarcinomas [12]. To our surprise, these
neoplasms not only contained hCG/LH receptors, but their levels are higher than those in normal human placen-
ta. The higher receptor levels suggested that hCG may not be self-regulating its biosynthesis in GTNs. Since it is
not possible to test this possibility with neoplasms, immortalized choriocarcinoma cells, which also secrete high
hCG levels as GTNs, were used [15]. The cells also contained higher receptor levels, and indeed as predicted,
hCG could not influence its synthesis [15]. In the absence of such a regulation, especially negative feedback,
hCG can keep on increasing unabated until perhaps a new higher threshold levels are reached. This threshold
may vary, which can explain peak level variations seen among patients with GTNs. To date, it is not known
what might be the molecular defect in the receptors that selectively impairs its function in the self-regulation of
hCG biosynthesis, without affecting the other functions of receptors. This should be extremely interesting line of
research.
3. Why Do GTNs Overproduce hCG
Based on the belief that GTNs will not expend so much energy in producing huge amounts of hCG that they will
not use, we suspected that there might be an insidious reason for the overproduction. If this were to be the case,
inhibition of hCG biosynthesis will have consequences to choriocarcinoma cells. To test this possibility, hCG
synthesis was inhibited by stable transfection with antisense of gonadotropin—α subunit cDNA [16]. The anti-
sense α-subunit transcripts made will dimerize with protein coding sense α-subunit transcripts and the dimers
formed will then be rapidly degraded by nucleases. As a result, cells can neither make α-subunit nor dimer hCG
protein.
The choriocarcinoma cells with an inhibited hCG biosynthesis showed an increased apoptosis, DNA frag-
mentation and decreased invasion across Matrigel membranes, indicating that hCG is a survival factor that also
can promote the cells invasion [17]. In athymic immunodeficient nude mice, these cell’s showed a dramatically
reduced ability to from tumors as compared with native choriocarcinoma cells [17]. This is a clear demonstra-
tion of the hCG need for the formation of tumors, their growth, survival and invasion in the host body. Similar
results were obtained when hCG synthesis was inhibited by an antisense hCG-ß subunit DNA transfection or
when hCG was neutralized by its specific antibody [18] [19].
The other features of GTDs, such as excessive bleeding, soft uterus, predominance of mononuclear cells and
C. V. Rao
3
hyperemesis, can now be explained by the findings of paradigm shift. Uterine arteries contain hCG receptors
and they are involved in vasodialation and angiogenesis [13] [20]-[22]. Thus, hCG produced by GTNs can con-
tribute to excessive bleeding. Human myometrium contains hCG receptors and they play a role in uterine relax-
ation, which can explain soft uterus [13] [23] [24]. Normal cytotrophoblasthCG receptors play a central role in
their differentiation into syncytiotrophoblasts [25] [26]. Dysfunctional tumor trophoblast receptors fail to induce
this differentiation, which can explain predominant mononuclear cell phenotype in GTNs. Since syncytiotro-
phoblasts are the major producers of hCG in normal placenta, this function may have been delegated to cytotro-
phoblasts in GTNs. Finally, hCG receptors in area postrema of brain, which contains the centers of nausea and
vomiting reflexes, are probably hyperactivated by excessive hCG levels to cause frequent and severe episodes of
nausea and vomiting [27]. hCG receptors in circulatory and tissue cells of immune system may suppress tumor
rejection mechanisms as it does with fetus [28]-[30].
4. Relevance to Other Neoplasms
Many other neoplasms such as bladder, testicular, lung, etc. can produce small amounts of non-glycosylated
hCG [31]. However, the blood levels in most of these cases barely reach detection limits of the assays. The
neoplasms may also contain hCG receptors. Therefore, hCG produced primarily serve as an autocrine factor. It
is likely then, as in GTNs, hCG may serve to stimulate tumor growth, development and invasion in the host
body. This possibility is exemplified in a studies which showed that an inhibition of hCG synthesis or antibody
blocking resulted in a dramatic reduction in the ability of human lung cancer cells to form tumors [32] [33].
5. Therapeutic Implications
If hCG is a driver of tumorigenesis, then an inhibition of its synthesis and/or its actions could work as a therapy.
In fact, it does as shown in cell cultures and nude mice models. This approach has not yet been tried in patients due
to a lack of tumor cell targeted therapies. But this limitation can be overcome by the advances in drug targeting
technologies. When that happens, it will be a better alternative to currently used radiation and chemotherapies.
References
[1] Pierce, J.G. and Parsons, T.F. (1981) Glycoprotein Hormones: Structure and Function. Annual Review of Biochemistry,
50, 465-495. http://dx.doi.org/10.1146/annurev.bi.50.070181.002341
[2] Lapthorn, A.J., Harris, D.C., Littlejohn, A., Lustbader, J.W., Canfield, R.E., Machin, K.J., Morgan, F.J. and Isaacs,
N.W. (1994) Crystal Structure of Human Chorionic Gonadotropin. Nature, 369, 455-461.
http://dx.doi.org/10.1038/369455a0
[3] Fiddes, J.C. and Goodman, H.M. (1981) The Gene Encoding the Common Alpha Subunit of the Four Human Glyco-
protein Hormones. Journal of Molecular and Applied Genetics, 1, 3-18.
[4] Policastro, P., Ovitt, C.E., Hoshina, M., Fukuoka, H., Botthby, M.E. and Boime, I. (1983) The Beta Subunit of Human
Chorionic Gonadotropin Is Encoded by Multiple Genes. Journal of Biological Chemistry, 258, 11492-11499.
[5] Lei, Z.M. and Rao, C.V. (2001) Endocrinology of the Trophoblast Tissue. In: Becker, K., Ed., Principles and Practice
of Endocrinology and Metabolism, 3rd Edition, Lippincott Williams & Wilkins, Philadelphia, Chapter 112, 1096-1102,
[6] Cole, L.A., Kardana, A., Andrade-Gordon, P., Gawinowicz, M.A., Morris, J.C., Bergert, E.R., O’Connor, J. and Birken,
S. (1991) The Heterogeneity of Human Chorionic Gonadotropin (hCG). III. The Occurrence, Biological and Immuno-
logical Activities of Nicked hCG. Endocrinology, 129, 1559-1567. http://dx.doi.org/10.1210/endo-129-3-1559
[7] Loosfelt, H., Misrahi, M., Atger, M., Salesse, R., Vu, M.T., Thi, H.L., Jolivet, A., Guiochon-Mantell, A., Sar, S., Jallal,
B., Garnier, J. and Milgrom, E. (1989) Cloning and Sequencing of porcine LH-hCG Receptor cDNA: Variants Lacking
Transmembrane Domain. Science, 245, 525-528. http://dx.doi.org/10.1126/science.2502844
[8] McFarland, K.C., Sprengel, R., Phillips, H.S., Kohler, M., Rosembilt, N., Nikolics, N., Segaloff, D.L. and Seeburg,
P.H. (1989) Lutropin-Choriogonadotropin Receptor: An Unusual Member of the G Protein-Coupled Receptor Family.
Science, 245, 494-499. http://dx.doi.org/10.1126/science.2502842
[9] Lei, Z.M., Mishra, S., Zou, W., Xu, B., Foltz, M., Li, X. and Rao, C.V. (2001) Targeted Disruption of Luteinizing
Hormone/Human Chorionic Gonadotropin Receptor Gene. Molecular Endocrinology, 15, 184-200.
http://dx.doi.org/10.1210/mend.15.1.0586
[10] Rao, C.V. (2001) Nongonadal Actions of LH and hCG in Reproductive Biology and Medicine. Seminars in Reproduc-
tive Medicine, 19, 1-119.
C. V. Rao
4
[11] Zarate, A. and MacGregor, C. (1982) Beta-Subunit hCG and the Control of Trophoblastic Disease. In: Martimbeau,
P.W. and Surwit, E.A., Eds., Gestational Trophoblastic Disease. Seminars in Oncology, 1X:2, 187-190.
[12] Lei, Z.M., Rao, C.V., Ackerman, D.M. and Day, T.G. (1992) The Expression of Human Chorionic Gonadotropin/Hu-
man Luteinizing Hormone Receptors in Human Gestational Trophoblastic Neoplasms. The Journal of Clinical Endo-
crinology and Metabolism, 74, 1236-1241.
[13] Reshef, E., Lei, Z.M., Rao, C.V., Pridham, D.D., Chegini, N. and Luborsky, J.L. (1990) The Presence of Gonadotropin
Receptors in Nonpregnant Human Uterus, Human Placenta, Fetal Membranes and Decidua. The Journal of Clinical
Endocrinology and Metabolism, 70, 421-430. http://dx.doi.org/10.1210/jcem-70-2-421
[14] Licht, P., Cao, H., Lei, Z.M., Rao, C.V. and Merz, W.M. (1993) Novel Self-Regulation of Human Chorionic Gonado-
tropin Biosynthesis in Term Pregnancy Human Placenta. Endocrinology, 133, 3014-3025.
[15] Licht, P., Cao, H., Zuo, J., Lei, Z.M., Rao, C.V., Merz, W.M. and Day Jr., T.G. (1994) Lack of Self-Regulation of Hu-
man Chorionic Gonadotropin Biosynthesis in Human Choriocarcinoma Cells. The Journal of Clinical Endocrinology
and Metabolism, 78, 1188-1194.
[16] Cao, H., Lei, Z.M. and Rao, C.V. (1995) Consequences of Antisense Human Chorionic Gonadotropin-α Subunit cDNA
Expression in Human Choriocarcinoma JAR Cells. Journal of Molecular Endocrinology, 14, 337-347.
http://dx.doi.org/10.1677/jme.0.0140337
[17] Lei, Z.M., Taylor, D.D., Gercel-Taylor, C. and Rao, C.V. (1999) Human Chorionic Gonadotropin Promotes Tumori-
genesis of Choriocarcinoma JAR Cells. Placenta, 13, 147-159. http://dx.doi.org/10.1016/S0143-4004(99)80012-5
[18] Hamada, A.L., Nakabayashi, K., Sato, A., Kiyoshi, K., Takamatsu, Y., Laoag-Fernandez, J.B., Ohara, N. and Maruo, T.
(2005) Transfection of Antisense Chorionic Gonadotropin BETA Gene into Choriocarcinoma Suppress the Cell Proli-
feration and Induce Apoptosis. The Journal of Clinical Endocrinology and Metabolism, 90, 4873-4879.
http://dx.doi.org/10.1210/jc.2004-2458
[19] Cole, L.A., Khanlian, S.A., Riley, J.M. and Butler, S.A. (2006) Hyperglycosylated hCG in Gestational Implantation
and in Choriocarcinoma and Testicular Germ Cell Malignancy Tumorigenesis. The Journal of Reproductive Medicine,
51, 919-929.
[20] Lei, Z.M., Reshef, E. and Rao, C.V. (1992) The Expression of Human Chorionic Gonadotropin/Luteinizing Hormone
Receptors in Human Endometrial and Myometrial Blood Vessels. The Journal of Clinical Endocrinology and Meta-
bolism, 75, 651- 659.
[21] Toth, P., Li, X., Rao, C.V., Lincoln, S.R., Sanfilippo, J.S., Spinnato, J.A. and Yussman, M.A. (1994) Expression of
Functional Human Chorionic Gonadotropin/Human Luteinizing Hormone Receptor Gene in Human Uterine Arteries.
The Journal of Clinical Endocrinology and Metabolism, 79, 307-315.
[22] Zygmunt, M., Herr, F., Keller-Schoenwetter, S., Kunzi-Rapp, K., Munstedt, K., Rao, C.V., Lang, U. and Preissner, K.T.
(2002) Characterization of Human Chorionic Gonadotropin as a Novel Angiogenic Factor. The Journal of Clinical En-
docrinology and Metabolism, 87, 5290-5296. http://dx.doi.org/10.1210/jc.2002-020642
[23] Ambrus, G. and Rao, C.V (1994) Novel Regulation of Pregnant Human Myometrial Smooth Muscle Cell Gap Junc-
tions by Human Chorionic Gonadotropin, Endocrinology, 135, 2772-2779.
[24] Eta, E., Ambrus, G. and Rao, C.V. (1994) Direct Regulation of Human Myometrial Contractions by Human Chorionic
Gonadotropin. The Journal of Clinical Endocrinology and Metabolism, 79, 1582-1586.
[25] Shi, Q.J., Lei, Z.M., Rao, C.V. and Lin, J. (1993) Novel Role of Human Chorionic Gonadotropin in Differentiation of
Human Cytotrophoblasts. Endocrinology, 132, 1387-1395.
[26] Yang, M., Lei, Z.M. and Rao, C.V. (2003) The Central Role of Human Chorionic Gonadotropin in the Formation of
Human Placental Syncytium. Endocrinology, 144, 1108-1120. http://dx.doi.org/10.1210/en.2002-220922
[27] Lei, Z.M., Rao, C.V., Kornyei, J.L., Licht, P. and Hiatt, E.S. (1993) Novel Expression of Human Chorionic Gonado-
tropin/Luteinizing Hormone Receptor Gene in Brain. Endocrinology, 132, 2262-2270.
[28] Lin, J., Lojun, S., Lei, Z.M., Wu, W.X., Peiper, S.C. and Rao, C.V. (1995) Lymphocytes from Pregnant Women Ex-
press Human Chorionic Gonadotropin/Luteinizing Hormone Receptor Gene. Molecular and Cellular Endocrinology,
111, 13-17. http://dx.doi.org/10.1016/0303-7207(95)03565-O
[29] Zhang, Y.M., Rao, C.V. and Lei, Z.M. (2003) Macrophages in Human Reproductive Tissues Contain Luteinizing
Hormone/Chorionic Gonadotropin Receptors. American Journal of Reproductive Immunology, 49, 93-100.
http://dx.doi.org/10.1034/j.1600-0897.2003.00013.x
[30] Lei, Z.M., Yang, M., Li, X., Takikawa, O. and Rao, C.V. (2007) Upregulation of Placental Indoleamine 2,3-Dioxy-
genase by Human Chorionic Gonadotropin. Biology of Reproduction, 76, 639-644.
http://dx.doi.org/10.1095/biolreprod.106.056960
[31] Acevedo, H.F., Krichevsky, A., Campbell-Acevedo, E.A., Galyon, J.C., Buffo, M.J. and Hartsock, R.J. (1992) Expres-
C. V. Rao
5
sion of Membrane-Associated Human Chorionic Gonadotropin, Its Subunits, and Fragments by Cultured Human Can-
cer Cells. Cancer, 69, 1829-1842.
http://dx.doi.org/10.1002/1097-0142(19920401)69:7<1829::AID-CNCR2820690727>3.0.CO;2-0
[32] Kumar, S., Talwar, G.P. and Biswas, D.K. (1992) Necrosis and Inhibition of Growth of Human Lung Tumor by Anti-
Alpha Human Chorionic Gonadotropin Antibody. Journal of the National Cancer Institute, 84, 42-47.
http://dx.doi.org/10.1093/jnci/84.1.42
[33] Rivera, R.T., Pasion, S.G., Wong, D.T.W., Fei, Y. and Biswas, D.K. (1989) Loss of Tumorigenic Potential by Human
Lung Tumor Cells in the Presence of Antisense RNA Specific to the Ectopically Synthesized Alpha Subunit of Human
Chorionic Gonadotropin. Journal of Cell Biology, 108, 2423-2434. http://dx.doi.org/10.1083/jcb.108.6.2423
OJOG Article on GTN

More Related Content

What's hot

Article in press
Article in pressArticle in press
Article in pressCh Rao
 
LaneyVaughanPosterPresentation
LaneyVaughanPosterPresentationLaneyVaughanPosterPresentation
LaneyVaughanPosterPresentationLaney Vaughan
 
Ovarian hyperstimulation syndrome
Ovarian hyperstimulation syndromeOvarian hyperstimulation syndrome
Ovarian hyperstimulation syndromeHesham Gaber
 
Prevention of ovarian hyperstimulation syndrome
Prevention of ovarian hyperstimulation syndromePrevention of ovarian hyperstimulation syndrome
Prevention of ovarian hyperstimulation syndromenermine amin
 
The thyroid and fertility
The thyroid and fertilityThe thyroid and fertility
The thyroid and fertilitymorwenna2
 
Improving Success by Tailoring Infertility Treatments - We are all individuals
Improving Success by Tailoring Infertility Treatments - We are all individualsImproving Success by Tailoring Infertility Treatments - We are all individuals
Improving Success by Tailoring Infertility Treatments - We are all individualsSandro Esteves
 
Role of thyroid gland in reproductive physiology
Role of thyroid gland in reproductive physiology  Role of thyroid gland in reproductive physiology
Role of thyroid gland in reproductive physiology Unni Krishnan
 
Gn rh agonist trigger in gnrh antagonist cycles
Gn rh agonist trigger in gnrh antagonist cyclesGn rh agonist trigger in gnrh antagonist cycles
Gn rh agonist trigger in gnrh antagonist cyclesIVF-Mohamed Youssef AF
 
Molar Pregnancy
Molar PregnancyMolar Pregnancy
Molar Pregnancybramarao
 
Gynaecological problems in female sports person
Gynaecological problems in female sports personGynaecological problems in female sports person
Gynaecological problems in female sports personAntima Rathore
 
PCOS - Ovulation Induction 2 - Dr Bharati Dhorepatil
PCOS - Ovulation Induction 2 - Dr Bharati DhorepatilPCOS - Ovulation Induction 2 - Dr Bharati Dhorepatil
PCOS - Ovulation Induction 2 - Dr Bharati DhorepatilBharati Dhorepatil
 
Ovary Hyperstimulation 3
Ovary  Hyperstimulation 3Ovary  Hyperstimulation 3
Ovary Hyperstimulation 3guest9dc181
 
Ovary Hyperstimulation 3
Ovary  Hyperstimulation 3Ovary  Hyperstimulation 3
Ovary Hyperstimulation 3guest9dc181
 

What's hot (20)

Intersex
IntersexIntersex
Intersex
 
HDAC3 poster_StepUp revised
HDAC3 poster_StepUp revisedHDAC3 poster_StepUp revised
HDAC3 poster_StepUp revised
 
Article in press
Article in pressArticle in press
Article in press
 
Male infertility
Male infertilityMale infertility
Male infertility
 
POOR RESPONDERS
POOR RESPONDERS POOR RESPONDERS
POOR RESPONDERS
 
LaneyVaughanPosterPresentation
LaneyVaughanPosterPresentationLaneyVaughanPosterPresentation
LaneyVaughanPosterPresentation
 
Ovarian hyperstimulation syndrome
Ovarian hyperstimulation syndromeOvarian hyperstimulation syndrome
Ovarian hyperstimulation syndrome
 
Prevention of ovarian hyperstimulation syndrome
Prevention of ovarian hyperstimulation syndromePrevention of ovarian hyperstimulation syndrome
Prevention of ovarian hyperstimulation syndrome
 
The thyroid and fertility
The thyroid and fertilityThe thyroid and fertility
The thyroid and fertility
 
Improving Success by Tailoring Infertility Treatments - We are all individuals
Improving Success by Tailoring Infertility Treatments - We are all individualsImproving Success by Tailoring Infertility Treatments - We are all individuals
Improving Success by Tailoring Infertility Treatments - We are all individuals
 
Role of thyroid gland in reproductive physiology
Role of thyroid gland in reproductive physiology  Role of thyroid gland in reproductive physiology
Role of thyroid gland in reproductive physiology
 
Infertility investigation tests
Infertility investigation testsInfertility investigation tests
Infertility investigation tests
 
Gn rh agonist trigger in gnrh antagonist cycles
Gn rh agonist trigger in gnrh antagonist cyclesGn rh agonist trigger in gnrh antagonist cycles
Gn rh agonist trigger in gnrh antagonist cycles
 
Molar Pregnancy
Molar PregnancyMolar Pregnancy
Molar Pregnancy
 
Reproductive toxicology
Reproductive toxicologyReproductive toxicology
Reproductive toxicology
 
Ohss
OhssOhss
Ohss
 
Gynaecological problems in female sports person
Gynaecological problems in female sports personGynaecological problems in female sports person
Gynaecological problems in female sports person
 
PCOS - Ovulation Induction 2 - Dr Bharati Dhorepatil
PCOS - Ovulation Induction 2 - Dr Bharati DhorepatilPCOS - Ovulation Induction 2 - Dr Bharati Dhorepatil
PCOS - Ovulation Induction 2 - Dr Bharati Dhorepatil
 
Ovary Hyperstimulation 3
Ovary  Hyperstimulation 3Ovary  Hyperstimulation 3
Ovary Hyperstimulation 3
 
Ovary Hyperstimulation 3
Ovary  Hyperstimulation 3Ovary  Hyperstimulation 3
Ovary Hyperstimulation 3
 

Viewers also liked

Ontogeny of australopithecines and early homo: evidence from carnial capacity...
Ontogeny of australopithecines and early homo: evidence from carnial capacity...Ontogeny of australopithecines and early homo: evidence from carnial capacity...
Ontogeny of australopithecines and early homo: evidence from carnial capacity...Kristian Pedersen
 
Image Processing Ieee Papers Namakkal
Image Processing  Ieee Papers NamakkalImage Processing  Ieee Papers Namakkal
Image Processing Ieee Papers Namakkalkrish madhi
 
Tarea de la unidad #4
Tarea de la unidad #4Tarea de la unidad #4
Tarea de la unidad #4tecnologia2.0
 
Latest Ieee 2016 Java Projects Namakkal
Latest Ieee 2016 Java Projects  NamakkalLatest Ieee 2016 Java Projects  Namakkal
Latest Ieee 2016 Java Projects Namakkalkrish madhi
 
Detecting ancient admixture in humans using sequence polymorphism data (wall)
Detecting ancient admixture in humans using sequence polymorphism data (wall)Detecting ancient admixture in humans using sequence polymorphism data (wall)
Detecting ancient admixture in humans using sequence polymorphism data (wall)Kristian Pedersen
 
FIWARE Funding opportunities for Creative & Tech industry
FIWARE Funding opportunities for Creative & Tech industryFIWARE Funding opportunities for Creative & Tech industry
FIWARE Funding opportunities for Creative & Tech industryimec
 
Biscayne Bay AIAMIAMI winner
Biscayne Bay AIAMIAMI winnerBiscayne Bay AIAMIAMI winner
Biscayne Bay AIAMIAMI winnerAdam Mahardy
 
4th EDUCON ASIA CONFERENCE
4th EDUCON ASIA CONFERENCE4th EDUCON ASIA CONFERENCE
4th EDUCON ASIA CONFERENCEKahren Navarro
 
Final Year Projects In Trichy
Final Year Projects In TrichyFinal Year Projects In Trichy
Final Year Projects In Trichykrish madhi
 
Reinsurance Dispute Resolution/NAIW
Reinsurance Dispute Resolution/NAIWReinsurance Dispute Resolution/NAIW
Reinsurance Dispute Resolution/NAIWTheresa Hajost
 
"Emperadores de Roma y su Imperio"
"Emperadores de Roma y su Imperio""Emperadores de Roma y su Imperio"
"Emperadores de Roma y su Imperio"CEDEC
 
Pasos para un mantenimiento preventivo
Pasos para un mantenimiento preventivoPasos para un mantenimiento preventivo
Pasos para un mantenimiento preventivovictor mejia
 
LEEA -LIFTING INSPECTION ENGINEER CV
LEEA -LIFTING INSPECTION ENGINEER CVLEEA -LIFTING INSPECTION ENGINEER CV
LEEA -LIFTING INSPECTION ENGINEER CVAbdulQawi Rashed
 
أساسيات العمل الجماعي
أساسيات العمل الجماعي أساسيات العمل الجماعي
أساسيات العمل الجماعي Ismail Ibrahim
 
Millennials in the Workplace copy
Millennials in the Workplace copyMillennials in the Workplace copy
Millennials in the Workplace copyD'Shai Hendricks
 

Viewers also liked (18)

Ontogeny of australopithecines and early homo: evidence from carnial capacity...
Ontogeny of australopithecines and early homo: evidence from carnial capacity...Ontogeny of australopithecines and early homo: evidence from carnial capacity...
Ontogeny of australopithecines and early homo: evidence from carnial capacity...
 
Image Processing Ieee Papers Namakkal
Image Processing  Ieee Papers NamakkalImage Processing  Ieee Papers Namakkal
Image Processing Ieee Papers Namakkal
 
Tarea de la unidad #4
Tarea de la unidad #4Tarea de la unidad #4
Tarea de la unidad #4
 
Latest Ieee 2016 Java Projects Namakkal
Latest Ieee 2016 Java Projects  NamakkalLatest Ieee 2016 Java Projects  Namakkal
Latest Ieee 2016 Java Projects Namakkal
 
Harware2
Harware2Harware2
Harware2
 
Detecting ancient admixture in humans using sequence polymorphism data (wall)
Detecting ancient admixture in humans using sequence polymorphism data (wall)Detecting ancient admixture in humans using sequence polymorphism data (wall)
Detecting ancient admixture in humans using sequence polymorphism data (wall)
 
FIWARE Funding opportunities for Creative & Tech industry
FIWARE Funding opportunities for Creative & Tech industryFIWARE Funding opportunities for Creative & Tech industry
FIWARE Funding opportunities for Creative & Tech industry
 
Biscayne Bay AIAMIAMI winner
Biscayne Bay AIAMIAMI winnerBiscayne Bay AIAMIAMI winner
Biscayne Bay AIAMIAMI winner
 
4th EDUCON ASIA CONFERENCE
4th EDUCON ASIA CONFERENCE4th EDUCON ASIA CONFERENCE
4th EDUCON ASIA CONFERENCE
 
Final Year Projects In Trichy
Final Year Projects In TrichyFinal Year Projects In Trichy
Final Year Projects In Trichy
 
RD_Doors_PDF
RD_Doors_PDFRD_Doors_PDF
RD_Doors_PDF
 
Reinsurance Dispute Resolution/NAIW
Reinsurance Dispute Resolution/NAIWReinsurance Dispute Resolution/NAIW
Reinsurance Dispute Resolution/NAIW
 
"Emperadores de Roma y su Imperio"
"Emperadores de Roma y su Imperio""Emperadores de Roma y su Imperio"
"Emperadores de Roma y su Imperio"
 
Pasos para un mantenimiento preventivo
Pasos para un mantenimiento preventivoPasos para un mantenimiento preventivo
Pasos para un mantenimiento preventivo
 
LEEA -LIFTING INSPECTION ENGINEER CV
LEEA -LIFTING INSPECTION ENGINEER CVLEEA -LIFTING INSPECTION ENGINEER CV
LEEA -LIFTING INSPECTION ENGINEER CV
 
أساسيات العمل الجماعي
أساسيات العمل الجماعي أساسيات العمل الجماعي
أساسيات العمل الجماعي
 
Electrotecnia 160621204237 (1)
Electrotecnia 160621204237 (1)Electrotecnia 160621204237 (1)
Electrotecnia 160621204237 (1)
 
Millennials in the Workplace copy
Millennials in the Workplace copyMillennials in the Workplace copy
Millennials in the Workplace copy
 

Similar to OJOG Article on GTN

COMPLICATIONS OF ASSISTED REPROUCTIVE TECHIQUES
COMPLICATIONS  OF ASSISTED REPROUCTIVE TECHIQUESCOMPLICATIONS  OF ASSISTED REPROUCTIVE TECHIQUES
COMPLICATIONS OF ASSISTED REPROUCTIVE TECHIQUESDrRokeyaBegum
 
PDF in print
PDF in printPDF in print
PDF in printCh Rao
 
Print article
Print articlePrint article
Print articleCh Rao
 
Print article- pdf
Print article- pdfPrint article- pdf
Print article- pdfCh Rao
 
HIV-Ebola article
HIV-Ebola articleHIV-Ebola article
HIV-Ebola articleCh Rao
 
JRMH article
JRMH articleJRMH article
JRMH articleCh Rao
 
Ovarian Hyperstimulation in Intrauterine Insemination
Ovarian Hyperstimulation in Intrauterine InseminationOvarian Hyperstimulation in Intrauterine Insemination
Ovarian Hyperstimulation in Intrauterine InseminationElmar Breitbach
 
Pregnancy Testing In Clinical Chemistry
Pregnancy Testing In Clinical ChemistryPregnancy Testing In Clinical Chemistry
Pregnancy Testing In Clinical ChemistryAMOO abdulakeem
 
Woolsey & Goff - The Effects of hCG Diet Injections on Common Pregnancy Tests
Woolsey & Goff - The Effects of hCG Diet Injections on Common Pregnancy TestsWoolsey & Goff - The Effects of hCG Diet Injections on Common Pregnancy Tests
Woolsey & Goff - The Effects of hCG Diet Injections on Common Pregnancy TestsCory Woolsey
 
Online Article
Online ArticleOnline Article
Online ArticleCh Rao
 
Final Oocyte Maturation: HCG VS GNRH Agonist by Dr. Abayomi Ajayi
Final Oocyte Maturation: HCG VS GNRH Agonist by Dr. Abayomi AjayiFinal Oocyte Maturation: HCG VS GNRH Agonist by Dr. Abayomi Ajayi
Final Oocyte Maturation: HCG VS GNRH Agonist by Dr. Abayomi Ajayiabayomi ajayi
 
Pubahead pdf
Pubahead pdfPubahead pdf
Pubahead pdfCh Rao
 
GnRH antagonist in Ovarian stimulation for IVF/ET, Prof. Usama M.Fouda
GnRH antagonist in Ovarian stimulation for   IVF/ET, Prof. Usama M.Fouda GnRH antagonist in Ovarian stimulation for   IVF/ET, Prof. Usama M.Fouda
GnRH antagonist in Ovarian stimulation for IVF/ET, Prof. Usama M.Fouda umfrfouda
 
Worse pregnancy outcomes with low dose human chorionic
Worse pregnancy outcomes with low dose human chorionicWorse pregnancy outcomes with low dose human chorionic
Worse pregnancy outcomes with low dose human chorionicLaith Alasadi
 
3 tubal pregnancy medical management 1998
3 tubal pregnancy medical management 19983 tubal pregnancy medical management 1998
3 tubal pregnancy medical management 1998alx34
 
Gestational trophoblastic diseases
Gestational trophoblastic diseasesGestational trophoblastic diseases
Gestational trophoblastic diseasesikramdr01
 

Similar to OJOG Article on GTN (20)

hCG Hormone 01.pdf
hCG Hormone 01.pdfhCG Hormone 01.pdf
hCG Hormone 01.pdf
 
COMPLICATIONS OF ASSISTED REPROUCTIVE TECHIQUES
COMPLICATIONS  OF ASSISTED REPROUCTIVE TECHIQUESCOMPLICATIONS  OF ASSISTED REPROUCTIVE TECHIQUES
COMPLICATIONS OF ASSISTED REPROUCTIVE TECHIQUES
 
PDF in print
PDF in printPDF in print
PDF in print
 
Print article
Print articlePrint article
Print article
 
Print article- pdf
Print article- pdfPrint article- pdf
Print article- pdf
 
HIV-Ebola article
HIV-Ebola articleHIV-Ebola article
HIV-Ebola article
 
JRMH article
JRMH articleJRMH article
JRMH article
 
Ovarian Hyperstimulation in Intrauterine Insemination
Ovarian Hyperstimulation in Intrauterine InseminationOvarian Hyperstimulation in Intrauterine Insemination
Ovarian Hyperstimulation in Intrauterine Insemination
 
Early diagnosis of pregnancy
Early diagnosis of pregnancyEarly diagnosis of pregnancy
Early diagnosis of pregnancy
 
Pregnancy Testing In Clinical Chemistry
Pregnancy Testing In Clinical ChemistryPregnancy Testing In Clinical Chemistry
Pregnancy Testing In Clinical Chemistry
 
Woolsey & Goff - The Effects of hCG Diet Injections on Common Pregnancy Tests
Woolsey & Goff - The Effects of hCG Diet Injections on Common Pregnancy TestsWoolsey & Goff - The Effects of hCG Diet Injections on Common Pregnancy Tests
Woolsey & Goff - The Effects of hCG Diet Injections on Common Pregnancy Tests
 
Online Article
Online ArticleOnline Article
Online Article
 
Final Oocyte Maturation: HCG VS GNRH Agonist by Dr. Abayomi Ajayi
Final Oocyte Maturation: HCG VS GNRH Agonist by Dr. Abayomi AjayiFinal Oocyte Maturation: HCG VS GNRH Agonist by Dr. Abayomi Ajayi
Final Oocyte Maturation: HCG VS GNRH Agonist by Dr. Abayomi Ajayi
 
Pubahead pdf
Pubahead pdfPubahead pdf
Pubahead pdf
 
GnRH antagonist in Ovarian stimulation for IVF/ET, Prof. Usama M.Fouda
GnRH antagonist in Ovarian stimulation for   IVF/ET, Prof. Usama M.Fouda GnRH antagonist in Ovarian stimulation for   IVF/ET, Prof. Usama M.Fouda
GnRH antagonist in Ovarian stimulation for IVF/ET, Prof. Usama M.Fouda
 
Worse pregnancy outcomes with low dose human chorionic
Worse pregnancy outcomes with low dose human chorionicWorse pregnancy outcomes with low dose human chorionic
Worse pregnancy outcomes with low dose human chorionic
 
3 tubal pregnancy medical management 1998
3 tubal pregnancy medical management 19983 tubal pregnancy medical management 1998
3 tubal pregnancy medical management 1998
 
8.cancer biomarkers
8.cancer biomarkers8.cancer biomarkers
8.cancer biomarkers
 
Gestational trophoblastic diseases
Gestational trophoblastic diseasesGestational trophoblastic diseases
Gestational trophoblastic diseases
 
GTT.pdf
GTT.pdfGTT.pdf
GTT.pdf
 

OJOG Article on GTN

  • 1. Open Journal of Obstetrics and Gynecology, 2015, 5, 1-5 Published Online January 2015 in SciRes. http://www.scirp.org/journal/ojog http://dx.doi.org/10.4236/ojog.2015.51001 How to cite this paper: Rao, C.V. (2015) How and Why Do Gestational Trophoblastic Neoplasms Overproduce Human Cho- rionic Gonadotropin? Open Journal of Obstetrics and Gynecology, 5, 1-5. http://dx.doi.org/10.4236/ojog.2015.51001 How and Why Do Gestational Trophoblastic Neoplasms Overproduce Human Chorionic Gonadotropin? C. V. Rao Departments of Cellular Biology and Pharmacology, Molecular and Human Genetics and Obstetrics and Gynecology, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida International University, Miami, USA Email: crao@fiu.edu Received 10 September 2014; revised 18 October 2014; accepted 30 October 2014 Copyright © 2015 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract From the published data, the present mini-review attempts to answer two fundamental questions about the gestational trophoblastic neoplasms. In addition, it extrapolates the findings to other cancers that produce small amounts of hCG and how a novel therapies could be developed. Keywords Human Chorionic Gonadotropin, hCG Receptors, Gestational Trophoblastic Neoplasms, hCG Biosynthesis, Choriocarcinoma Cells 1. Introduction Human chorionic gonadotropin (hCG) is a glycoprotein hormone that also belongs to the cystine knot growth factors family [1] [2]. It is a heterodimer of non-covalently bound α and β subunits [1]. The alpha subunit is en- coded by a single gene, whereas a gene cluster, consisting of six genes, some of which are pseudogenes, encodes the beta subunit [3] [4]. hCG is found in humans as well as in subhuman primates. It is produced in copious amounts by syncytiotrophoblasts in human placenta [5]. In addition, a number of normal tissues and neoplasms can produce small amounts [5]. The non trophoblast derived hCG is not glycosylated, which results in a rapid elimination from circulation [5]. Human placenta derived hCG exists in multiple forms due to differences in glycosylation [6]. These forms as well as free subunits, β-core fragment, etc. are present in circulation. It is not known, however, whether any of them, except fully (30% by mass) and hyperglycosylated hCG, are biologically active. None of them, except fully glycosylated hCG, can bind to classical hCG receptors [5]. The distinct
  • 2. C. V. Rao 2 receptors that others may bind have not been identified. The hCG receptors are G-protein coupled cell surface receptors [7] [8]. They also bind LH, thus they are also called as hCG/LH receptors. These receptors have been extensively characterized, sequenced, cloned and knockout mouse models have been made [9]. The hCG/LH actions are mediated by the receptors, which for a long time have been thought to be present only in female and male gonads [10]. The published work from around the world has shown that these receptors are also present in many nongonadal tissues [10]. The paradigm shift also suggested that hCG probably has many other functions after the completion of luteo-placental shift in progesterone synthesis at about the 9th week of pregnancy [5]. 2. How Do Gestational Trophoblastic Neoplasms (GTNs) Overproduce hCG Very high circulatory hCG levels is a hallmark feature of GTNs [11]. These high levels perhaps reflect both an increased synthesis as well as secretion. These high levels can rarely be seen, if ever, in normal intrauterine pregnancies. Clinicians take advantage of this feature for differential diagnosis of gestational trophoblastic dis- eases (GTDs) from normal intrauterine pregnancy as well as for determination of the therapeutic response to surgical tumor removal followed by chemotherapy. To the best of our knowledge, no one ever questioned until about 1992 how GTNs can overproduce hCG, when normal placenta cannot [12]. The studies that forced the paradigm shift on the targets of hCG actions have begun to provide the first clues to this enigma. Normal human trophoblasts are some of the newly discovered targets of hCG actions, with syn- cytiotrophoblasts containing more receptors than cytotrophoblasts [13]. The trophoblast receptors are functional in the self-regulation of hCG biosynthesis [14]. The self-regulation is biphasic, thus lower hCG levels stimulate and higher levels inhibit the synthesis [14]. During this process, hCG downregulates its own receptors [14]. The biphasic self-regulation may explain a rapid early increase of hCG followed by a gradual slow down, reaching a peak, then a fall to about one-tenth peak levels. Once fallen, hCG levels can neither go back up to previous high levels nor fall down to zero, perhaps due to a reset in biphasic self-regulation. These findings led to studies with hydatidiform moles and choriocarcinomas [12]. To our surprise, these neoplasms not only contained hCG/LH receptors, but their levels are higher than those in normal human placen- ta. The higher receptor levels suggested that hCG may not be self-regulating its biosynthesis in GTNs. Since it is not possible to test this possibility with neoplasms, immortalized choriocarcinoma cells, which also secrete high hCG levels as GTNs, were used [15]. The cells also contained higher receptor levels, and indeed as predicted, hCG could not influence its synthesis [15]. In the absence of such a regulation, especially negative feedback, hCG can keep on increasing unabated until perhaps a new higher threshold levels are reached. This threshold may vary, which can explain peak level variations seen among patients with GTNs. To date, it is not known what might be the molecular defect in the receptors that selectively impairs its function in the self-regulation of hCG biosynthesis, without affecting the other functions of receptors. This should be extremely interesting line of research. 3. Why Do GTNs Overproduce hCG Based on the belief that GTNs will not expend so much energy in producing huge amounts of hCG that they will not use, we suspected that there might be an insidious reason for the overproduction. If this were to be the case, inhibition of hCG biosynthesis will have consequences to choriocarcinoma cells. To test this possibility, hCG synthesis was inhibited by stable transfection with antisense of gonadotropin—α subunit cDNA [16]. The anti- sense α-subunit transcripts made will dimerize with protein coding sense α-subunit transcripts and the dimers formed will then be rapidly degraded by nucleases. As a result, cells can neither make α-subunit nor dimer hCG protein. The choriocarcinoma cells with an inhibited hCG biosynthesis showed an increased apoptosis, DNA frag- mentation and decreased invasion across Matrigel membranes, indicating that hCG is a survival factor that also can promote the cells invasion [17]. In athymic immunodeficient nude mice, these cell’s showed a dramatically reduced ability to from tumors as compared with native choriocarcinoma cells [17]. This is a clear demonstra- tion of the hCG need for the formation of tumors, their growth, survival and invasion in the host body. Similar results were obtained when hCG synthesis was inhibited by an antisense hCG-ß subunit DNA transfection or when hCG was neutralized by its specific antibody [18] [19]. The other features of GTDs, such as excessive bleeding, soft uterus, predominance of mononuclear cells and
  • 3. C. V. Rao 3 hyperemesis, can now be explained by the findings of paradigm shift. Uterine arteries contain hCG receptors and they are involved in vasodialation and angiogenesis [13] [20]-[22]. Thus, hCG produced by GTNs can con- tribute to excessive bleeding. Human myometrium contains hCG receptors and they play a role in uterine relax- ation, which can explain soft uterus [13] [23] [24]. Normal cytotrophoblasthCG receptors play a central role in their differentiation into syncytiotrophoblasts [25] [26]. Dysfunctional tumor trophoblast receptors fail to induce this differentiation, which can explain predominant mononuclear cell phenotype in GTNs. Since syncytiotro- phoblasts are the major producers of hCG in normal placenta, this function may have been delegated to cytotro- phoblasts in GTNs. Finally, hCG receptors in area postrema of brain, which contains the centers of nausea and vomiting reflexes, are probably hyperactivated by excessive hCG levels to cause frequent and severe episodes of nausea and vomiting [27]. hCG receptors in circulatory and tissue cells of immune system may suppress tumor rejection mechanisms as it does with fetus [28]-[30]. 4. Relevance to Other Neoplasms Many other neoplasms such as bladder, testicular, lung, etc. can produce small amounts of non-glycosylated hCG [31]. However, the blood levels in most of these cases barely reach detection limits of the assays. The neoplasms may also contain hCG receptors. Therefore, hCG produced primarily serve as an autocrine factor. It is likely then, as in GTNs, hCG may serve to stimulate tumor growth, development and invasion in the host body. This possibility is exemplified in a studies which showed that an inhibition of hCG synthesis or antibody blocking resulted in a dramatic reduction in the ability of human lung cancer cells to form tumors [32] [33]. 5. Therapeutic Implications If hCG is a driver of tumorigenesis, then an inhibition of its synthesis and/or its actions could work as a therapy. In fact, it does as shown in cell cultures and nude mice models. This approach has not yet been tried in patients due to a lack of tumor cell targeted therapies. But this limitation can be overcome by the advances in drug targeting technologies. When that happens, it will be a better alternative to currently used radiation and chemotherapies. References [1] Pierce, J.G. and Parsons, T.F. (1981) Glycoprotein Hormones: Structure and Function. Annual Review of Biochemistry, 50, 465-495. http://dx.doi.org/10.1146/annurev.bi.50.070181.002341 [2] Lapthorn, A.J., Harris, D.C., Littlejohn, A., Lustbader, J.W., Canfield, R.E., Machin, K.J., Morgan, F.J. and Isaacs, N.W. (1994) Crystal Structure of Human Chorionic Gonadotropin. Nature, 369, 455-461. http://dx.doi.org/10.1038/369455a0 [3] Fiddes, J.C. and Goodman, H.M. (1981) The Gene Encoding the Common Alpha Subunit of the Four Human Glyco- protein Hormones. Journal of Molecular and Applied Genetics, 1, 3-18. [4] Policastro, P., Ovitt, C.E., Hoshina, M., Fukuoka, H., Botthby, M.E. and Boime, I. (1983) The Beta Subunit of Human Chorionic Gonadotropin Is Encoded by Multiple Genes. Journal of Biological Chemistry, 258, 11492-11499. [5] Lei, Z.M. and Rao, C.V. (2001) Endocrinology of the Trophoblast Tissue. In: Becker, K., Ed., Principles and Practice of Endocrinology and Metabolism, 3rd Edition, Lippincott Williams & Wilkins, Philadelphia, Chapter 112, 1096-1102, [6] Cole, L.A., Kardana, A., Andrade-Gordon, P., Gawinowicz, M.A., Morris, J.C., Bergert, E.R., O’Connor, J. and Birken, S. (1991) The Heterogeneity of Human Chorionic Gonadotropin (hCG). III. The Occurrence, Biological and Immuno- logical Activities of Nicked hCG. Endocrinology, 129, 1559-1567. http://dx.doi.org/10.1210/endo-129-3-1559 [7] Loosfelt, H., Misrahi, M., Atger, M., Salesse, R., Vu, M.T., Thi, H.L., Jolivet, A., Guiochon-Mantell, A., Sar, S., Jallal, B., Garnier, J. and Milgrom, E. (1989) Cloning and Sequencing of porcine LH-hCG Receptor cDNA: Variants Lacking Transmembrane Domain. Science, 245, 525-528. http://dx.doi.org/10.1126/science.2502844 [8] McFarland, K.C., Sprengel, R., Phillips, H.S., Kohler, M., Rosembilt, N., Nikolics, N., Segaloff, D.L. and Seeburg, P.H. (1989) Lutropin-Choriogonadotropin Receptor: An Unusual Member of the G Protein-Coupled Receptor Family. Science, 245, 494-499. http://dx.doi.org/10.1126/science.2502842 [9] Lei, Z.M., Mishra, S., Zou, W., Xu, B., Foltz, M., Li, X. and Rao, C.V. (2001) Targeted Disruption of Luteinizing Hormone/Human Chorionic Gonadotropin Receptor Gene. Molecular Endocrinology, 15, 184-200. http://dx.doi.org/10.1210/mend.15.1.0586 [10] Rao, C.V. (2001) Nongonadal Actions of LH and hCG in Reproductive Biology and Medicine. Seminars in Reproduc- tive Medicine, 19, 1-119.
  • 4. C. V. Rao 4 [11] Zarate, A. and MacGregor, C. (1982) Beta-Subunit hCG and the Control of Trophoblastic Disease. In: Martimbeau, P.W. and Surwit, E.A., Eds., Gestational Trophoblastic Disease. Seminars in Oncology, 1X:2, 187-190. [12] Lei, Z.M., Rao, C.V., Ackerman, D.M. and Day, T.G. (1992) The Expression of Human Chorionic Gonadotropin/Hu- man Luteinizing Hormone Receptors in Human Gestational Trophoblastic Neoplasms. The Journal of Clinical Endo- crinology and Metabolism, 74, 1236-1241. [13] Reshef, E., Lei, Z.M., Rao, C.V., Pridham, D.D., Chegini, N. and Luborsky, J.L. (1990) The Presence of Gonadotropin Receptors in Nonpregnant Human Uterus, Human Placenta, Fetal Membranes and Decidua. The Journal of Clinical Endocrinology and Metabolism, 70, 421-430. http://dx.doi.org/10.1210/jcem-70-2-421 [14] Licht, P., Cao, H., Lei, Z.M., Rao, C.V. and Merz, W.M. (1993) Novel Self-Regulation of Human Chorionic Gonado- tropin Biosynthesis in Term Pregnancy Human Placenta. Endocrinology, 133, 3014-3025. [15] Licht, P., Cao, H., Zuo, J., Lei, Z.M., Rao, C.V., Merz, W.M. and Day Jr., T.G. (1994) Lack of Self-Regulation of Hu- man Chorionic Gonadotropin Biosynthesis in Human Choriocarcinoma Cells. The Journal of Clinical Endocrinology and Metabolism, 78, 1188-1194. [16] Cao, H., Lei, Z.M. and Rao, C.V. (1995) Consequences of Antisense Human Chorionic Gonadotropin-α Subunit cDNA Expression in Human Choriocarcinoma JAR Cells. Journal of Molecular Endocrinology, 14, 337-347. http://dx.doi.org/10.1677/jme.0.0140337 [17] Lei, Z.M., Taylor, D.D., Gercel-Taylor, C. and Rao, C.V. (1999) Human Chorionic Gonadotropin Promotes Tumori- genesis of Choriocarcinoma JAR Cells. Placenta, 13, 147-159. http://dx.doi.org/10.1016/S0143-4004(99)80012-5 [18] Hamada, A.L., Nakabayashi, K., Sato, A., Kiyoshi, K., Takamatsu, Y., Laoag-Fernandez, J.B., Ohara, N. and Maruo, T. (2005) Transfection of Antisense Chorionic Gonadotropin BETA Gene into Choriocarcinoma Suppress the Cell Proli- feration and Induce Apoptosis. The Journal of Clinical Endocrinology and Metabolism, 90, 4873-4879. http://dx.doi.org/10.1210/jc.2004-2458 [19] Cole, L.A., Khanlian, S.A., Riley, J.M. and Butler, S.A. (2006) Hyperglycosylated hCG in Gestational Implantation and in Choriocarcinoma and Testicular Germ Cell Malignancy Tumorigenesis. The Journal of Reproductive Medicine, 51, 919-929. [20] Lei, Z.M., Reshef, E. and Rao, C.V. (1992) The Expression of Human Chorionic Gonadotropin/Luteinizing Hormone Receptors in Human Endometrial and Myometrial Blood Vessels. The Journal of Clinical Endocrinology and Meta- bolism, 75, 651- 659. [21] Toth, P., Li, X., Rao, C.V., Lincoln, S.R., Sanfilippo, J.S., Spinnato, J.A. and Yussman, M.A. (1994) Expression of Functional Human Chorionic Gonadotropin/Human Luteinizing Hormone Receptor Gene in Human Uterine Arteries. The Journal of Clinical Endocrinology and Metabolism, 79, 307-315. [22] Zygmunt, M., Herr, F., Keller-Schoenwetter, S., Kunzi-Rapp, K., Munstedt, K., Rao, C.V., Lang, U. and Preissner, K.T. (2002) Characterization of Human Chorionic Gonadotropin as a Novel Angiogenic Factor. The Journal of Clinical En- docrinology and Metabolism, 87, 5290-5296. http://dx.doi.org/10.1210/jc.2002-020642 [23] Ambrus, G. and Rao, C.V (1994) Novel Regulation of Pregnant Human Myometrial Smooth Muscle Cell Gap Junc- tions by Human Chorionic Gonadotropin, Endocrinology, 135, 2772-2779. [24] Eta, E., Ambrus, G. and Rao, C.V. (1994) Direct Regulation of Human Myometrial Contractions by Human Chorionic Gonadotropin. The Journal of Clinical Endocrinology and Metabolism, 79, 1582-1586. [25] Shi, Q.J., Lei, Z.M., Rao, C.V. and Lin, J. (1993) Novel Role of Human Chorionic Gonadotropin in Differentiation of Human Cytotrophoblasts. Endocrinology, 132, 1387-1395. [26] Yang, M., Lei, Z.M. and Rao, C.V. (2003) The Central Role of Human Chorionic Gonadotropin in the Formation of Human Placental Syncytium. Endocrinology, 144, 1108-1120. http://dx.doi.org/10.1210/en.2002-220922 [27] Lei, Z.M., Rao, C.V., Kornyei, J.L., Licht, P. and Hiatt, E.S. (1993) Novel Expression of Human Chorionic Gonado- tropin/Luteinizing Hormone Receptor Gene in Brain. Endocrinology, 132, 2262-2270. [28] Lin, J., Lojun, S., Lei, Z.M., Wu, W.X., Peiper, S.C. and Rao, C.V. (1995) Lymphocytes from Pregnant Women Ex- press Human Chorionic Gonadotropin/Luteinizing Hormone Receptor Gene. Molecular and Cellular Endocrinology, 111, 13-17. http://dx.doi.org/10.1016/0303-7207(95)03565-O [29] Zhang, Y.M., Rao, C.V. and Lei, Z.M. (2003) Macrophages in Human Reproductive Tissues Contain Luteinizing Hormone/Chorionic Gonadotropin Receptors. American Journal of Reproductive Immunology, 49, 93-100. http://dx.doi.org/10.1034/j.1600-0897.2003.00013.x [30] Lei, Z.M., Yang, M., Li, X., Takikawa, O. and Rao, C.V. (2007) Upregulation of Placental Indoleamine 2,3-Dioxy- genase by Human Chorionic Gonadotropin. Biology of Reproduction, 76, 639-644. http://dx.doi.org/10.1095/biolreprod.106.056960 [31] Acevedo, H.F., Krichevsky, A., Campbell-Acevedo, E.A., Galyon, J.C., Buffo, M.J. and Hartsock, R.J. (1992) Expres-
  • 5. C. V. Rao 5 sion of Membrane-Associated Human Chorionic Gonadotropin, Its Subunits, and Fragments by Cultured Human Can- cer Cells. Cancer, 69, 1829-1842. http://dx.doi.org/10.1002/1097-0142(19920401)69:7<1829::AID-CNCR2820690727>3.0.CO;2-0 [32] Kumar, S., Talwar, G.P. and Biswas, D.K. (1992) Necrosis and Inhibition of Growth of Human Lung Tumor by Anti- Alpha Human Chorionic Gonadotropin Antibody. Journal of the National Cancer Institute, 84, 42-47. http://dx.doi.org/10.1093/jnci/84.1.42 [33] Rivera, R.T., Pasion, S.G., Wong, D.T.W., Fei, Y. and Biswas, D.K. (1989) Loss of Tumorigenic Potential by Human Lung Tumor Cells in the Presence of Antisense RNA Specific to the Ectopically Synthesized Alpha Subunit of Human Chorionic Gonadotropin. Journal of Cell Biology, 108, 2423-2434. http://dx.doi.org/10.1083/jcb.108.6.2423