Number System and Conversions
An Overview
What is a Number System?
• • A number system is a way to represent
numbers using symbols.
• • Defines a set of values and rules for
combination.
Types of Number Systems
• • Binary (Base 2)
• • Octal (Base 8)
• • Decimal (Base 10)
• • Hexadecimal (Base 16)
Binary Number System
• • Digits used: 0 and 1
• • Base: 2
• • Used in computers and digital electronics
Decimal Number System
• • Digits used: 0 to 9
• • Base: 10
• • Most commonly used in daily life
Hexadecimal Number System
• • Digits used: 0-9 and A-F
• • Base: 16
• • Widely used in computer memory
addressing
Conversions Between Number
Systems
• • Decimal ↔ Binary
• • Decimal ↔ Octal
• • Decimal ↔ Hexadecimal
• • Binary ↔ Octal/Hexadecimal
Example: Decimal to Binary
• Example: Convert 25 to Binary
• • 25 ÷ 2 = 12 R1
• • 12 ÷ 2 = 6 R0
• • 6 ÷ 2 = 3 R0
• • 3 ÷ 2 = 1 R1
• • 1 ÷ 2 = 0 R1
• Binary = 11001
Example: Binary to Decimal
• Example: Convert 1011 to Decimal
• • (1×2³) + (0×2²) + (1×2¹) + (1×2⁰)
• • 8 + 0 + 2 + 1 = 11

Number_System_and_Conversions digital.pptx

  • 1.
    Number System andConversions An Overview
  • 2.
    What is aNumber System? • • A number system is a way to represent numbers using symbols. • • Defines a set of values and rules for combination.
  • 3.
    Types of NumberSystems • • Binary (Base 2) • • Octal (Base 8) • • Decimal (Base 10) • • Hexadecimal (Base 16)
  • 4.
    Binary Number System •• Digits used: 0 and 1 • • Base: 2 • • Used in computers and digital electronics
  • 5.
    Decimal Number System •• Digits used: 0 to 9 • • Base: 10 • • Most commonly used in daily life
  • 6.
    Hexadecimal Number System •• Digits used: 0-9 and A-F • • Base: 16 • • Widely used in computer memory addressing
  • 7.
    Conversions Between Number Systems •• Decimal ↔ Binary • • Decimal ↔ Octal • • Decimal ↔ Hexadecimal • • Binary ↔ Octal/Hexadecimal
  • 8.
    Example: Decimal toBinary • Example: Convert 25 to Binary • • 25 ÷ 2 = 12 R1 • • 12 ÷ 2 = 6 R0 • • 6 ÷ 2 = 3 R0 • • 3 ÷ 2 = 1 R1 • • 1 ÷ 2 = 0 R1 • Binary = 11001
  • 9.
    Example: Binary toDecimal • Example: Convert 1011 to Decimal • • (1×2³) + (0×2²) + (1×2¹) + (1×2⁰) • • 8 + 0 + 2 + 1 = 11