Week 5.1: Level-2 Variables
! Notation
! Multiple Random Effects
! Combining Datasets in R
! Modeling
! Level-2 Variables
! Including Level-2 Variables in R
! Modeling Consequences
! Cross-Level Interactions
! Lab
Recap
• Last week, we created a model of middle
schoolers’ math performance that included a
random intercept for Classroom
• model1 <- lmer(FinalMathScore ~ 1 + TOI +
(1|Classroom), data=math)
Fixed effect of
naive theory
of intelligence
Average
intercept
(averaged all
classrooms)
Variance in
that intercept
from one class
to the next
Residual
(unexplained)
variance at
the child level
Notation
• What is this model doing mathematically?
• Let’s go back to our model of individual students
(now slightly different):
Student
Error
Ei(j)
=
End-of-year math
exam score
+ +
Baseline
Yi(j) B0j
Fixed mindset
γ10x1i(j)
Notation
• What is this model doing mathematically?
• Let’s go back to our model of individual students
(now slightly different):
Student
Error
Ei(j)
=
End-of-year math
exam score
+ +
Baseline
Yi(j) B0j
Fixed mindset
γ10x1i(j)
What now determines the baseline that
we should expect for students with
fixed mindset=0?
Notation
• What is this model doing mathematically?
• Baseline (intercept) for a student in classroom j
now depends on two things:
• Let’s go back to our model of individual students
(now slightly different):
Student
Error
Ei(j)
=
End-of-year math
exam score
+ +
Baseline
Yi(j) B0j
Fixed mindset
γ10x1i(j)
U0j
=
Intercept
+
Overall intercept
across everyone
B0j γ00
Teacher effect for this
classroom (Error)
Notation
• Essentially, we have two regression models
• Hierarchical linear model
• Model of classroom j:
• Model of student i:
Student
Error
Ei(j)
=
End-of-year math
exam score
+ +
Baseline
Yi(j) B0j
Fixed mindset
γ10x1i(j)
U0j
=
Intercept
+
B0j γ00
Teacher effect for this
classroom (Error)
LEVEL-1
MODEL
(Student)
LEVEL-2
MODEL
(Classroom)
Overall intercept
across everyone
Hierarchical Linear Model
Student
1
Student
2
Student
3
Student
4
Level-1 model:
Sampled STUDENTS
Mr.
Wagner’s
Class
Ms.
Fulton’s
Class
Ms.
Green’s
Class
Ms.
Cornell’s
Class
Level-2 model:
Sampled
CLASSROOMS
• Level-2 model is for the superordinate level here,
Level-1 model is for the subordinate level
Variance of classroom intercept is
the error variance at Level 2
Residual is the error variance at
Level 1
Notation
• Two models seems confusing. But we can simplify
with some algebra…
• Model of classroom j:
• Model of student i:
Student
Error
Ei(j)
=
End-of-year math
exam score
+ +
Baseline
Yi(j) B0j
Fixed mindset
γ10x1i(j)
U0j
=
Intercept
+
B0j γ00
Teacher effect for this
classroom (Error)
LEVEL-1
MODEL
(Student)
LEVEL-2
MODEL
(Classroom)
Overall intercept
across everyone
Notation
• Substitution gives us a single model that combines
level-1 and level-2
• Mixed effects model
• Combined model:
Student
Error
Ei(j)
=
End-of-year math
exam score
+ +
Yi(j)
Fixed mindset
γ10x1i(j)
U0j
+
Overall
intercept
γ00
Teacher effect for this
classroom (Error)
Notation
• Just two slightly different ways of writing the same
thing. Notation difference, not statistical!
• Mixed effects model:
• Hierarchical linear model:
Ei(j)
= + +
Yi(j)
γ10x1i(j)
U0j
+
γ00
Ei(j)
=
Yi(j) B0j
γ10x1i(j)
U0j
= +
B0j γ00
+ +
Notation
• lme4 always uses the mixed-effects model notation
• lmer(
FinalMathScore ~ 1 + TOI + (1|Classroom)
)
• (Level-1 error is always implied, don’t have to
include)
Student
Error
Ei(j)
=
End-of-year math
exam score
+ +
Yi(j)
Fixed mindset
γ10x1i(j) U0j
+
Overall
intercept
γ00
Teacher
effect
for this
class (Error)
Week 5.1: Level-2 Variables
! Notation
! Multiple Random Effects
! Combining Datasets in R
! Modeling
! Level-2 Variables
! Including Level-2 Variables in R
! Modeling Consequences
! Cross-Level Interactions
! Lab
! We’re continuing our study of naïve theories of
intelligence & math performance
! We’ve now collected data at three different
schools
! math1.csv from Jefferson Middle School
! math2.csv from Highland Middle School
! math3.csv from Hoover Middle School
Combining Datasets in R
Combining Datasets in R
! Look at the math1, math2, math3 dataframes
! How are they similar? How are they different?
! TOI and final math score for each student
Combining Datasets in R
! Look at the math1, math2, math3 dataframes
! How are they similar? How are they different?
! TOI and final math score for each student
Columns not always in same order
Combining Datasets in R
! Look at the math1, math2, math3 dataframes
! How are they similar? How are they different?
! TOI and final math score for each student
Only Hoover has GPA
reported
Combining Datasets in R
! Overall, this is similar information, so let’s
combine it all
! Paste together the rows from two (or more)
dataframes to create a new one:
! bind_rows(math1, math2, math3) -> math
! Useful when observations are spread across files
! Or, to create a dataframe that combines 2 filtered
dataframes
math1
math2
math3
math
bind_rows(): Results
! Resulting dataframe:
! nrow(math) is 720 – all three combined
math1
math2
math3
math
! Resulting dataframe:
! bind_rows() is smart!
! Not a problem that column order varies across
dataframes
! Looks at the column names
! Not a problem that GPA column only existed in one of
the original dataframes
! NA (missing data) for the students at the other schools
bind_rows(): Results
bind_rows(): Results
! Resulting dataframe:
! You can also add the optional .id argument
! bind_rows(math1, math2, math3,
.id='OriginalDataframe’) -> math
! Adds another column that tracks which of the original
dataframes (by number) each observation came from
Other, Similar Functions
! bind_rows() pastes together every row from
every dataframe, even if there are duplicates
! If you want to skip duplicates, use union()
! Same syntax as bind_rows(), just different function name
! Other related functions:
! intersect(): Keep only the rows that appear in all of
the source dataframes
! setdiff(): Keep only the rows that appear in a single
source dataframe—if duplicates, delete both copies
Week 5.1: Level-2 Variables
! Notation
! Multiple Random Effects
! Combining Datasets in R
! Modeling
! Level-2 Variables
! Including Level-2 Variables in R
! Modeling Consequences
! Cross-Level Interactions
! Lab
Multiple Random Effects
• Schools could differ in math achievement—let’s add
School to the model to control for that
• Is SCHOOL a fixed effect or a random effect?
• These schools are just a sample of possible schools of
interest " Random effect.
School
1
School
2
Sampled SCHOOLS
Sampled
CLASSROOMS
Sampled STUDENTS
LEVEL 3
LEVEL 2
LEVEL 1
Student
1
Student
2
Student
3
Student
4
Mr.
Wagner’s
Class
Ms.
Fulton’s
Class
Ms.
Green’s
Class
Ms.
Cornell’s
Class
Multiple Random Effects
• No problem to have more than 1 random effect in
the model! Let’s a random intercept for School.
School
1
School
2
Sampled SCHOOLS
Sampled
CLASSROOMS
Sampled STUDENTS
LEVEL 3
LEVEL 2
LEVEL 1
Student
1
Student
2
Student
3
Student
4
Mr.
Wagner’s
Class
Ms.
Fulton’s
Class
Ms.
Green’s
Class
Ms.
Cornell’s
Class
Multiple Random Effects
• model2 <- lmer(FinalMathScore ~ 1 + TOI
+ (1|Classroom) + (1|School), data=math)
School
1
School
2
Sampled SCHOOLS
Sampled
CLASSROOMS
Sampled STUDENTS
LEVEL 3
LEVEL 2
LEVEL 1
Student
1
Student
2
Student
3
Student
4
Mr.
Wagner’s
Class
Ms.
Fulton’s
Class
Ms.
Green’s
Class
Ms.
Cornell’s
Class
Multiple Random Effects
• model2 <- lmer(FinalMathScore ~ 1 + TOI
+ (1|Classroom) + (1|School), data=math)
• Less variability across schools than classrooms in a school
Multiple Random Effects
• This is an example of nested random effects.
• Each classroom is always in the same school.
• We’ll look at crossed random effects next week
School
1
School
2
Sampled SCHOOLS
Sampled
CLASSROOMS
Sampled STUDENTS
LEVEL 3
LEVEL 2
LEVEL 1
Student
1
Student
2
Student
3
Student
4
Mr.
Wagner’s
Class
Ms.
Fulton’s
Class
Ms.
Green’s
Class
Ms.
Cornell’s
Class
Week 5.1: Level-2 Variables
! Notation
! Multiple Random Effects
! Combining Datasets in R
! Modeling
! Level-2 Variables
! Including Level-2 Variables in R
! Modeling Consequences
! Cross-Level Interactions
! Lab
Level-2 Variables
• So far, all our model says about classrooms is
that they’re different
• Some classrooms have a large intercept
• Some classrooms have a small intercept
• But, we might also have some interesting
variables that characterize classrooms
• They might even be our main research interest!
• How about teacher theories of intelligence?
• Might affect how they interact with & teach students
Level-2 Variables
Student
1
Student
2
Student
3
Student
4
Sampled STUDENTS
Mr.
Wagner’s
Class
Ms.
Fulton’s
Class
Ms.
Green’s
Class
Ms.
Cornell’s
Class
Sampled
CLASSROOMS
• TeacherTheory characterizes Level 2
• All students in the same classroom will experience
the same TeacherTheory
LEVEL 2
LEVEL 1
TeacherTheory
TOI
Level-2 Variables
• Is TeacherTheory a fixed effect or random
effect?
• Teacher mindset is a fixed-effect variable
• We ARE interested in the effects of teacher mindset
on student math achievement … a research
question, not just something to control for
• Even if we ran this with a new random sample of 30
teachers, we WOULD hope to replicate whatever
regression slope for teacher mindset we observe
(whereas we wouldn’t get the same 30 teachers
back)
Level-2 Variables
• This becomes another variable in the level-2
model of classroom differences
• Tells us what we can expect this classroom to be like
Student
Error
Ei(j)
=
End-of-year math
exam score
+ +
Baseline
Yi(j) B0j
Growth mindset
γ10x1i(j)
U0j
=
Intercept
+
Overall
intercept
B0j
γ00
Teacher effect for this
classroom (Error)
LEVEL-1
MODEL
(Student)
LEVEL-2
MODEL
(Classroom)
Teacher
mindset
+
γ20x20j
Level-2 Variables
• Since R uses mixed effects notation, we don’t
have to do anything special to add a level-2
variable to the model
• model3 <- lmer(FinalMathScore ~ 1 + TOI
+ TeacherTheory + (1|Classroom) +
(1|School), data=math)
• R automatically figures out TeacherTheory is a
level-2 variable because it’s invariant for each
classroom
• We keep the random intercept for Classroom
because we don’t expect TeacherTheory will
explain all of the classroom differences. Intercept
captures residual differences.
Week 5.1: Level-2 Variables
! Notation
! Multiple Random Effects
! Combining Datasets in R
! Modeling
! Level-2 Variables
! Including Level-2 Variables in R
! Modeling Consequences
! Cross-Level Interactions
! Lab
What Changes? What Doesn’t?
• Random classroom & school variance is reduced.
• Teacher theories of intelligence accounts for some of the variance
among classrooms (and among the schools those classrooms are in).
• TeacherTheory explains some of the “Class j” effect we’re substituting
into the level 1 equation. No longer just a random intercept.
WITHOUT TEACHERTHEORY WITH TEACHERTHEORY
What Changes? What Doesn’t?
• Residual error at level 1 essentially unchanged.
• Describes how students vary from the class average
• Divergence from the class average cannot be explained by teacher
• Regardless of what explains the “Class j” effect, you’re still substituting it
into the same Lv 1 model
WITHOUT TEACHERTHEORY WITH TEACHERTHEORY
What Changes? What Doesn’t?
• Similarly, our level-1 fixed effect is essentially unchanged
• Explaining where level-2 variation comes from does not change our
level-1 model
• Note that average student TOI and TeacherTheory are very slightly
correlated (due to random chance); otherwise, there’d be no change.
WITHOUT TEACHERTHEORY WITH TEACHERTHEORY
Week 5.1: Level-2 Variables
! Notation
! Multiple Random Effects
! Combining Datasets in R
! Modeling
! Level-2 Variables
! Including Level-2 Variables in R
! Modeling Consequences
! Cross-Level Interactions
! Lab
Cross-Level Interactions
• Because R uses mixed effects notation, it’s also
very easy to add interactions between level-1
and level-2 variables
• model4 <- lmer(FinalMathScore ~ 1 + TOI
+ TeacherTheory + TOI:TeacherTheory +
(1|Classroom) + (1|School), data=math)
• Does the effect of a student’s theory of intelligence
depend on what the teacher’s theory is?
• e.g., maybe matching theories is beneficial
Cross-Level Interactions
• Because R uses mixed effects notation, it’s also
very easy to add interactions between level-1
and level-2 variables
• In this case, the interaction is not significant
Week 5.1: Level-2 Variables
! Notation
! Multiple Random Effects
! Combining Datasets in R
! Modeling
! Level-2 Variables
! Including Level-2 Variables in R
! Modeling Consequences
! Cross-Level Interactions
! Lab

Mixed Effects Models - Level-2 Variables

  • 1.
    Week 5.1: Level-2Variables ! Notation ! Multiple Random Effects ! Combining Datasets in R ! Modeling ! Level-2 Variables ! Including Level-2 Variables in R ! Modeling Consequences ! Cross-Level Interactions ! Lab
  • 2.
    Recap • Last week,we created a model of middle schoolers’ math performance that included a random intercept for Classroom • model1 <- lmer(FinalMathScore ~ 1 + TOI + (1|Classroom), data=math) Fixed effect of naive theory of intelligence Average intercept (averaged all classrooms) Variance in that intercept from one class to the next Residual (unexplained) variance at the child level
  • 3.
    Notation • What isthis model doing mathematically? • Let’s go back to our model of individual students (now slightly different): Student Error Ei(j) = End-of-year math exam score + + Baseline Yi(j) B0j Fixed mindset γ10x1i(j)
  • 4.
    Notation • What isthis model doing mathematically? • Let’s go back to our model of individual students (now slightly different): Student Error Ei(j) = End-of-year math exam score + + Baseline Yi(j) B0j Fixed mindset γ10x1i(j) What now determines the baseline that we should expect for students with fixed mindset=0?
  • 5.
    Notation • What isthis model doing mathematically? • Baseline (intercept) for a student in classroom j now depends on two things: • Let’s go back to our model of individual students (now slightly different): Student Error Ei(j) = End-of-year math exam score + + Baseline Yi(j) B0j Fixed mindset γ10x1i(j) U0j = Intercept + Overall intercept across everyone B0j γ00 Teacher effect for this classroom (Error)
  • 6.
    Notation • Essentially, wehave two regression models • Hierarchical linear model • Model of classroom j: • Model of student i: Student Error Ei(j) = End-of-year math exam score + + Baseline Yi(j) B0j Fixed mindset γ10x1i(j) U0j = Intercept + B0j γ00 Teacher effect for this classroom (Error) LEVEL-1 MODEL (Student) LEVEL-2 MODEL (Classroom) Overall intercept across everyone
  • 7.
    Hierarchical Linear Model Student 1 Student 2 Student 3 Student 4 Level-1model: Sampled STUDENTS Mr. Wagner’s Class Ms. Fulton’s Class Ms. Green’s Class Ms. Cornell’s Class Level-2 model: Sampled CLASSROOMS • Level-2 model is for the superordinate level here, Level-1 model is for the subordinate level Variance of classroom intercept is the error variance at Level 2 Residual is the error variance at Level 1
  • 8.
    Notation • Two modelsseems confusing. But we can simplify with some algebra… • Model of classroom j: • Model of student i: Student Error Ei(j) = End-of-year math exam score + + Baseline Yi(j) B0j Fixed mindset γ10x1i(j) U0j = Intercept + B0j γ00 Teacher effect for this classroom (Error) LEVEL-1 MODEL (Student) LEVEL-2 MODEL (Classroom) Overall intercept across everyone
  • 9.
    Notation • Substitution givesus a single model that combines level-1 and level-2 • Mixed effects model • Combined model: Student Error Ei(j) = End-of-year math exam score + + Yi(j) Fixed mindset γ10x1i(j) U0j + Overall intercept γ00 Teacher effect for this classroom (Error)
  • 10.
    Notation • Just twoslightly different ways of writing the same thing. Notation difference, not statistical! • Mixed effects model: • Hierarchical linear model: Ei(j) = + + Yi(j) γ10x1i(j) U0j + γ00 Ei(j) = Yi(j) B0j γ10x1i(j) U0j = + B0j γ00 + +
  • 11.
    Notation • lme4 alwaysuses the mixed-effects model notation • lmer( FinalMathScore ~ 1 + TOI + (1|Classroom) ) • (Level-1 error is always implied, don’t have to include) Student Error Ei(j) = End-of-year math exam score + + Yi(j) Fixed mindset γ10x1i(j) U0j + Overall intercept γ00 Teacher effect for this class (Error)
  • 12.
    Week 5.1: Level-2Variables ! Notation ! Multiple Random Effects ! Combining Datasets in R ! Modeling ! Level-2 Variables ! Including Level-2 Variables in R ! Modeling Consequences ! Cross-Level Interactions ! Lab
  • 13.
    ! We’re continuingour study of naïve theories of intelligence & math performance ! We’ve now collected data at three different schools ! math1.csv from Jefferson Middle School ! math2.csv from Highland Middle School ! math3.csv from Hoover Middle School Combining Datasets in R
  • 14.
    Combining Datasets inR ! Look at the math1, math2, math3 dataframes ! How are they similar? How are they different? ! TOI and final math score for each student
  • 15.
    Combining Datasets inR ! Look at the math1, math2, math3 dataframes ! How are they similar? How are they different? ! TOI and final math score for each student Columns not always in same order
  • 16.
    Combining Datasets inR ! Look at the math1, math2, math3 dataframes ! How are they similar? How are they different? ! TOI and final math score for each student Only Hoover has GPA reported
  • 17.
    Combining Datasets inR ! Overall, this is similar information, so let’s combine it all ! Paste together the rows from two (or more) dataframes to create a new one: ! bind_rows(math1, math2, math3) -> math ! Useful when observations are spread across files ! Or, to create a dataframe that combines 2 filtered dataframes math1 math2 math3 math
  • 18.
    bind_rows(): Results ! Resultingdataframe: ! nrow(math) is 720 – all three combined math1 math2 math3 math
  • 19.
    ! Resulting dataframe: !bind_rows() is smart! ! Not a problem that column order varies across dataframes ! Looks at the column names ! Not a problem that GPA column only existed in one of the original dataframes ! NA (missing data) for the students at the other schools bind_rows(): Results
  • 20.
    bind_rows(): Results ! Resultingdataframe: ! You can also add the optional .id argument ! bind_rows(math1, math2, math3, .id='OriginalDataframe’) -> math ! Adds another column that tracks which of the original dataframes (by number) each observation came from
  • 21.
    Other, Similar Functions !bind_rows() pastes together every row from every dataframe, even if there are duplicates ! If you want to skip duplicates, use union() ! Same syntax as bind_rows(), just different function name ! Other related functions: ! intersect(): Keep only the rows that appear in all of the source dataframes ! setdiff(): Keep only the rows that appear in a single source dataframe—if duplicates, delete both copies
  • 22.
    Week 5.1: Level-2Variables ! Notation ! Multiple Random Effects ! Combining Datasets in R ! Modeling ! Level-2 Variables ! Including Level-2 Variables in R ! Modeling Consequences ! Cross-Level Interactions ! Lab
  • 23.
    Multiple Random Effects •Schools could differ in math achievement—let’s add School to the model to control for that • Is SCHOOL a fixed effect or a random effect? • These schools are just a sample of possible schools of interest " Random effect. School 1 School 2 Sampled SCHOOLS Sampled CLASSROOMS Sampled STUDENTS LEVEL 3 LEVEL 2 LEVEL 1 Student 1 Student 2 Student 3 Student 4 Mr. Wagner’s Class Ms. Fulton’s Class Ms. Green’s Class Ms. Cornell’s Class
  • 24.
    Multiple Random Effects •No problem to have more than 1 random effect in the model! Let’s a random intercept for School. School 1 School 2 Sampled SCHOOLS Sampled CLASSROOMS Sampled STUDENTS LEVEL 3 LEVEL 2 LEVEL 1 Student 1 Student 2 Student 3 Student 4 Mr. Wagner’s Class Ms. Fulton’s Class Ms. Green’s Class Ms. Cornell’s Class
  • 25.
    Multiple Random Effects •model2 <- lmer(FinalMathScore ~ 1 + TOI + (1|Classroom) + (1|School), data=math) School 1 School 2 Sampled SCHOOLS Sampled CLASSROOMS Sampled STUDENTS LEVEL 3 LEVEL 2 LEVEL 1 Student 1 Student 2 Student 3 Student 4 Mr. Wagner’s Class Ms. Fulton’s Class Ms. Green’s Class Ms. Cornell’s Class
  • 26.
    Multiple Random Effects •model2 <- lmer(FinalMathScore ~ 1 + TOI + (1|Classroom) + (1|School), data=math) • Less variability across schools than classrooms in a school
  • 27.
    Multiple Random Effects •This is an example of nested random effects. • Each classroom is always in the same school. • We’ll look at crossed random effects next week School 1 School 2 Sampled SCHOOLS Sampled CLASSROOMS Sampled STUDENTS LEVEL 3 LEVEL 2 LEVEL 1 Student 1 Student 2 Student 3 Student 4 Mr. Wagner’s Class Ms. Fulton’s Class Ms. Green’s Class Ms. Cornell’s Class
  • 28.
    Week 5.1: Level-2Variables ! Notation ! Multiple Random Effects ! Combining Datasets in R ! Modeling ! Level-2 Variables ! Including Level-2 Variables in R ! Modeling Consequences ! Cross-Level Interactions ! Lab
  • 29.
    Level-2 Variables • Sofar, all our model says about classrooms is that they’re different • Some classrooms have a large intercept • Some classrooms have a small intercept • But, we might also have some interesting variables that characterize classrooms • They might even be our main research interest! • How about teacher theories of intelligence? • Might affect how they interact with & teach students
  • 30.
    Level-2 Variables Student 1 Student 2 Student 3 Student 4 Sampled STUDENTS Mr. Wagner’s Class Ms. Fulton’s Class Ms. Green’s Class Ms. Cornell’s Class Sampled CLASSROOMS •TeacherTheory characterizes Level 2 • All students in the same classroom will experience the same TeacherTheory LEVEL 2 LEVEL 1 TeacherTheory TOI
  • 31.
    Level-2 Variables • IsTeacherTheory a fixed effect or random effect? • Teacher mindset is a fixed-effect variable • We ARE interested in the effects of teacher mindset on student math achievement … a research question, not just something to control for • Even if we ran this with a new random sample of 30 teachers, we WOULD hope to replicate whatever regression slope for teacher mindset we observe (whereas we wouldn’t get the same 30 teachers back)
  • 32.
    Level-2 Variables • Thisbecomes another variable in the level-2 model of classroom differences • Tells us what we can expect this classroom to be like Student Error Ei(j) = End-of-year math exam score + + Baseline Yi(j) B0j Growth mindset γ10x1i(j) U0j = Intercept + Overall intercept B0j γ00 Teacher effect for this classroom (Error) LEVEL-1 MODEL (Student) LEVEL-2 MODEL (Classroom) Teacher mindset + γ20x20j
  • 33.
    Level-2 Variables • SinceR uses mixed effects notation, we don’t have to do anything special to add a level-2 variable to the model • model3 <- lmer(FinalMathScore ~ 1 + TOI + TeacherTheory + (1|Classroom) + (1|School), data=math) • R automatically figures out TeacherTheory is a level-2 variable because it’s invariant for each classroom • We keep the random intercept for Classroom because we don’t expect TeacherTheory will explain all of the classroom differences. Intercept captures residual differences.
  • 34.
    Week 5.1: Level-2Variables ! Notation ! Multiple Random Effects ! Combining Datasets in R ! Modeling ! Level-2 Variables ! Including Level-2 Variables in R ! Modeling Consequences ! Cross-Level Interactions ! Lab
  • 35.
    What Changes? WhatDoesn’t? • Random classroom & school variance is reduced. • Teacher theories of intelligence accounts for some of the variance among classrooms (and among the schools those classrooms are in). • TeacherTheory explains some of the “Class j” effect we’re substituting into the level 1 equation. No longer just a random intercept. WITHOUT TEACHERTHEORY WITH TEACHERTHEORY
  • 36.
    What Changes? WhatDoesn’t? • Residual error at level 1 essentially unchanged. • Describes how students vary from the class average • Divergence from the class average cannot be explained by teacher • Regardless of what explains the “Class j” effect, you’re still substituting it into the same Lv 1 model WITHOUT TEACHERTHEORY WITH TEACHERTHEORY
  • 37.
    What Changes? WhatDoesn’t? • Similarly, our level-1 fixed effect is essentially unchanged • Explaining where level-2 variation comes from does not change our level-1 model • Note that average student TOI and TeacherTheory are very slightly correlated (due to random chance); otherwise, there’d be no change. WITHOUT TEACHERTHEORY WITH TEACHERTHEORY
  • 38.
    Week 5.1: Level-2Variables ! Notation ! Multiple Random Effects ! Combining Datasets in R ! Modeling ! Level-2 Variables ! Including Level-2 Variables in R ! Modeling Consequences ! Cross-Level Interactions ! Lab
  • 39.
    Cross-Level Interactions • BecauseR uses mixed effects notation, it’s also very easy to add interactions between level-1 and level-2 variables • model4 <- lmer(FinalMathScore ~ 1 + TOI + TeacherTheory + TOI:TeacherTheory + (1|Classroom) + (1|School), data=math) • Does the effect of a student’s theory of intelligence depend on what the teacher’s theory is? • e.g., maybe matching theories is beneficial
  • 40.
    Cross-Level Interactions • BecauseR uses mixed effects notation, it’s also very easy to add interactions between level-1 and level-2 variables • In this case, the interaction is not significant
  • 41.
    Week 5.1: Level-2Variables ! Notation ! Multiple Random Effects ! Combining Datasets in R ! Modeling ! Level-2 Variables ! Including Level-2 Variables in R ! Modeling Consequences ! Cross-Level Interactions ! Lab