NOMBRE: JOSSELIN YAMBAY CURSO: QUINTO SEMESTRE “A”
MAXIMIZAR: 4 X1 + 7 
X2 
MAXIMIZAR: 4 X1 + 7 X2 + 
0 X3 + 0 X4 + 0 X5 
1 X1 + 0 X2 ≤ 4 
0 X1 + 2 X2 ≤ 12 
3 X1 + 2 X2 = 18 
1 X1 + 1 X3 = 4 
0 X1 + 2 X2 + 1 X4 = 12 
3 X1 + 2 X2 + 1 X5 = 18 
X1, X2 ≥ 0 X1, X2, X3, X4, X5 ≥ 0 
La solución óptima es Z = 50 
X1 = 2 
X2 = 6 
Punto Coordenada X (X1) 
Coordenada Y 
(X2) 
Valor de la función objetivo (Z) 
O 0 0 0 
A 4 0 16 
B 4 6 58 
C 4 3 37 
D 0 6 42 
E 2 6 50 
F 0 9 63 
G 6 0 24
MINIMIZAR: 4 
X1 + 7 X2 
MAXIMIZAR: -4 X1 -7 X2 + 0 
X3 + 0 X4 + 0 X5 + 0 X6 
1 X1 + 0 X2 ≤ 6 
0 X1 + 2 X2 = 14 
3 X1 + 2 X2 ≥ 20 
1 X1 + 1 X3 = 6 
0 X1 + 2 X2 + 1 X5 = 14 
3 X1 + 2 X2 -1 X4 + 1 X6 = 20 
X1, X2 ≥ 0 X1, X2, X3, X4, X5, X6 ≥ 0 
La solución óptima es Z = 57 
X1 = 2 
X2 = 7 
Punto Coordenada X (X1) Coordenada Y (X2) Valor de la función objetivo (Z) 
O 0 0 0 
A 6 0 24 
B 6 7 73 
C 6 1 31 
D 0 7 49 
E 2 7 57 
F 0 10 70 
G 6.6666666666667 0 26.666666666667
MINIMIZAR: 6 
X1 + 8 X2 + 16 X3 
MAXIMIZAR: -6 X1 -8 X2 - 
16 X3 + 0 X4 + 0 X5 + 0 X6 + 
0 X7 
2 X1 + 1 X2 + 0 X3 ≥ 5 
0 X1 + 1 X2 + 2 X3 ≥ 4 
2 X1 + 1 X2 -1 X4 + 1 X6 = 5 
0 X1 + 1 X2 + 2 X3 -1 X5 + 1 
X7 = 4 
X1, X2, X3 ≥ 0 X1, X2, X3, X4, X5, X6, X7 ≥ 0 
La solución óptima es Z = 35 
X1 = 1 / 2 
X2 = 4 
X3 = 0

metodo simplex

  • 1.
    NOMBRE: JOSSELIN YAMBAYCURSO: QUINTO SEMESTRE “A”
  • 4.
    MAXIMIZAR: 4 X1+ 7 X2 MAXIMIZAR: 4 X1 + 7 X2 + 0 X3 + 0 X4 + 0 X5 1 X1 + 0 X2 ≤ 4 0 X1 + 2 X2 ≤ 12 3 X1 + 2 X2 = 18 1 X1 + 1 X3 = 4 0 X1 + 2 X2 + 1 X4 = 12 3 X1 + 2 X2 + 1 X5 = 18 X1, X2 ≥ 0 X1, X2, X3, X4, X5 ≥ 0 La solución óptima es Z = 50 X1 = 2 X2 = 6 Punto Coordenada X (X1) Coordenada Y (X2) Valor de la función objetivo (Z) O 0 0 0 A 4 0 16 B 4 6 58 C 4 3 37 D 0 6 42 E 2 6 50 F 0 9 63 G 6 0 24
  • 5.
    MINIMIZAR: 4 X1+ 7 X2 MAXIMIZAR: -4 X1 -7 X2 + 0 X3 + 0 X4 + 0 X5 + 0 X6 1 X1 + 0 X2 ≤ 6 0 X1 + 2 X2 = 14 3 X1 + 2 X2 ≥ 20 1 X1 + 1 X3 = 6 0 X1 + 2 X2 + 1 X5 = 14 3 X1 + 2 X2 -1 X4 + 1 X6 = 20 X1, X2 ≥ 0 X1, X2, X3, X4, X5, X6 ≥ 0 La solución óptima es Z = 57 X1 = 2 X2 = 7 Punto Coordenada X (X1) Coordenada Y (X2) Valor de la función objetivo (Z) O 0 0 0 A 6 0 24 B 6 7 73 C 6 1 31 D 0 7 49 E 2 7 57 F 0 10 70 G 6.6666666666667 0 26.666666666667
  • 6.
    MINIMIZAR: 6 X1+ 8 X2 + 16 X3 MAXIMIZAR: -6 X1 -8 X2 - 16 X3 + 0 X4 + 0 X5 + 0 X6 + 0 X7 2 X1 + 1 X2 + 0 X3 ≥ 5 0 X1 + 1 X2 + 2 X3 ≥ 4 2 X1 + 1 X2 -1 X4 + 1 X6 = 5 0 X1 + 1 X2 + 2 X3 -1 X5 + 1 X7 = 4 X1, X2, X3 ≥ 0 X1, X2, X3, X4, X5, X6, X7 ≥ 0 La solución óptima es Z = 35 X1 = 1 / 2 X2 = 4 X3 = 0