SlideShare a Scribd company logo
1 of 11
Download to read offline
Tyler Baker 
6­6­16 
ME 141A 
 
Promising Methods of Heat Dissipation for Laptops using MEMS Devices 
 
 
Introduction 
One of the biggest obstacles of designing compact electronics is dissipating the heat that 
builds up within them. As laptop technologies advance, there is a growing need to for innovations in 
cooling, in ways more powerful and smaller than ever before. A typical laptop processor alone is 
designed to dissipate somewhere around 50 Watts of heat at maximum, and at idle it sits somewhere 
around 15 Watts. On top of that, a range of 1 Watt to 5 Watts can be added to that for all of the other 
components in a computer. The industry standard for laptops is to incorporate a fan into the system 
that forces air onto the hot spots. The speed and effectiveness of the fan is determined by how hot 
the computer gets while the body of the laptop, the material of the case, and the allowed space 
allowed for airflow limit the usefulness of a fan. For a desktop computer, another solution is heat 
dissipation by means of a liquid cooling system, however that is not an option for portable devices in 
the way standard liquid cooling systems are now.  
So we look back to the fan as a starting point. One solution takes the concept of the fan and 
combines it with piezoelectrics. Wait ​et al.​ investigated a piezoelectric fan, like the one shown in fig. 
1, that could double the value of the convection coefficient of a surface compared to a natural 
convection condition, while still being able to fit within the case of a cell phone and laptop 
computer.​[11]​
 While the cooling characteristics of this design were impressive in terms of the heat flux 
per input voltage, at just under 3 cm in length for the unit tested in a laptop, a fan of this design takes 
up too much volume within a laptop to be seriously considered commercially, especially with the 
popularity of the extra­thin laptops known as notebooks on the rise. Any such macro designing will 
encounter immediate resistance if it resembles the shape and function of a regular fan. So, 
technological advancement is demanding other solutions to this problem, and the most promising 
solutions come from MEMS technology. This paper investigates three primary technologies within the 
MEMS field for laptop cooling that are being studied: impinging jets, heat exchangers and sinks, and 
liquid cooling. It ends with some other promising cooling technologies in MEMS.  
 
 
Figure 1: ​a schematic of a piezoelectric fan. This is not a MEMS device, but is offered                                 
here to show an alternative to the MEMS devices to follow. This design uses a signal                               
generator (with an amplifier) to induce vibrations in a cantilever. The oscillations of                         
the cantilever tip (right side of image) cause air flow in that direction, which could be                               
used to cool a heated surface. In testing, it was shown by Wait, ​et al​. that the device’s                                   
effect on the convection coefficient is largely dependent on orientation of the fan                         
(cantilever).​[11]
 
 
Method 1: Impingement 
Here, impingement is the idea that with micro­sized jets, air, or other such fluids, can be 
impinged on a heated surface at high velocities to cool a surface. Instead of requiring a large area of 
flow over something like a single chip, a jet’s nozzle (outlet) could be engineered to impinge on 
specific areas. This is an appealing solution to the problem of heat, since heat transfer rates are 
dominated by the metrics of the impinging device, which are diameter of jet, spacing of jets, and 
location of jets (i.e. upon which areas are being impinged). Wang ​et al.​ scrutinized the physics of 
impingement cooling on this scale, specifically evaluating the effect of the different flow regimes on 
heat transfer rates. A profile view of a jet impinging on a surface is shown in fig. 2. At a height ​h​ away 
from the surface, the flow will go through four regimes while on a surface: a stagnation or 
impingement zone, a laminar region, a transition region, and a turbulent zone. All of these zones and 
their relative locations from each other are shown in fig. 2. While all of the zones had effects on heat 
transfer rates, Wang ​et al.​ concluded it was the stagnation zone that must be minimized to optimally 
use impinging jets, which means packing as many arrays of jets would not be an effective means to 
transfer heat.​[1]
 
 
 
Figure 2​: the different regimes of flow from a microscale impingement system in a                           
steady state environment. The fluid is impinged onto the hot surface by means of a                             
circular orifice jet. The flow cools the surface as the flow transitions from laminar to                             
turbulent. Different types of flow determine the effectiveness of heat transfer. Wang,                       
et al​. developed models for 3D microjet flows and found that stagnation regions need                           
to be minimized to have desired convection coefficient.​[1]
 
 
Amon ​et al.​ conducted further research on the subject, and investigated other parameters of 
jet impingement in their embedded droplet impingement for integrated cooling of electronics 
(EDIFICE), such as jet size and geometry for a heat flux range of 70­100 W/cm​2 ​
for portable devices like 
laptops. Amon’s group found that their EDIFICE device had consistently higher heat transfer rates for 
their 2 mm diameter jet across all Reynold’s numbers tested than for their 10 mm jet, while jet 
geometry effects remained secondary. Even more interesting is the largest heat transfer coefficients 
occurred at the stagnation point, at odds with Wang’s group’s conclusion, but only for the 2 mm jet, 
as the opposite was true for the 10 mm jet.​[4]​
 This implies that small jet sizes are not only ideal for 
space restriction reasons, but also for effectiveness. The caveat to this is that the effectiveness of 
EDIFICE nozzle openings below 100 μm is dominated by the jet’s wall roughness, due to large pressure 
drops. 
Brunschwiler ​et al.​’s research investigated the effects of four flow regimes with different heat 
transfer rates: pinch­off, transition, impingement, and separation, each determined solely by array 
height. Shown in fig. 3 are velocity field models of flow from the first three regimes, defined by the 
thickness of the prominent flow on the surface in the radial direction (see black arrows at bottom of 
figure). The diagram on the right has the most desirable heat transfer coefficient for an array 
arrangement due to its consistency throughout the field, and Brunschwiler ​et al.​ found that this was 
obtained with an array height equal to 1.2 times D​in​, where D​in ​is the inlet diameter.​[2]​
 An overarching 
problem with impingement is the high pressure drops through the jets, and much like Amon’s group 
before them, Brunschwiler ​et al.​ encountered issues with these pressure drops in their jets, rendering 
the impingement for smaller jets hard to observe. Their solution was a bifurcation of their nozzle 
array. The bifurcation design allows for a much lower ratio of pressure drop to array size, along with a 
heat transfer rate of up to 420 W/cm​2​
. Their design is shown in fig. 4.  
 
 
Figure 3​: a 3D graph of three of the flow regimes investigated by Brunschwiler, ​et al.                               
in modeling the bifurcation design. The three diagrams shown are models of the fluid                           
flow across a heated surface, from inlet to outlet. The magnitude of the velocity is                             
denoted in relative terms by color (green is slow, red is fast). The difference between                             
the figures are the height of the array from the heated surface, which is to say, the                                 
effectiveness of the array is directly dependant on the the distance from the heated                           
surface (chip) and the outlets of the jets. Each of the regimes have unique heat                             
transfer rates.​[2]
 
 
Figure 4​: Brunschwiler, ​et al.​’s impingement design. The most disadvantageous aspect                     
of using jet impingement is the high pressure drop in the jet. This design employs a                               
bifurcation system, where the inlets and outlets branch across the heated area. The                         
top left figure shows a 2D side view of the bifurcated inlet and outlet jets. In the top                                   
right figure, the light blue surface is being cooled by the impinged air from the                             
bifurcated inlet jet (dark blue) and at the same time, air is being removed from the                               
surface by the bifurcated outlet jet (red). The jets without the heated surface is shown                             
in an isometric view in the bottom left figure. The bottom right figure shows a                             
top­down diagram of the system meshed together. Using bifurcation, a much lower                       
pressure drop occurs across the array. The shape of the array is a compromise between                             
using more space to make use of bifurcation and minimizing space by slotting the inlets                             
and outlets together.​[2]
 
 
Method 2: Heat Exchangers & Sinks 
Just as heat can be transferred between fluids to remove thermal energy from a device or 
passively sinked into material to increase overall convection on the macroscale, MEMS devices can 
utilize similar physics to cool on the microscale. Cooligy developed a closed loop liquid cooling system, 
which is made up of a counterflow heat rejector, electrokinetic (EK) pump, and a microheat 
exchanger. The microheat exchanger was designed to handle heat fluxes greater than an impressive 
500 W/cm​2 ​
and engineered to be mounted on the back of a processor.​[7]​
 However, the cost of a large 
heat flux is the size requirement of the rejector and the pump, making the system not much smaller 
than a standard heat dissipation device.  
 
 
Figure 5​: a diagram the microheat exchanger in Cooligy’s closed loop Liquid Cooling                         
System (Datta, ​et al.​). The cooling liquid flows in from the inlet on the housing on the                                 
right side of the diagram before filtering into the high surface to volume ratio                           
microstructure (HSVRM) illustrated here in gray. The heat sinks into the HSVRM                       
before leaving out the outlet on the the left side of the diagram, effectively cooling                             
the circulating liquid. The heat exchanger is a critical component in Cooligy’s design                         
because it is a closed­loop system. The effectiveness of the system is entirely                         
dependent on the HSVRM.​[5]
 
 
Datta ​et al.​’s analysis of Cooligy’s microheat exchanger (fig. 5) attributed the large heat flux to 
a microheat exchanger with high surface to volume ratio microstructures (HSVRM).​[5]​
 The HSVRM 
allows the the EK pump to work optimally at a high flow rate with low current. This is a critical 
functional requirement as high pressure drops in these microchannel heat exchangers are a defining 
factor in terms of effectiveness.​[7]​
 On the subject of these pumping requirements for microchannel 
heat sinks, Garimella ​et al.​ published work analyzing the pumping requirements for a regime of 
microchannel hydraulic diameters (318 μm to 564 μm). They found that the requirements for pressure 
and flow rates were high, and developed an analytical model for minimum operating region for heat 
sink pumping. This region is shown in fig. 6.​[9]
 
 
Figure 6​: Garimella, ​et al​. developed a graph of the analytic model to determine the                             
“minimum operating limit” of a microchannel heat sink. The model could then predict                         
if the heat sink met the pumping requirement of the system. If the pumping pressure                             
or flow rate of the fluid through the heat sink were too demanding, the designers                             
could use this model to optimize the dimensions of the microchannels.​[9]
  
 
Method 3: Liquid Cooling Using Electric Fields 
There are other MEMS technologies using liquids that separate themselves by using electric 
fields to move coolant. A design that Darabi’s group manufactured and tested is shown in fig. 7. 
Electrodes draw the liquid (electrohydrodynamics) over the evaporated surface and forms a thin film 
on the heated surface. Evaporation cools the surface and the vapor is condensed and fed back into a 
reservoir. In terms of size, this device is ideal because it has a length of 10 mm with a 50 μm hydraulic 
diameter, and has a self­contained design making it attachable to the backside of an electrical 
component.​[3]​
 The device was able to reach heat transfer rates of 35 W/cm​2​
 using HFE­7100 
(C​4​F​9​OCH​3​) as coolant.  
 
 
Figure 7​: This is a diagram of Darabi, ​et al​.’s micro­cooling device. This device uses                             
electrohydrodynamics (electrodes under an electrical potential draw liquid) to pump a                     
thin film of liquid over a heated surface. The bottom of the figure shows the reservoir                               
from which the electrodes draw the liquid, forming a thin film. The purpose of this                             
design was for it to be attached directly onto a heated surface in a self­containing                             
way. At the top of the electrodes, vapor is condensed and fed back into the                             
reservoir.​[3]
  
 
Employing electric fields to induce the movement of liquid comes with an added benefit of 
controllability. Pamula, ​et al.​ designed a droplet­based microfluidics device for cooling integrated 
circuits. The device, shown in fig. 8, uses control electrodes to not only induce, but regulate 
wettability. The idea of control on this scale means more effective cooling with more efficiency. 
Pamula’s group investigated three mechanisms for flow control: (1) thermal sensor feedback control 
offers maximum flexibility as flow rates and pathways are dynamically adjusted based on thermal 
profile, (2) flow­rate feedback control gives faster and more efficient heat removal, ensuring hotter 
areas get a higher number of droplets, and (3) electrothermocapillary control, which does not need 
feedback, and due to thermocapillary action the droplet will move towards the hot spot; the heated 
droplet is returned to the heat sink via electrowetting and the droplet is returned to a reservoir, 
consuming little power. ​[8]
 
 
 
Figure 8​: is a profile view of V. K. Pamula, ​et al​.’s device. Similar in fundamental                               
concept shown in fig. 7, this design utilized control electrodes to control wettability.                         
Control electrodes on the bottom­plate in conjunction with a ground electrode on the                         
top­plate governs droplets movement hydrophobic surfaces coating both plates.                 
Unlike other electric field­based liquid movement systems, this one grants the                     
designer ability to implement control loops which increases the effectiveness of the                       
device.​[8] 
 
Other Promising MEMS Cooling Technologies 
Presented in this section are two other relevant cooling technologies worth mentioning. The 
first is an air propulsion system that takes points from both impingement and electric field designs. 
Yang ​et al.​ investigated a corona driven air propulsion system to explore “possibility of building an 
electrostatic air pump...from microelectronic devices and MEMS.”​[6]​
 Corona driven air propulsion 
works by ionizing gas molecules using a high intensity electric field creating an ion stream. As the 
ionized particles flow to a collector electrode, a flow of air is formed. This effect is shown in fig. 9A. 
The downside of ionizing air is the requirement of a substantial electrical potential, but if this idea 
were to be used in a MEMS device, there are three advantages over other MEMS designs. The first 
two advantages are a low noise dynamic airflow profiles and versatile shapes and sizes could be 
made, but the third, which is particularly relevant for cooling, is that corona driven flow ensures 
greater flow closer to the wall than pressure­driven flow due to the constant coulombic force applied 
to the fluid (fig. 9B).​[6]
 
 
 
 
 
 
(A)             ​(B) 
Figure 9​: Fig. 9A illustrates the operation of the corona­driven air propulsion system.                         
By setting a large electrical potential to the positive corona electrode (left), positively                         
ionized air particles are repulsed towards a collector electrode (right) via an electric                         
field. The relative velocity of the particles is shown by the size of the arrows. This                               
stream of ions translates into airflow and the forced flow increases the convection                         
coefficient. Fig. 9B shows the velocity profile of the flow induced by a pressure                           
difference (red) compared to one induced by the corona­driven air pump (green). The                         
position on the y­axis is relates to position along width of channel and the v­axis                             
relates to the relative velocity of the flow in each case. Corona­driven flow allows                           
greater flow closer to the channel walls due to the constant coulombic force applied                           
to the air. The larger flow field closer to the wall decreases the boundary layer                             
thickness, increasing the convection coefficient across the wall.​[6]
 
 
The second is Huang ​et al​.’s micro­thermoelectric cooler (μ­TEC). This group researched, 
constructed, and tested two μ­TECs: a bridge­type polysilicon­based cooler and a column­type 
telluride­based cooler. Throughout their analysis and testing, the bridge­type (fig. 10A) had a far 
better cooling performance over the column­type. They attributed this to the bridge­type having a 
larger thermal resistance (due to its smaller area per length), a cooling performance of 136.5 K/A at 
an operating current of 80 mA, and a working temperature difference of 5.6 K (fig. 10B).​[10]​
 The benefit 
of such a device comes from effective coverage area and the power needed to run. 
 
 
(A) 
 
(B) 
 
Figure 10​: Fig. 10A shows the manufacturing steps of building a low cost ​μ­​TEC. The                             
left column shows the ​μ­​TEC construction from the front, while the right column                         
shows a side view. A combination of eight materials was used, each shown at the top                               
of the figure along with its graphical representation. This bridge­type had a much                         
smaller area to length ratio, which increased the thermal resistance, making it the                         
better manufacturing choice for ​μ­​TECs. Fig. 10B shows a heatmap (top­down view) of                         
the temperature distribution across the bridge­type polysilicon­based             
micro­thermoelectric cooler (​μ­​TEC) Huang, ​et al​. built. Dark blue is the coldest of                         
regions and the warmer regions are increasingly more red. Whereas the column­type                       
telluride­based ​μ­​TEC achieved a 1.2K temperature difference across the heated                   
surface, this bridge­type achieved a 5.6K temperature difference. The ​μ­​TEC works by                       
employing the Peltier effect, where heat is transferred between two different                     
materials via a DC voltage. ​[10]
  
 
Conclusion 
Heat dissipation in laptops and other such electronics is becoming an increasingly important 
issue with the advent of more and more powerful processors combined with the ubiquity of 
computing. In this paper, we have identified and briefly evaluated some of the MEMS technologies 
designed to cool electrical components for laptops. Impingement, heat exchangers and sinks, and 
electric field based liquid cooling are presented, and the paper ends with some other promising 
technologies. Impingement and heat sinks offer the highest heat transfer rates while the 
controllability of liquids using electric fields has its own benefits. Although impingement and heat 
sinks have the advantage of higher heat transfer rates, 420 W/cm​2 ​
with impingement bifurcation and 
up to 500 W/cm​2​
 with a closed loop microheat exchanger system, they both suffer from problems 
with high pressure drops. Electrohydrodynamic cooling avoids this problem, but tend to have much 
lower heat transfer rates. Some other promising technologies use high voltages to ionize air to induce 
flow, while others avoid convection as the primary mode of heat dissipation using the Peltier effect 
(​μ­​TECs). Further research involving the specific constraints of laptops (such as space and fluid flux) 
when incorporating these systems should be done before adoption.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
References  
1. 3­D visualization of flow in microscale jet impingement systems E. N. Wang, ​et al​. International 
Journal of Thermal Sciences 2010 
 
2. Direct Liquid Jet­Impingement Cooling with Micronsized Nozzle Array and Distributed Return 
Architecture T. Brunschwiler, ​et al. ​IEEE 2006 
 
3. Development of a chip­integrated micro cooling device J. Darabi, ​et al​. Microelectrics Journal 2003 
 
4. MEMS­enabled thermal management of high­heat­flux devices EDIFICE: embedded droplet 
impingement for integrated cooling of electronics C. H. Amon, ​et al​. Experimental Thermal and Fluid 
Science 2001 
 
5. Liquid Cooling System for Advanced Microelectronics M. Datta, ​et al​. ECS 2007 
 
6. Corona Driven air propulsion for cooling of electronics F. Yang, ​et al​. Millpress 2003 
 
7. Closed­Loop Cooling Technologies for Microprocessors C. Upadhya, ​et al​. (Cooligy, Inc.) IEEE 2003 
 
8. Cooling of Integrated Circuits Using Droplet­Based Microfluidics V. K. Pamula, ​et al​. ACM 2003 
 
9. Single­Phase flow and Heat Transport and Pumping Considerations in Microchannel Heat Sinks S. V. 
Garimella, ​et al​. Heat Transfer Engineering 2004 
 
10. Development of low­cost micro­thermoelectric coolers utilizing MEMS technology I. Huang, ​et al​. 
Elsevier 2008 
 
11. Experimental Investigation of the Thermal Performance of Piezoelectric Fans S. M. Wait, ​et al​. 
Heat Transfer Engineering 2004 
 

More Related Content

What's hot

Nano technology cooling girija edited
Nano technology cooling girija editedNano technology cooling girija edited
Nano technology cooling girija editedGirija Sankar Dash
 
Natural Draft Cooling Towers
Natural Draft Cooling TowersNatural Draft Cooling Towers
Natural Draft Cooling Towersguest28da3bf
 
Cooling mechanism In Water Cooler
Cooling mechanism In Water CoolerCooling mechanism In Water Cooler
Cooling mechanism In Water CoolerSakshi Priya
 
Heat Transfer Applications
Heat Transfer ApplicationsHeat Transfer Applications
Heat Transfer Applicationssangeetkhule
 
Cooling towers
Cooling towersCooling towers
Cooling towersctlin5
 
Analysis of forced draft cooling tower performance using ansys fluent software
Analysis of forced draft cooling tower performance using ansys fluent softwareAnalysis of forced draft cooling tower performance using ansys fluent software
Analysis of forced draft cooling tower performance using ansys fluent softwareeSAT Journals
 
Cd31336341
Cd31336341Cd31336341
Cd31336341IJMER
 
Load estimation in Air Conditioning
Load estimation in Air ConditioningLoad estimation in Air Conditioning
Load estimation in Air ConditioningParth Prajapati
 
Heat Load Calculation
Heat Load CalculationHeat Load Calculation
Heat Load CalculationJitendra Jha
 
Hybrid_Cooling_System
Hybrid_Cooling_SystemHybrid_Cooling_System
Hybrid_Cooling_SystemDavid Yang
 
CoolingTowerRewriteReport_A7 (1)
CoolingTowerRewriteReport_A7 (1)CoolingTowerRewriteReport_A7 (1)
CoolingTowerRewriteReport_A7 (1)Adam Rice
 
IRJET- Thermoelectric Air-Conditioner Tricycle
IRJET-  	  Thermoelectric Air-Conditioner TricycleIRJET-  	  Thermoelectric Air-Conditioner Tricycle
IRJET- Thermoelectric Air-Conditioner TricycleIRJET Journal
 

What's hot (20)

Jeevan joy, spig
Jeevan joy, spigJeevan joy, spig
Jeevan joy, spig
 
Nano technology cooling girija edited
Nano technology cooling girija editedNano technology cooling girija edited
Nano technology cooling girija edited
 
Ppt
PptPpt
Ppt
 
Natural Draft Cooling Towers
Natural Draft Cooling TowersNatural Draft Cooling Towers
Natural Draft Cooling Towers
 
N atural cooling tower
N atural cooling towerN atural cooling tower
N atural cooling tower
 
Cooling mechanism In Water Cooler
Cooling mechanism In Water CoolerCooling mechanism In Water Cooler
Cooling mechanism In Water Cooler
 
cooling towers
 cooling towers cooling towers
cooling towers
 
Heat Transfer Applications
Heat Transfer ApplicationsHeat Transfer Applications
Heat Transfer Applications
 
Cooling Tower
Cooling TowerCooling Tower
Cooling Tower
 
Cooling towers
Cooling towersCooling towers
Cooling towers
 
Analysis of forced draft cooling tower performance using ansys fluent software
Analysis of forced draft cooling tower performance using ansys fluent softwareAnalysis of forced draft cooling tower performance using ansys fluent software
Analysis of forced draft cooling tower performance using ansys fluent software
 
Cd31336341
Cd31336341Cd31336341
Cd31336341
 
Load estimation in Air Conditioning
Load estimation in Air ConditioningLoad estimation in Air Conditioning
Load estimation in Air Conditioning
 
Heat Load Calculation
Heat Load CalculationHeat Load Calculation
Heat Load Calculation
 
FYPP
FYPPFYPP
FYPP
 
Presentation on cooling tower
Presentation on cooling towerPresentation on cooling tower
Presentation on cooling tower
 
Cooling tower
Cooling towerCooling tower
Cooling tower
 
Hybrid_Cooling_System
Hybrid_Cooling_SystemHybrid_Cooling_System
Hybrid_Cooling_System
 
CoolingTowerRewriteReport_A7 (1)
CoolingTowerRewriteReport_A7 (1)CoolingTowerRewriteReport_A7 (1)
CoolingTowerRewriteReport_A7 (1)
 
IRJET- Thermoelectric Air-Conditioner Tricycle
IRJET-  	  Thermoelectric Air-Conditioner TricycleIRJET-  	  Thermoelectric Air-Conditioner Tricycle
IRJET- Thermoelectric Air-Conditioner Tricycle
 

Similar to Methods of Heat Dissipation in Laptops Using MEMS

Computational fluid dynamic analysis of solar chimney design
Computational fluid dynamic analysis of solar chimney designComputational fluid dynamic analysis of solar chimney design
Computational fluid dynamic analysis of solar chimney designIRJET Journal
 
IRJET- A Review on Thermal Analysis and Optimization of Heat Exchanger Design...
IRJET- A Review on Thermal Analysis and Optimization of Heat Exchanger Design...IRJET- A Review on Thermal Analysis and Optimization of Heat Exchanger Design...
IRJET- A Review on Thermal Analysis and Optimization of Heat Exchanger Design...IRJET Journal
 
Heat transfer case study
Heat transfer case studyHeat transfer case study
Heat transfer case studyMANI SINGH
 
EARTH TUBE HEAT EXCHANGER
EARTH TUBE HEAT EXCHANGEREARTH TUBE HEAT EXCHANGER
EARTH TUBE HEAT EXCHANGERIRJET Journal
 
Comparative Study Between Cross Flow Air To Air Plate Fin Heat Exchanger With...
Comparative Study Between Cross Flow Air To Air Plate Fin Heat Exchanger With...Comparative Study Between Cross Flow Air To Air Plate Fin Heat Exchanger With...
Comparative Study Between Cross Flow Air To Air Plate Fin Heat Exchanger With...IRJET Journal
 
A Novel Methodology for Thermal Aware Silicon Area Estimation for 2D & 3D MPSoCs
A Novel Methodology for Thermal Aware Silicon Area Estimation for 2D & 3D MPSoCsA Novel Methodology for Thermal Aware Silicon Area Estimation for 2D & 3D MPSoCs
A Novel Methodology for Thermal Aware Silicon Area Estimation for 2D & 3D MPSoCsVLSICS Design
 
A Novel Methodology for Thermal Aware Silicon Area Estimation for 2D & 3D MPSoCs
A Novel Methodology for Thermal Aware Silicon Area Estimation for 2D & 3D MPSoCsA Novel Methodology for Thermal Aware Silicon Area Estimation for 2D & 3D MPSoCs
A Novel Methodology for Thermal Aware Silicon Area Estimation for 2D & 3D MPSoCsVLSICS Design
 
Masters_Thesis_Final_Draft_Rev00FINAL
Masters_Thesis_Final_Draft_Rev00FINALMasters_Thesis_Final_Draft_Rev00FINAL
Masters_Thesis_Final_Draft_Rev00FINALJamie Fogarty
 
Study of Thermoelectric Air Conditioning for Automobiles
Study of Thermoelectric Air Conditioning for AutomobilesStudy of Thermoelectric Air Conditioning for Automobiles
Study of Thermoelectric Air Conditioning for AutomobilesIRJET Journal
 
Advanced CFD_Numerical_Analysis
Advanced CFD_Numerical_AnalysisAdvanced CFD_Numerical_Analysis
Advanced CFD_Numerical_AnalysisPeter McGibney
 
A Review on Design and Development of Three in One Air Cooling System
A Review on Design and Development of Three in One Air Cooling SystemA Review on Design and Development of Three in One Air Cooling System
A Review on Design and Development of Three in One Air Cooling SystemIRJET Journal
 
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink Design
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink DesignThermal Performance Analysis for Optimal Passive Cooling Heat Sink Design
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink DesignTELKOMNIKA JOURNAL
 
A cfd investigation and pressure correlation of solar air heater
A cfd investigation and pressure correlation of solar air heaterA cfd investigation and pressure correlation of solar air heater
A cfd investigation and pressure correlation of solar air heaterIAEME Publication
 
Air Water System Design using Revit Mep for a Residential Building
Air Water System Design using Revit Mep for a Residential BuildingAir Water System Design using Revit Mep for a Residential Building
Air Water System Design using Revit Mep for a Residential Buildingijtsrd
 
IRJET- Design and Fabrication of Solar Air Heater to Increase Heat Transfer R...
IRJET- Design and Fabrication of Solar Air Heater to Increase Heat Transfer R...IRJET- Design and Fabrication of Solar Air Heater to Increase Heat Transfer R...
IRJET- Design and Fabrication of Solar Air Heater to Increase Heat Transfer R...IRJET Journal
 
THERMAL ANALYSIS OF A HEAT SINK FOR ELECTRONICS COOLING
THERMAL ANALYSIS OF A HEAT SINK FOR ELECTRONICS COOLINGTHERMAL ANALYSIS OF A HEAT SINK FOR ELECTRONICS COOLING
THERMAL ANALYSIS OF A HEAT SINK FOR ELECTRONICS COOLINGIAEME Publication
 

Similar to Methods of Heat Dissipation in Laptops Using MEMS (20)

[IJET-V2I2P12] Authors:Ashok Kumar
[IJET-V2I2P12] Authors:Ashok Kumar[IJET-V2I2P12] Authors:Ashok Kumar
[IJET-V2I2P12] Authors:Ashok Kumar
 
Computational fluid dynamic analysis of solar chimney design
Computational fluid dynamic analysis of solar chimney designComputational fluid dynamic analysis of solar chimney design
Computational fluid dynamic analysis of solar chimney design
 
Final paper
Final paperFinal paper
Final paper
 
IRJET- A Review on Thermal Analysis and Optimization of Heat Exchanger Design...
IRJET- A Review on Thermal Analysis and Optimization of Heat Exchanger Design...IRJET- A Review on Thermal Analysis and Optimization of Heat Exchanger Design...
IRJET- A Review on Thermal Analysis and Optimization of Heat Exchanger Design...
 
Heat transfer case study
Heat transfer case studyHeat transfer case study
Heat transfer case study
 
EARTH TUBE HEAT EXCHANGER
EARTH TUBE HEAT EXCHANGEREARTH TUBE HEAT EXCHANGER
EARTH TUBE HEAT EXCHANGER
 
Comparative Study Between Cross Flow Air To Air Plate Fin Heat Exchanger With...
Comparative Study Between Cross Flow Air To Air Plate Fin Heat Exchanger With...Comparative Study Between Cross Flow Air To Air Plate Fin Heat Exchanger With...
Comparative Study Between Cross Flow Air To Air Plate Fin Heat Exchanger With...
 
A Novel Methodology for Thermal Aware Silicon Area Estimation for 2D & 3D MPSoCs
A Novel Methodology for Thermal Aware Silicon Area Estimation for 2D & 3D MPSoCsA Novel Methodology for Thermal Aware Silicon Area Estimation for 2D & 3D MPSoCs
A Novel Methodology for Thermal Aware Silicon Area Estimation for 2D & 3D MPSoCs
 
A Novel Methodology for Thermal Aware Silicon Area Estimation for 2D & 3D MPSoCs
A Novel Methodology for Thermal Aware Silicon Area Estimation for 2D & 3D MPSoCsA Novel Methodology for Thermal Aware Silicon Area Estimation for 2D & 3D MPSoCs
A Novel Methodology for Thermal Aware Silicon Area Estimation for 2D & 3D MPSoCs
 
Masters_Thesis_Final_Draft_Rev00FINAL
Masters_Thesis_Final_Draft_Rev00FINALMasters_Thesis_Final_Draft_Rev00FINAL
Masters_Thesis_Final_Draft_Rev00FINAL
 
Study of Thermoelectric Air Conditioning for Automobiles
Study of Thermoelectric Air Conditioning for AutomobilesStudy of Thermoelectric Air Conditioning for Automobiles
Study of Thermoelectric Air Conditioning for Automobiles
 
Advanced CFD_Numerical_Analysis
Advanced CFD_Numerical_AnalysisAdvanced CFD_Numerical_Analysis
Advanced CFD_Numerical_Analysis
 
A Review on Design and Development of Three in One Air Cooling System
A Review on Design and Development of Three in One Air Cooling SystemA Review on Design and Development of Three in One Air Cooling System
A Review on Design and Development of Three in One Air Cooling System
 
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink Design
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink DesignThermal Performance Analysis for Optimal Passive Cooling Heat Sink Design
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink Design
 
A cfd investigation and pressure correlation of solar air heater
A cfd investigation and pressure correlation of solar air heaterA cfd investigation and pressure correlation of solar air heater
A cfd investigation and pressure correlation of solar air heater
 
Ijmet 06 07_006
Ijmet 06 07_006Ijmet 06 07_006
Ijmet 06 07_006
 
Air Water System Design using Revit Mep for a Residential Building
Air Water System Design using Revit Mep for a Residential BuildingAir Water System Design using Revit Mep for a Residential Building
Air Water System Design using Revit Mep for a Residential Building
 
IRJET- Design and Fabrication of Solar Air Heater to Increase Heat Transfer R...
IRJET- Design and Fabrication of Solar Air Heater to Increase Heat Transfer R...IRJET- Design and Fabrication of Solar Air Heater to Increase Heat Transfer R...
IRJET- Design and Fabrication of Solar Air Heater to Increase Heat Transfer R...
 
Portfolio Po-Chun Kang
Portfolio Po-Chun KangPortfolio Po-Chun Kang
Portfolio Po-Chun Kang
 
THERMAL ANALYSIS OF A HEAT SINK FOR ELECTRONICS COOLING
THERMAL ANALYSIS OF A HEAT SINK FOR ELECTRONICS COOLINGTHERMAL ANALYSIS OF A HEAT SINK FOR ELECTRONICS COOLING
THERMAL ANALYSIS OF A HEAT SINK FOR ELECTRONICS COOLING
 

Methods of Heat Dissipation in Laptops Using MEMS