SlideShare a Scribd company logo
1 of 112
P R O D U C T I O N
O F G R A D E A A
M E T H A N O L
GROUP 24
SHARMAINE IFFAH NABILAH BINTI MOHD
SHAMSUDIN (153080)
NUR AFZA NURINA BINTI ABDULLAH
SANI (152967)
MAH HIN MAN (148703)
ALICIA CHIN YING JIE (153071)
SUPERVISOR: DR. IRVAN DAHLAN
PROCESS ANALYSIS
AND
PROCESS FLOW
DIAGRAM
1
CONTENT
Product
Process Alternatives
Comparison of Process Alternatives
Process Description of Chosen Alternative
Demand and Supply for Next 10 Years
Plant Capacity
Process Flow Diagram
Innovative Approach
Conclusion
2
METHANO
L โ€ข Known as methyl alcohol, abbreviated as MeOH (a hydroxyl group linked to
a methyl group)
โ€ข The simplest alcohol with the chemical formula of CH3OH.
โ€ข It is a light, volatile, colorless, flammable liquid with a distinctive odor similar to
that of ethanol
โ€ข Methanol is widely used as the raw materials for the production of various
chemicals.
โ€ข The final products of methanol are found in many household products
PRODUCT
3
USAGES OF METHANOL
Usages of Methanol Example
Chemical feedstock Formaldehydes, Acetic acid, MTBE, methanol-to-
olefin (MTO), dimethyl ether (DME), solvents, paints,
cleaning products and etc
Transportation fuel MTBE (anti-knock reagent in gasoline)
Fuel cell technology Fuel for methanol-fuel cell (energy dense, more
energy-efficient)
Wastewater denitrification Remove nitrates from water in denitrification
4
๐‘ƒ๐‘…๐‘‚๐ถ๐ธ๐‘†๐‘† ๐ด๐ฟ๐‘‡๐ธ๐‘…๐‘๐ด๐‘‡๐ผ๐‘‰๐ธ๐‘†
Production of Methanol from
Catalytic Partial Oxidation of
Methane
Production of
Methanol from Coal
Gasification
โ€ข Catalytic partial
oxidation of
methane occurs
when methane is
oxidised to form
methanol in the
presence of Pd/Cu
catalyst.
โ€ข Coal is converted to
syngas via pyrolysis
and gasification,
then the syngas
reacts in a Cu/ZnO
catalysed reactor to
produce methanol.
โ€ข CO2 captured from
flue gas and H2
generated from
electrolysis.
โ€ข Catalytic
hydrogenation of
carbon dioxide
takes place to form
methanol and water
in the presence of
catalyst such as
Cu/ZnO
โ€ข Hydrocarbons from
natural gas undergo
steam reforming to
form syngas, then
react in a Cu/ZnO
catalysed reactor to
produce methanol.
Production of Methanol from
Catalytic Hydrogenation of Carbon
Dioxide Backed up by Carbon
Dioxide Captured from Flue Gas
Production of Methanol by
Hydrogenation of CO/CO2 from
steam Reforming of Natural Gas
5
ALTERNATIVE 1: PRODUCTION OF METHANOL FROM CATALYTIC PARTIAL
OXIDATION OF METHANE
โ€ข Pd/Cu catalyst is employed to
catalyse the oxidation of
methane to methanol
Overall equation:
Pd/Cu
CO+O2+โ†’CH3OH+CO2
CO+H2Oโ†’CO2+ H2
H2+O2 โ†’H2O2
Pd/Cu
CH4+H2O2 โ†’CH3OH+H2O
PURIFICATION
CATALYTIC
REACTION(Pd/Cu)
600หšC, 30-60 bar
CONDENSATION
GAS-LIQUID
SEPARATION
DISTILLATION
WATER
WATER
METHANOL
CRUDE
METHANOL
METHANOL+
UNREACTED GAS
METHANOL+
UNREACTED GAS
METHANE
NATURAL
GAS
CARBON
MONOXIDE +
AIR
UNREACTED GAS
6
ALTERNATIVE 2: PRODUCTION OF METHANOL FROM COAL GASIFICATION
โ€ข Pyrolysis of coal: Coal heat โ†’ CH4 + C2H6 + CO + CO2 + H2
+ H2O + NH3 + H2S + tar + char
โ€ข The oxygen fed into the gasifier will further oxidise char to
produce carbon monoxide and carbon dioxide:
โ€ข 2C (s) + O2 (g) โ†’ 2CO (g)
โ€ข C (s) + O2 (g) โ†’ CO2 (g)
โ€ข Methanol synthesis: 2H2 (g) + CO (g) โ†” CH3OH (g)
CO2 gasification
C(s)+CO2(g) โ†’ 2CO(g)
Steam gasification
C(s)+H2O(g) โ†’ CO(g) +H2(g)
Methanation reaction
C(s)+2H2(g) โ†’CH4(g)
Oxygen will also further react with volatiles:
2H2(g)+O2 โ†’2H2O(g)
2CO(g)+O2 โ†’2CO2(g)
2CH4(g)+O2 โ†’2CO(g)+4H2
C2H6+2O2 โ†’2CO(g)+3H2(g)
C6H6+3O2 โ†’6CO(g)+3H2(g)
COAL
GASIFICATION
1560โ„ƒ
DESULPHURIZING
METHANOL
SYNTHESIS
250โ„ƒ, 80 bar
GAS-LIQUID
SEPARATION
DISTILLATION
ASH
SULPHUR
POWER TO
HYDROGEN
METHANOL
HYDROGEN
CRUDE SYNGAS
UNREACTED
SYNGAS
METHANOL+
UNREACTED SYNGAS
CRUDE
METHANOL
OXYGEN
WATER
7
ALTERNATIVE 3: PRODUCTION OF METHANOL FROM CATALYTIC
HYDROGENATION OF CARBON DIOXIDE BACKED UP BY CARBON DIOXIDE
CAPTURED FROM FLUE GAS
โ€ข Carbon dioxide and hydrogen are
fed into a Cu/ZnO catalysed reactor
for the hydrogenation of carbon
dioxide to take place.
โ€ข Then, the products are cooled
down in a heat exchanger, prior to
further downstream processing in
distillation column(s) to ensure
production of methanol with high
purity
โ€ข CO2 + 3H2 โ†” CO + H2O
POWER-TO-
HYDROGEN
METHANOL
SYNTHESIS
250หšC, 60 bar
CARBON
DIOXIDE
CARBON
CAPTURE UNIT
GASโ€”LIQUID
SEPARATION
DISTILLATION
CARBON
DIOXIDE
METHANOL
WATER
HYDROGEN
CRUDE
METHANOL PURGE
GAS
UNREACTED
SYNGAS
WATER
FLUE
GAS
CRUDE METHANOL+
UNREACTED SYNGAS
8
ALTERNATIVE 4: PRODUCTION OF METHANOL BY HYDROGENATION OF
CO/CO2 FROM STEAM REFORMING OF NATURAL GAS
โ€ข Methane in the natural gas reacts
with steam in the presence of
catalyst to produce syngas in a
steam reforming unit. .
โ€ข At such condition, methanol is
produced in the reactions shown
below:
โ€ข CO + H2 โ†” CH3OH
โ€ข CO2 + H2 โ†” H2O + CO
Remaining methane and heavier
hydrocarbons will be converted to
syngas
CH4+0.5O2 โ†” CO+2H2
C2H6+O2 โ†”2CO+3H2
C3H8+1.5O2 โ†”3CO+4H2
C4H10+2O2 โ†”4CO+5H2
C5H12+2.5O2 โ†”5CO+6H2
C6H14+3O2 โ†’6CO+7H2
Steam-methane
reforming:
CH4+H2O โ†”CO+3H2
Water-gas-shift reaction:
CO+H2O โ†”CO2+H2
DESULPHURIZING
STEAM
REFORMING
800-900โ„ƒ, 15-
30 bar
METHANOL
SYNTHESIS
220-270โ„ƒ,
50-200 bar
GAS-LIQUID
SEPARATION
DISTILLATION
METHANOL
CRUDE
METHANOL
METHANOL+WATER
+UNREACTED
SYNGAS
SYNGAS
METHANE
NATURAL GAS
STEAM
WATER
PURGE
GAS
UNREACTED
SYNGAS
9
ASPECT ALTERNATIVE 1 ALTERNATIVE 2 ALTERNATIVE 3 ALTERNATIVE 4
Sustainability
Flexibility/Controll
ability of
Operation
Economic
Potential and
Feasibility
ASPECT ALTERNATIVE 1 ALTERNATIVE 2 ALTERNATIVE 3 ALTERNATIVE 4
Sustainability โ€ข Abundant raw
material
โ€ข X = 0.71
โ€ข Not abundant
raw material
โ€ข X = 0.9
โ€ข High cost due
to coal
pyrolysis unit
and constant
transport of
coal
โ€ข Abundant raw
material
โ€ข X = 0.9
โ€ข Relatively new
technologies
in CCUS and
hydrogen
generation
โ€ข Abundant raw
material
โ€ข X = 0.9
โ€ข Commonly
used steam
reforming
unit
ASPECT ALTERNATIVE 1 ALTERNATIVE 2 ALTERNATIVE 3 ALTERNATIVE 4
Flexibility/Controll
ability of
Operation
โ€ข โ€œRigidโ€ as
changes in
temperature
may cause
further
oxidation of
methanol to
formaldehyde
.
โ€ข 600ยฐC for
catalytic
partial
oxidation
reactor.
โ€ข Mature
control
strategies for
pyrolysis and
gasification
unit.
โ€ข 1500ยฐC for
coal pyrolysis
and
gasification
unit; 250ยฐC for
for methanol
reactor.
โ€ข CCUS and
hydrogen
generation
unit require
further
research for
more mature
control
strategies
โ€ข 250ยฐC for
methanol
synthesis
reactor.
โ€ข Mature
control
strategies for
reformers and
methanol
synthesis
reactor.
โ€ข 800ยฐC for
reformers,
250ยฐC for
methanol
synthesis
reactor.
COMPARISON OF PROCESS ALTERNATIVES
Among four different alternatives proposed, the chosen
alternative to be the process used in methanol production is by
the hydrogenation of CO/CO2 from steam reforming of natural
gas.
ASPECT ALTERNATIVE 1 ALTERNATIVE 2 ALTERNATIVE 3 ALTERNATIVE 4
Economic
Potential and
Feasibility
โ€ข Sufficient
supply of
natural gas,
without
depending on
imports from
foreign
countries.
โ€ข Production of
coal is
insufficient.
โ€ข Needs to rely
on import of
coal.
โ€ข Transport of
coal requires
more cost and
time.
โ€ข Scarcity of
data to
validate
feasibility of
large scale
CCUS and
hydrogen
generation
using
electrolysis.
โ€ข Sufficient
supply of
natural gas,
without
depending on
imports from
foreign
countries.
10
PROCESS DESCRIPTION OF CHOSEN ALTERNATIVE
๐ด๐ฟ๐‘‡๐ธ๐‘…๐‘๐ด๐‘‡๐ผ๐‘‰๐ธ 4
โ€ข Steam reforming
and autothermal
reforming:
Rh/MgO/Al2O3
โ€ข Methanol synthesis:
Cu/ZnO/Al2O3
โ€ข High yield with 0.93
conversion
โ€ข Purity of more than
99.85%
Autothermal reforming
CH4+0.5O2 โ†” CO+2H2
C2H6+O2 โ†”2CO+3H2
C3H8+1.5O2 โ†”3CO+4H2
C4H10+2O2 โ†”4CO+5H2
C5H12+2.5O2 โ†”5CO+6H2
C6H14+3O2 โ†’6CO+7H2
Steam-methane
reforming:
CH4+H2O โ†”CO+3H2
Methanol synthesis
CO + H2 โ†” CH3OH
CO2 + 3H2 โ†” CH3OH + H2O
Steam reforming: 800-900หšC, 15-30 bar
Autothermal reforming: 800-1000หšC, 30-50 b
Methanol synthesis: 220-270หšC, 50-200 bar
Water-gas-shift
reaction:
CO+H2O โ†”CO2+H2
11
The global
production of
methanol would
reach
137 million tons
in 2025 with
CAGR of 5.66%
per year.
DEMAND AND SUPPLY FOR NEXT 10 YEARS
12
PLANT CAPACITY
Global market
production
137 million tonnes
Domestic methanol
production
2.33 million tonnes
Demand of methanol
globally
145 million tonnes
Demand of methanol
in Malaysia in 2020
966 thousand tonnes
Projected Consumption and Demand in 2025 Market Gap:
= Demand of Methanol Globally โ€“ Global Market Production
=145 million tonnes-137 million tonnes
=8 million tonnes
Planned Capacity based on domestic production
= 30% of Domestic Methanol Production
= 30% ร— 2.33 million tonnes
= 690 000 tonnes
Planned Capacity based on market gap:
=8.63% of Market Gap
= 8.63% ร—8 million tonnes
= 690 000 tonnes
13
PROCESS FLOW DIAGRAM
14
AUTOTHERMAL REFORMER
โ€ข Autothermal reforming, which
is a secondary reforming unit,
is employed to increase the
conversion of natural gas to
syngas.
โ€ข This can increase the overall
yield of methanol and reduce
wastage in the form of
unreacted natural gas
components.
R-102
15
FLASH SEPARATOR
โ€ข Placing a flash separator before
the effluents from the
autothermal reformer are fed
into the methanol synthesis
reactor.
โ€ข The water content in the
reactor feed can be greatly
reduced, which in turn
increases the yield of methanol
V-101
16
CONCLUSION
This methanol production facility has an estimated
annual capacity of 690,000 tonnes
Alternative 4 is chosen due to its fairly well-rounded nature in
sustainability, flexibility/controllability and economic potential.
Autothermal reformer and flash separator are the innovative
approaches used in the design
17
MASS AND ENERGY
BALANCE
18
Feedstock and
products
Feedstock:
Natural Gas, Steam, Oxygen
Products:
Methanol
Operating
period
โ€ข 330 working days
โ€ข 24 hours/ day
GENERAL REMARKS ON OPERATION
Production
capacity
โ€ข 690 000 metric tonnes/year
โ€ข 87121.21 kg/hr
19
CONTENT
MASS BALANCE
ENERGY BALANCE
UTILITIES
WASTE GENERATION
20
MASS BALANCE
General mass balance equation in a system :
๐ผ๐‘›๐‘๐‘ข๐‘ก + ๐บ๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› โˆ’ ๐‘‚๐‘ข๐‘ก๐‘๐‘ข๐‘ก โˆ’ ๐ถ๐‘œ๐‘›๐‘ ๐‘ข๐‘š๐‘๐‘ก๐‘–๐‘œ๐‘› = ๐ด๐‘๐‘๐‘ข๐‘š๐‘ข๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›
For continuous process at steady state, the accumulation = 0
๐ผ๐‘›๐‘๐‘ข๐‘ก + ๐บ๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› โˆ’ ๐‘‚๐‘ข๐‘ก๐‘๐‘ข๐‘ก โˆ’ ๐ถ๐‘œ๐‘›๐‘ ๐‘ข๐‘š๐‘๐‘ก๐‘–๐‘œ๐‘› = 0
For non-reactive process unit, the generation and consumption = 0
๐ผ๐‘›๐‘๐‘ข๐‘ก = ๐‘‚๐‘ข๐‘ก๐‘๐‘ข๐‘ก
For reactive processes, it is not appropriate to use mass balance for analysis since the atomic balance
may not be the same before and after the unit operation. Therefore, mole balance is used instead:
๐‘š๐‘œ๐‘™๐‘–๐‘› โˆ’ ๐‘š๐‘œ๐‘™๐‘œ๐‘ข๐‘ก + ๐‘š๐‘œ๐‘™๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘ โˆ’ ๐‘š๐‘œ๐‘™๐‘๐‘œ๐‘›๐‘ ๐‘ข๐‘š๐‘’๐‘‘ = 0
21
MASS BALANCE
Reactive
Equipment
Non-Reactive
Equipment
Reactor
โ€ข Steam Reformer, R-101
โ€ข Autothermal Reformer, R-102
โ€ข Methanol Reactor, R-103
๐ผ๐‘›๐‘๐‘ข๐‘ก + ๐บ๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘›
= ๐‘‚๐‘ข๐‘ก๐‘๐‘ข๐‘ก + ๐ถ๐‘œ๐‘›๐‘ ๐‘ข๐‘š๐‘๐‘ก๐‘–๐‘œ๐‘›
Flash Columns (V-101,V-102)
Reflux Drum, V-103
Distillation Column, T-101
Condenser, E-105
Reboiler, E-106
Heater (E-102,E-104)
Cooler (E-101, E-103)
Compressor, K-101
Pressure Reducing Valve, PIC-101
๐ผ๐‘›๐‘๐‘ข๐‘ก = ๐‘‚๐‘ข๐‘ก๐‘๐‘ข๐‘ก
22
MASS BALANCE ANALYSIS FOR REACTIVE SYSTEM
Component Inlet Molar Flow
Rate
Change in Molar Flow Outlet Molar Flow Rate
Limiting Reactant FLR,i โˆ’X FLR,f = FLR,i(1 โˆ’ X)
Reactant FR,i
โˆ’ฮธRX FR,f = FR,i(1 โˆ’ ฮธRX)
Product FP,i +ฮธPX FP,f = FP,i + ฮธPX
Non-involving component FI 0 FI
23
MASS BALANCE
Operating Temperature: 300 โ„ƒ
Operating Pressure: 50 bar
Methanol Reactor, R-103
24
Methanol is produced when the syngas component, CO and ๐ป2 reacts with one another in the presence of
Cu/ZnO/๐ด๐‘™2๐‘‚3 catalyst.
Reaction 1: Methanol Synthesis
๐ถ๐‘‚ + 2๐ป2 โ†” ๐ถ๐ป3๐‘‚๐ป
Reaction 2: Reverse Water- Gas Shift Reaction
๐ถ๐‘‚2 + ๐ป2 โ†” ๐ป2๐‘‚ + ๐ถ๐‘‚
Methanol Reactor, R-103
Parameter Value
Reaction 1 CO Conversion 0.66818 [5,6]
Reaction 2 ๐ถ๐‘‚2 Conversion 0.03353 [5,6]
Selectivity 6.93484
Yield 0.66818
25
A simulation was run on MATLAB to verify these values taken for our calculation:
Methanol Reactor, R-103
โ€ข Based on MATLAB simulation,
the CO and ๐ถ๐‘‚2 conversion
were found to be 0.700 and
0.00 respectively.
โ€ข It is hard to achieve 0%
conversion of reactant from
the side reaction.
โ€ข Therefore, the conversion
values used in the manual
calculation of mass balance
analysis were valid.
26
A sensitivity analysis is done to evaluate the economic potential by varying the CO conversion in R-103.
Methanol Reactor, R-103
โ€ข It is found that the profit
starts to plateau off beyond X
= 0.6.
โ€ข It is duly justified to take the
conversion value of about
0.67 for the mass balance
calculation.
27
RM0.00
RM50,000,000.00
RM100,000,000.00
RM150,000,000.00
RM200,000,000.00
RM250,000,000.00
RM300,000,000.00
RM350,000,000.00
RM400,000,000.00
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Profit
(MYR)
CO conversion in R-103
Profit (RM) vs CO Conversion in R-103
MASS BALANCE
In (Stream 13) Out (Stream 14)
Mass Flow (kg/hr) Mass Fraction Mole Flow (kmol/hr) Mole Fraction Mass Flow (kg/hr) Mass Fraction Mole Flow (kmol/hr) Mole Fraction
Methane, CH4
Ethane, C2H6
Propane, C3H8
Isobutane, iC4H10
Butane, C4H10
Isopentane, iC5H12
Pentane, C5H12
Hexane, C6H14
Carbon dioxide, CO2 524778.46182 0.58523 11926.78322 0.09135 507182.64000 0.56561 11526.87818 0.09221
Nitrogen, N2 28802.58953 0.03212 1028.66391 0.00788 28802.58953 0.03212 1028.66391 0.00823
Oxygen, O2
Carbon Monoxide, CO 116213.93187 0.12960 4150.49757 0.03179 49759.44804 0.05549 1777.12314 0.01422
Hydrogen, H2 226904.76338 0.25304 113452.38169 0.86898 215011.83544 0.23978 107505.91772 0.85997
Methanol, CH3OH 88744.94286 0.09897 2773.27946 0.02218
Water, H2O 7198.29075 0.00803 399.90504 0.00320
Total 896699.74661 1.00000 130558.32639 1.00000 896699.74661 1.00000 125011.76746 1.00000
28
MASS BALANCE
Distillation Column, T-101
Operating Pressure: 1 bar
Light Key Component: Methanol
Heavy Key Component: Water
29
MASS BALANCE
โ€ข The purity of grade AA methanol of 99.85 wt% is achieved using distillation column T-101.
โ€ข A โ€œshortcutโ€ method known as Fenske-Underwood-Gilliland-Kirkbride (FUGK) method was used in this
analysis.
โ€ข Through mass balance analysis, the amount of methanol and water at the top and bottom product based
on the required purity were determined.
โ€ข Based on this composition distribution, top and bottom temperature were determined using dew point and
bubble point calculations respectively.
Distillation Column, T-101
Component Recovery
Methanol 0.98182
Water 0.01818
30
Vapor Pressure Equation
๐ถ1, ๐ถ2, ๐ถ3, ๐ถ4, ๐ถ5 is taken from Table 2-8 Vapor Pressure of Inorganic and Organic Liquids.
P is in Pa and Temperature, T is in Kelvin.
Antoine Equation
๐‘ƒ๐‘ฃ = exp ๐ถ1 +
๐ถ2
๐‘‡
+ ๐ถ3 ln ๐‘‡ + ๐ถ4๐‘‡๐ถ5
where ๐พ๐‘– =
๐‘ƒ๐‘ฃ๐‘Ž๐‘
๐‘ƒ
Raoultโ€™s Law
๐›ผ๐‘– =
๐พ๐‘–
๐พ๐ป2๐‘‚
โ€ข Dew Point (Top temperature)
KH2O,new = โˆ‘
yi
ฮฑi
โ€ข Bubble Point (Bottom temperature)
KH2O,new = โˆ‘xiฮฑi
Distillation column Top temperature Bottom temperature
C-101 64.41 โ„ƒ 92.53 โ„ƒ
31
โ€ข To obtain ๐œƒ:
1 โˆ’ q = โˆ‘
ฮฑixi,F
ฮฑiโˆ’ฮธ
q = 1 since the feed consist only liquid
โ€ข Minimum Reflux Ratio
Rmin + 1 = โˆ‘
ฮฑixi,D
ฮฑiโˆ’ฮธ
โ€ข Actual Reflux Ratio, R
R = 1.5Rmin = 0.5
Underwood Equation
32
MASS BALANCE
In Out
Stream Number 21 26 29
Temperature (ยฐC) 80.00000 64.25222 97.27411
Pressure (bar) 1.00000 1.00000 1.00000
Component
Mass Flow
(kg/hr)
Mass
Fraction
Mole Flow
(kmol/hr)
Mole
Fraction
Mass Flow
(kg/hr)
Mass
Fraction
Mole Flow
(kmol/hr)
Mole
Fraction
Mass Flow
(kg/hr)
Mass
Fraction
Mole Flow
(kmol/hr)
Mole
Fraction
Methanol, CH3OH 88744.94286 0.92497 2773.27946 0.87397 87131.21209 0.99850 2722.85038 0.99734 1613.73077 0.18589 50.42909 0.11382
Water, H2O 7198.29075 0.07503 399.90504 0.12603 130.89313 0.00150 7.27184 0.00266 7067.39762 0.81411 392.63320 0.88618
Total 95943.23360 1.00000 3173.18451 1.00000 87262.10522 1.00000 2730.12222 1.00000 8681.12838 1.00000 443.06229 1.00000
Mass In - Mass
Out
0.00000
33
MASS BALANCE
โ€ข The outlet stream composition was obtained using the FUG calculation.
โ€ข However, the inlet stream composition for this condenser was not known, which necessitates a backward
mass balance calculation.
โ€ข The reflux ratio and the boil-up ratio must be determined to find the vapor fraction inside the condenser
and the reboiler.
โ€ข Reflux ratio expression: ๐‘… =
๐ฟ
๐ท
โ€ข Boil-up ratio: VB=
R+q xHK,Fโˆ’xHK,D
xHK,Bโˆ’xHK,F +qโˆ’1
Condenser & Reboiler
34
CONTENT
MASS BALANCE
ENERGY BALANCE
UTILITIES
WASTE GENERATION
35
ENERGY BALANCE
โ€ข According to the second law of thermodynamics, the energy can neither be destroyed nor created as
stated by the Principle of Conservation of energy.
โ€ข Energy is typically transferred by heat or work in both open and closed system.
โ€ข General Energy Balance Equation
๐ผ๐‘›๐‘๐‘ข๐‘ก โˆ’ ๐‘‚๐‘ข๐‘ก๐‘๐‘ข๐‘ก = ๐ด๐‘๐‘๐‘ข๐‘š๐‘ข๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›
Q โˆ’ W = โˆ†Ek + โˆ†Ep
+ โˆ†H
โ€ข Steady-State Open System Energy Balance
Q โˆ’ W = โˆ†H
Whereas โˆ’W indicates the work is done by the system; +Q indicates heat supplied to the system
Neglect kinetic and
potential energy change
36
โ€ข The reference state is set at 25ยฐC and 1 bar.
Reference State
1) Change in kinetic energy and change in potential energy is assumed negligible.
2) Shaft work is assumed negligible due to lack of sufficient information.
3) Specific heat capacities are assumed to be independent of pressure and temperature.
4) Energy transfer efficiency for heat and work is 100%.
5) Heat of formation is involved in only reactors.
6) Heat of mixing and heat of solution are negligible since there is no dissolve of solute in solvent occur.
7) Isothermal reactors for R-101 and R-102.
8) Adiabatic reactor for R-103.
9) Adiabatic pressure changers K-101.
10)Adiabatic mixing at all mixing points and splitting pointes, net heat is zero.
Assumption
37
โ€ข Can be divided into a few components such as sensible heat, heat of reaction, latent heat and so on
โˆ†H = mCpโˆ†T + โˆ†Hreaction + โˆ†Hvaporization
Sensible Heat
โ€ข The change in enthalpy due to sensible heat at constant pressure is as the following:
โˆ†H =
T1
T2
CpdT
Latent Heat
โ€ข Enthalpy change when one component changes from one phase to another at constant temperature and
pressure.
โ€ข Heat of Vaporization is computed using:
โˆ†Hv = C1 1 โˆ’ Tr
C2+C3Tr+C4Tr
2
Whereas Tr is T / Tc.
Enthalpy, โˆ†๐‡
38
Heat of Reaction
โ€ข Heat of formation is chosen to calculate the heat of reaction in the three reactors.
โˆ†Hreaction = โˆ‘noutHformation,out โˆ’ โˆ‘ninHformation,in
Enthalpy, โˆ†๐‡
โ€ข In compressor K-101, the process is considered as isentropic, which is adiabatic (i.e., Q = 0) and reversible
process.
โ€ข Isentropic process equation for work done and new temperature:
W = โˆ†H
T2
T1
=
P2
P1
1โˆ’
1
ฮณ
=
P2
P1
R
Cp
Work, W
39
In Out
Stream number 13 14
Temperature (ยฐC) 300.00 300.00
Temperature (K) 573.15 573.15
Pressure (bar) 50.00 50.00
Vapor Fraction 1.00 1.00
Component
Mole flow
(kmol/hr)
Liquid phase
sensible heat
(kJ/mol)
Heat of
vaporisation
(kJ/mol)
Vapor phase
sensible heat
(kJ/mol)
Heat of
formation
(kJ/mol) V ฮ”P (kJ/mol)
Energy flow
(kJ/kmol)
Mole flow
(kmol/hr)
Liquid phase
sensible heat
(kJ/mol)
Heat of
vaporisation
(kJ/mol)
Vapor phase
sensible heat
(kJ/mol)
Heat of
formation
(kJ/mol) V ฮ”P (kJ/mol)
Energy flow
(kJ/kmol)
Methane, CH4
Ethane, C2H6
Propane, C3H8
Isobutane, iC4H10
Butane, C4H10
Isopentane, iC5H12
Pentane, C5H12
Hexane, C6H14
Carbon dioxide, CO2 11926.78 11.58 -393.50
-
4555109178.05 11526.88 11.58 -393.50
-
4402376367.31
Nitrogen, N2 1028.66 8.12 0.00 8351651.85 1028.66 8.12 0.00 8351651.85
Oxygen, O2
Carbon Monoxide, CO 4150.50 8.17 -110.52 -424793739.29 1777.12 8.17 -110.52 -181884406.24
Hydrogen, H2 113452.38 7.96 0.00 903334207.64 107505.92 7.96 0.00 855987080.69
Methanol, CH3OH 2773.28 2.66 35.65 13.84 -201.20 -413361760.12
Water, H2O 399.91 20.74 -241.83 -88417005.14
Total 130558.33 0.00 0.00 35.83 -504.02 0.00
-
4068217057.85 125011.77 23.39 35.65 49.68 -947.05 0.00
-
4221700806.28
Total Energy Flow Rate (kJ/hr) -4068217057.85 -4221700806.28
Energy Balance (kJ/hr) -153483748.43
Heat Duty (MJ/hr) -153483.75
Power requirement (kW)
ENERGY BALANCE FOR REACTOR: R-103
Assume R-103 is an isothermal reactor in which the temperature of the reactor is maintained by continuous coolant supply to overcome the
heat released by the reaction
40
ENERGY BALANCE
Condenser, E-105
Inlet Temperature: 64.41โ„ƒ
Outlet Temperature: 64.25 โ„ƒ
Operating Pressure: 1 bar
Reboiler, E-106
Inlet Temperature: 92.53โ„ƒ
Outlet Temperature: 97.27 โ„ƒ
Operating Pressure: 1 bar
41
ENERGY BALANCE FOR CONDENSER: E-105
E-105 is a total condenser, whereas all components from Stream 22 are condensed fully by the cooling supplied by the condenser
In Out
Stream number 22.00 23.00
Temperature (ยฐC) 64.41 64.25
Temperature (K) 337.56 337.40
Pressure (bar) 1.00 1.00
Vapor Fraction 1.00 0.00
Component
Mole flow
(kmol/hr)
Liquid phase
sensible heat
(kJ/mol)
Heat of
vaporisation
(kJ/mol)
Vapor phase
sensible heat
(kJ/mol)
Heat of
formation
(kJ/mol)
V ฮ”P (kJ/mol)
Energy flow
(kJ/kmol)
Mole flow
(kmol/hr)
Liquid phase
sensible heat
(kJ/mol)
Heat of
vaporisation
(kJ/mol)
Vapor phase
sensible heat
(kJ/mol)
Heat of
formation
(kJ/mol)
V ฮ”P (kJ/mol)
Energy flow
(kJ/kmol)
Nitrogen, N2
Oxygen, O2
Carbon Monoxide, CO
Hydrogen, H2
Methanol, CH3OH
4085.51 2.66 35.65 0.35
157922189.5
6
4085.51 3.27 13369733.88
Water, H2O 10.91 2.97 32424.80 10.91 2.96 32292.52
Total
4096.42 5.63 35.65 0.35 0.00 0.00
157954614.3
6
4096.42 6.23 0.00 0.00 0.00 0.00 13402026.40
Total Energy Flow Rate
(kJ/hr) 157954614.36 13402026.40
Energy Balance (kJ/hr) -144552587.96
Heat Duty (MJ/hr) -144552.59
Power requirement (kW)
42
ENERGY BALANCE FOR REBOILER: E-106
The boil-up stream is fully reboiled while the bottom product stream is fully in liquid phase.
In Out
Stream number 27.00 28.00 29.00
Temperature (ยฐC) 92.53 97.27 97.27
Temperature (K) 365.68 370.42 370.42
Pressure (bar) 0.00 1.00 1.00
Vapor Fraction 0.11 1.00 0.00
Component
Mole flow
(kmol/hr)
Liquid
phase
sensible
heat
(kJ/mol)
Heat of
vaporisati
on
(kJ/mol)
Vapor
phase
sensible
heat
(kJ/mol)
Heat of
formation
(kJ/mol)
V ฮ”P
(kJ/mol)
Energy
flow
(kJ/kmol)
Mole flow
(kmol/hr)
Liquid
phase
sensible
heat
(kJ/mol)
Heat of
vaporisati
on
(kJ/mol)
Vapor
phase
sensible
heat
(kJ/mol)
Heat of
formation
(kJ/mol)
V ฮ”P
(kJ/mol)
Energy
flow
(kJ/kmol)
Mole flow
(kmol/hr)
Liquid
phase
sensible
heat
(kJ/mol)
Heat of
vaporisati
on
(kJ/mol)
Vapor
phase
sensible
heat
(kJ/mol)
Heat of
formation
(kJ/mol)
V ฮ”P
(kJ/mol)
Energy
flow
(kJ/kmol)
Nitrogen, N2
Oxygen, O2
Carbon Monoxide,
CO
Hydrogen, H2
Methanol, CH3OH
60.99 2.66 35.65 1.74
2442270.5
7
10.57 2.66 35.65 1.98 425574.90 50.43 6.23 313990.11
Water, H2O
474.89 5.09
2418009.0
7
82.26 5.09 39.91
3702099.8
1
392.63 5.09
1999174.7
7
Total
535.89 7.75 35.65 1.74 0.00 0.00
4860279.6
4
92.82 7.75 75.56 1.98 0.00 0.00
4127674.7
1
443.06 11.32 0.00 0.00 0.00 0.00
2313164.8
8
Total Energy Flow
Rate (kJ/hr)
4860279.64 6440839.60
Energy Balance
(kJ/hr)
1580559.96
Heat Duty (MJ/hr) 1580.56
Power
requirement (kW)
43
UTILITIES
HEATING AND
COOLING UTILITIES
FUEL GAS ELECTRICITY
44
Natural gas is used as fuel to provide heat to steam methane reformer (R-101)
).
Fuel Gas
Steam is used as heating agent for heat exchangers E-102, E-104 and E-106.
Heating Utilities
Unit Code Heating Duty (MJ/hr) Fuel gas required
(kmol/hr)
Fuel gas required (ton/
year)
Estimated cost (RM/yr)
Steam reformer R-101 -558711403.34 789.35 106675.44 193,669,263.37
Code of Equipment Type Heating Duty (MJ/hr) Steam required (ton/ year)
E-102 Superheated steam -787646.57 1778976.88
E-104 Superheated steam -103612.40 660053.422
E-106 Superheated steam -1580.55 10387.26554
Total -7064090353.08 2449417.568
Total water used for heating utility Price
kg/ yr m3/yr RM/ yr
2449417568.26 2449417.57 4,898,835.14
Cost for natural gas
used
Approximately RM 5
millions is required for
heating utilities per
year
45
โ€ข Cooling water utilities for cooler E-101 and E-103, and condenser E-105 as well as the cooling water utility
equivalent for methanol reactor R-103 are tabulated below.
โ€ข To solve for cooling utility, we first presume all the outlet stream of cooling water are recycled to a cooling
tower, then being transported out to cooling unit again. The cooling utility is the make-up water required
accounting for losses in cooling tower.
โ€ข The inlet flow rate of the cooling tower is assumed as the sum of the flow rate of all cooling utility required.
๐‘€๐‘Ž๐‘˜๐‘’ โˆ’ ๐‘ข๐‘ ๐‘ค๐‘Ž๐‘ก๐‘’๐‘Ÿ = ๐‘’๐‘ฃ๐‘Ž๐‘๐‘œ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘™๐‘œ๐‘ ๐‘  + ๐‘‘๐‘Ÿ๐‘–๐‘“๐‘ก ๐‘™๐‘œ๐‘ ๐‘  + ๐‘๐‘™๐‘œ๐‘ค๐‘‘๐‘œ๐‘ค๐‘›
๐‘’๐‘ฃ๐‘Ž๐‘๐‘œ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘™๐‘œ๐‘ ๐‘  = 0.00085๐‘Š
๐‘(๐‘‡1 โˆ’ ๐‘‡2)
๐ท๐‘Ÿ๐‘–๐‘“๐‘ก ๐‘™๐‘œ๐‘ ๐‘  = 0.02% ๐‘œ๐‘“ ๐‘ค๐‘Ž๐‘ก๐‘’๐‘Ÿ ๐‘ ๐‘ข๐‘๐‘๐‘™๐‘ฆ
๐‘๐‘™๐‘œ๐‘ค๐‘‘๐‘œ๐‘ค๐‘› =
๐‘’๐‘ฃ๐‘Ž๐‘๐‘œ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘™๐‘œ๐‘ ๐‘  โˆ’ ๐ถ๐‘‚๐ถ โˆ’ 1 ร— ๐‘‘๐‘Ÿ๐‘–๐‘“๐‘ก ๐‘™๐‘œ๐‘ ๐‘ 
๐ถ๐‘‚๐ถ โˆ’ 1
Cooling Utility
Code Temperature (ยฐC) Heating Duty (MJ/hr) Cooling
equivalence
required (kg/ hr)
Tin Tout
E-101 20 45 797210.33 7612618.522
R-103 30 90 150729.75 599720.48
E-103 20 45 915436.33 8741567.104
E-105 30 57.41 144552.589 1258839.262
2007928.997 18212745.37
46
Electricity is supplied to the compressor K-101.
Electricity
Code Power required (kW)
Electricity usage (kWh/yr)
Estimated cost
per year
Peak
(14 hrs)
Off-peak
(10 hrs) RM/ yr
K-101 8100.60 37424759.31 26731970.94 18,012,002.02
Cooling tower make-up water calculations:
Cooling Utility
Cost for cooling
utilities is around RM 9
millions per year
Cost for electricity is
around RM 18 millions
per year
47
CONTENT
MASS BALANCE
ENERGY BALANCE
UTILITIES
WASTE GENERATION
48
Liquid waste
โ€ข The water separated
from syngas-water
separator, V-101
โ€ข Methanol-water mixture
generated from the
distillation column, T-
101
Wastewater
โ€ข 923,325.45 tons per year is released
Treatment Method
Activated Sludge
โ€ข methanol concentration
decreases effectively after
they are consumed by
bacteria (Bacillus
Methanolicus and
Methylophilus
methylotrophus) in the sludge
vessel
Slow Sand Filter
โ€ข For methanol concentration of
1ppm, it can successfully
provide the microbial activity
to treat the drinking water
Biologically Activated Filter
โ€ข for higher concentrations of
methanol from 100 to 1000
ppm, BAF designed with
counter air flow is needed
49
Gaseous waste
โ€ข Purge gas produced
from the methanol
reactor effluent
separator
โ€ข Flue gas which is
produced by the steam
reformer
Purge Gas
โ€ข Most of the separated syngas is
recycled back to stream 18 to
improve conversion and the
remaining syngas is purged and
flared off to prevent inert
accumulation and pressure build up
โ€ข excess air is supplied to flare system
so that the purge gas undergoes
complete combustion
Flue Gas
โ€ข Composition of flue gas:
โ€ข Amount of flue gas produced
โ€ข Heat recovery can be implemented
as the flue gas is released at 850 โ„ƒ
โ€ข Flue gas can be discharged into the
atmosphere without harming the
environment.
Stream
Mass flow rate
kg/yr ton/yr
Stream 17 190259747.49 190,259.75
Flue gas component Mass fraction
Carbon dioxide, CO2 0.15
Nitrogen, N2 0.71
Oxygen, O2 0.01
Argon, Ar 0.01
Water, H2O 0.12
Total 1.00
Mass flow rate
kg/yr ton/yr
1940530852.91 1,940,530.85
50
CONCLUSION
The overall mass balance is zero as the inlet total mass flow rate is balanced
by the outlet total mass flow rate
The conversion of CO and ๐ถ๐‘‚2 is 0.66818 and 0.03353 respectively in
Methanol Reactor to produce methanol
The heat duty for reactor R-103 is -153483.75 MJ/hr while -144552.58 MJ/hr
and 1580.55 MJ/hr for condenser and reboiler respectively
Gaseous wastes which is flue gas is the highest waste produced at
1,940,530.85
ton/year
Total utility cost per year is RM 225,775,715.
Preliminary economic potential analysis is RM 352,587,481.95
51
REACTOR DESIGN
52
R-103
METHANOL REACTOR
53
To produce methanol via hydrogenation of syngas
GENERAL INFORMATION
Purpose
P = 50 bars ; T = 300 โ„ƒ
Operating
condition
co-precipitated Cu/ZnO/Al2O3
Catalyst
Conversion, X = 0.66181
Data Multi tubular fixed
catalytic reactor
54
REACTION KINETICS [1]
Reactions:
๐ถ๐‘‚ + 2H2 โ†” ๐ถH3๐‘‚๐ป (main)
Rate Equation:
๐‘Ÿ3 =
๐‘˜3๐พ๐ถ๐‘‚ ๐‘ƒ๐ถ๐‘‚๐‘ƒ๐ป2
1.5
โˆ’
๐‘ƒ๐ถ๐ป3๐‘‚๐ป
๐‘ƒ๐ป2
0.5๐พ3
1+๐พ๐ถ๐‘‚๐‘ƒ๐ถ๐‘‚+๐พ๐ถ๐‘‚2๐‘ƒ๐ถ๐‘‚2 ๐‘ƒ๐ป2
0.5
+
๐พ๐ป2๐‘‚
๐‘ƒ๐ป2
0.5 ๐‘ƒ๐ป2๐‘‚
(main)
CO2 + H2 โ†” H2O + CO (side)
๐‘Ÿ4 =
๐‘˜4๐พ๐ถ๐‘‚2 ๐‘ƒ๐ถ๐‘‚2๐‘ƒ๐ป2
1.5
โˆ’
๐‘ƒ๐ถ๐ป3๐‘‚๐ป๐‘ƒ๐ป2๐‘‚
๐‘ƒ๐ป2
1.5๐พ4
1+๐พ๐ถ๐‘‚๐‘ƒ๐ถ๐‘‚+๐พ๐ถ๐‘‚2๐‘ƒ๐ถ๐‘‚2 ๐‘ƒ๐ป2
0.5
+
๐พ๐ป2๐‘‚
๐พ๐ป2
0.5 ๐‘ƒ๐ป2๐‘‚
(side)
[1]
[1]
55
CATALYST BED SIZING: POLYMATH RESULT
56
STEP 1: CATALYST BED SIZING
From polymath, the mass of catalyst required for one single tube is approximately 12 kg. Since the number of
tube used is 1381, the total mass of catalyst required is approximately 12 x 1381 kg = 16572.00 kg.
Assuming the catalyst bed is cylindrical,
๐‘‰๐‘๐‘’๐‘‘ =
๐‘Š
๐œŒ๐‘ 1 โˆ’ ๐œ™
Whereas ๐œŒ๐‘ = 1300 kg/m3-catalyst; ๐œ™ = 0.45. Therefore,
๐‘‰๐‘๐‘’๐‘‘ = 23.18 ๐‘š3
Component Initial flow
rate (kmol/s)
Final flow
rate
(kmol/s)
Conversion
CO 0.000835 0.000248 0.7033
57
STEP 2: COOLING REQUIREMENT
Mineral oil supplied by Radco Industries (XCELTHERMยฎ600) which has the maximum bulk fluid operating
temperature of 316ยฐ๐ถ will be used to constantly remove heat to maintain the catalyst packed tube
temperature, Tw at 300ยฐC . Generally, temperature approach of 20ยฐC will be implemented. So, the coolant
return temperature will be set at 280ยฐC . The cooling duty required from energy balance is:
๐‘ธ = โˆ’๐Ÿ๐Ÿ“๐ŸŽ, ๐Ÿ•๐Ÿ๐Ÿ—. ๐Ÿ•๐Ÿ’ ๐‘ด๐‘ฑ/๐’‰๐’“
Fluid properties
Shell Side Tube Side
Fluid Mineral oil Process fluid
Inlet temperature (ยฐC) 30
300
Outlet temperature (ยฐC) 280
Mean temperature (ยฐC) 155
58
STEP 2: COOLING REQUIREMENT [2,3]
The process fluid properties are taken as the average values of those of reactants and products in the tube.
The data are taken from ASPEN PLUS.
Mineral oil properties Value
Density, ๐œŒ (kg/m3) 769.7968759
Viscosity, ๐œ‡ (Pa-s) 0.001014167
Thermal conductivity, k (W/m/ยฐC) 0.125171433
Specific heat capacity, Cp (J/kg/ยฐC) 2456.791229
Prandtl number, Prb 19.90547933
Reactant Product Average
Density, ฯฑ (kg/m3) 7.111478329 7.42745129 7.26946481
Viscosity, ยต (Pa-s) 2.03E-05 2.04E-05 2.03857E-05
Thermal conductivity, k (W/m/ยฐC) 0.238914355 0.233826115 0.236370235
Specific heat capacity, Cp (J/kg/ยฐC) 4514.239624 4443.179332 4478.709478
Prandtl number, Prb 0.38626562
59
STEP 2: COOLING REQUIREMENT
Log mean temperature difference (LMTD)
โˆ†๐‘‡๐ฟ๐‘€๐‘‡๐ท =
๐‘‡1 โˆ’ ๐‘ก2 โˆ’ (๐‘‡2 โˆ’ ๐‘ก1)
ln
๐‘‡1 โˆ’ ๐‘ก2
๐‘‡2 โˆ’ ๐‘ก1
โˆ†๐‘‡๐ฟ๐‘€๐‘‡๐ท =
300 โˆ’ 280 โˆ’ (300 โˆ’ 30)
ln
300 โˆ’ 280
300 โˆ’ 30
= 96.05ยฐ๐ถ
Mass flow rate of coolant required:
๐‘„ = ๐‘š๐ถ๐‘โˆ†๐‘‡
โˆ’150729.74
๐‘€๐ฝ
โ„Ž๐‘Ÿ
ร—
106
๐ฝ
1๐‘€๐ฝ
ร—
1โ„Ž๐‘Ÿ
3600๐‘ 
= ๐‘š 2456.791229
J
kg โˆ’ ยฐC
30 โˆ’ 280 ยฐ๐ถ
๐‘š = 68.17 ๐‘˜๐‘”/๐‘ 
Heat transfer area, S
Take converged U = 341.49 W/m2/ยฐC, the heat
transfer area is obtained as below:
๐‘„ = ๐‘ˆ๐‘†โˆ†๐‘‡๐ฟ๐‘€๐‘‡๐ท
โˆ’150729.74
๐‘€๐ฝ
โ„Ž๐‘Ÿ
ร—
106
๐ฝ
1๐‘€๐ฝ
ร—
1โ„Ž๐‘Ÿ
3600๐‘ 
= 341.49
๐‘Š
๐‘š2ยฐ๐ถ
๐‘† 96.05ยฐ๐ถ
๐‘† = 1276.45 ๐‘š2
60
STEP 2: COOLING REQUIREMENT
Fixed V/S ratio
๐‘‰
๐‘†
=
๐‘๐œ‹๐‘Ÿ2๐ฟ
2๐‘๐œ‹๐‘Ÿ๐ฟ
=
๐‘Ÿ
2
=
๐‘‘
4
๐‘‘๐‘š๐‘Ž๐‘ฅ =
4๐‘‰
๐‘†
๐‘‘๐‘š๐‘Ž๐‘ฅ =
4 23.18๐‘š3
1276.45๐‘š2
= 0.07263๐‘š = 72.63๐‘š๐‘š
Number of tube and tube length
๐‘ =
๐‘†
๐œ‹๐‘‘๐‘œ๐‘™
Parameter Value
Chosen tube 1.5 in Schedule 80
Inner diameter, di (mm) 38.1
Outer diameter, do (mm) 48.26
Thickness (mm) 10.16
Cross section area, Ac,tube (m2) 0.001829214
Tube length (m) 6.1 (as recommended by Coulson and Richardson)
Number of tube 1380.174798 which is 1381
maximum number of tubes for multitubular reactor used in the industries is 4000 tubes. hence 1381 is
acceptable.
61
STEP 2: COOLING REQUIREMENT
Tube arrangement
To minimise pressure drop and for ease of cleaning, the square pitch is used.
The tube pitch is calculated as below:
๐‘ƒ๐‘ก = 1.25๐‘‘๐‘œ
๐‘ƒ๐‘ก = 1.25 0.04826๐‘š = 0.06033๐‘š = 2.375 ๐‘–๐‘›๐‘โ„Ž๐‘’๐‘ 
62
STEP 2: COOLING REQUIREMENT
The tube bundle diameter is calculated as below:
๐ท๐‘ = ๐‘‘0
๐‘๐‘ก
๐พ1
1
๐‘›1
Since only one tube pass in established in the reactor, constants used are:
K1 = 0.215 and n1 = 2.207
Therefore, the bundle diameter is:
๐ท๐‘ = 0.04826๐‘š
1381
0.215
1
2.207
= 2.56๐‘š
The tube in the center row is determined by Db/Pt = 2.56/0.06 = 42.5 which is 43 tubes.
63
STEP 2: COOLING REQUIREMENT
Based on the plot, an extrapolation equation has been established to correlate the bundle diameter and
the clearance for fixed-tube type
๐ถ๐‘™๐‘’๐‘Ž๐‘Ÿ๐‘Ž๐‘›๐‘๐‘’, ๐ถ ๐‘š๐‘š = 10๐ท๐‘ + 8 = 10 2.56 + 8
๐ถ = 33.64 ๐‘š๐‘š
Therefore, the shell diameter is:
๐ท๐‘  = ๐ท๐‘ + ๐ถ = 2.56 +
33.64
1000
๐ท๐‘  = 2.60๐‘š
64
STEP 2: COOLING REQUIREMENT
Generally, a baffle cut of 20 to 25 per cent will be the optimum, giving good heat-transfer rates, without
excessive pressure drop.
The optimum spacing will usually be between 0.3 to 0.5 times the shell diameter.
Spacing of 0.3x Shell diameter is used:
Baffle spacing, lb = 0.3Ds = 0.3(2.60) = 0.78m.
As the tube length used for the catalyst packing is 6.10 m, the number of baffle to be installed can be
calculated as:
๐‘๐‘ =
๐ฟ๐‘ก
๐‘™๐‘
โˆ’ 1 =
6.10
0.78
โˆ’ 1
๐‘๐‘ = 6.83 ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘–๐‘  7 ๐‘๐‘Ž๐‘“๐‘“๐‘™๐‘’๐‘ .
65
STEP 2: COOLING REQUIREMENT
Tube-side heat transfer coefficient, hi
๐‘๐‘ข =
โ„Ž๐‘–๐‘‘๐‘’
๐‘˜๐‘“
Parameter Value Remark
Mass flow rate (kg/s) 249.08 From mass balance
Volumetric flow rate (m3/s) 34.26 ๐‘„ = ๐‘š/๐œŒ๐‘ฃ
Cross sectional area of one tube (m2) 1.83 ร— 10โˆ’3
Total cross sectional area (m2) 2.53
๐ด๐‘ก = ๐‘๐‘ก โ‹… ๐ด๐‘
,
๐‘œ๐‘›๐‘’ ๐‘ก๐‘ข๐‘๐‘’
Fluid velocity (m/s) 13.56 ๐‘ข = ๐‘„/๐ด๐‘ก
Equivalent diameter, de = di 0.04
Reynold number 1.84E+05 ๐‘…๐‘’ = ๐œŒ๐‘ข๐‘‘/๐œ‡
Since the Reynold number, Re > 4000, the flow is turbulent flow, the Nusselt number, Nu can be
determined using equation:
๐‘๐‘ข = ๐ถ๐‘…๐‘’0.8
Pr0.33
C = 0.021 for gases
๐‘๐‘ข = 2.50 ร— 102
โ„Ž๐‘– = 1.55 ร— 103
๐‘Š
๐‘š2ยฐ๐ถ
66
STEP 2: COOLING REQUIREMENT
Shell side heat transfer coefficient, ho
๐‘ข = ๐‘—โ„Ž๐‘…๐‘’๐‘ƒ๐‘Ÿ0.33
๐œ‡
๐œ‡๐‘ค
0.14
=
โ„Ž๐‘œ๐‘‘๐‘’
๐‘˜๐‘“
From the chart above, with baffle cut of 25% and Reynold
number of 6.72 ร— 104
, heat transfer factor, jh is ๐Ÿ. ๐Ÿ– ร—
๐Ÿ๐ŸŽโˆ’๐Ÿ‘.
Parameter Value
As (m2) 0.41
๐‘‘โ„Ž(m) 0.048
๐‘ข๐‘  (m/s) 0.86
Re 6.72 ร— 104
Parameter Value
Tw (ยฐC) 300
๐œ‡๐‘ค (Pa-s) 2.76 ร— 10โˆ’4
Nu 3.89 ร— 102
ho (W/m2/ยฐC) 1.02 ร— 103
โ„Ž๐‘œ = 1.02 ร— 103
๐‘Š
๐‘š2ยฐ๐ถ
67
STEP 2: COOLING REQUIREMENT
Overall heat transfer coefficient, Uo
The overall heat transfer coefficient is computed as blow:
1
๐‘ˆ๐‘œ
=
1
โ„Ž๐‘œ
+
1
โ„Ž๐‘œ๐‘‘
+
๐‘‘๐‘œln(
๐‘‘๐‘œ
๐‘‘๐‘–
)
2๐‘˜๐‘ค
+
๐‘‘๐‘œ
๐‘‘๐‘–
๐‘ฅ
1
โ„Ž๐‘–๐‘‘
+
๐‘‘๐‘œ
๐‘‘๐‘–
๐‘ฅ
1
โ„Ž๐‘–
Since the tube material used is the stainless steel 316, the thermal conductivity is between 13-17
W/m ยฐ๐ถ An average value of 15 W/mยฐ๐ถ is used for calculation.
The mineral oil in the shell side is considered to be heavy
hydrocarbon with fouling factor of 2000 W/m2 ยฐ๐ถ while
the process gases in the tube side is considered as
organic vapor with fouling factor of 5000 W/m2ยฐ๐ถ.
U = 341.49 W/m2ยฐC ( error = 0%)
Since the error is less than 30% as recommended by
Coulson and Richardson, all the computations above are
correct.
68
MECHANICAL DESIGN
69
MECHANICAL DESIGN
Construction
Material
โ€ข Stainless
Steel 304
Design
Temperature
โ€ข 310โ„ƒ
Design
Pressure
โ€ข 55 bar
Welded Joint
Efficiency
โ€ข Double
Welded
Butt
Wall Design
โ€ข 3.02 mm
Head &
Closure
โ€ข Ellipsoidal
Head
L/D ratio
โ€ข 2.89
Dead Weight
of Vessel
โ€ข 398.44 kN
Vessel
Support
โ€ข Conical
Skirt
Nozzle
Design
๐ท๐‘–,๐‘œ๐‘๐‘ก = 0.133๐‘š๐‘‰
0.4
๐œ‡0.13
๐ท = 1.065
๐‘Š0.408
๐œŒ0.343
70
MECHANICAL DESIGN [2,3]
Design Pressure and Temperature
Design pressure is taken to be 1.1x operating
pressure.
Design temperature is taken to be the operating
temperature of the reactor +10ยฐC
Vessel Mechanical Design
Design pressure 5.5 N/mm2
Design temperature 310 ยฐC
Material of construction
Welded joint efficiency, J
Material Stainless-steel 304
Design stress 105 N/mm2
Tensile strength 510 N/mm2
Type of joint Double-welded butt joint
Joint efficiency 0.85
71
MECHANICAL DESIGN
Tube wall design
Corrosion allowance of 2 mm,
Since the tube diameter is less than 1m, the thickness
computed is more than the minimum thickness needed.
t = 3.02 mm
Tube wall thickness,๐‘ก๐‘ก (mm) 3.02
Reactor vessel head design
For ellipsoidal head,
Corrosion allowance of 2 mm,
Since the reactor vessel head thickness is less than the
shell wall thickness, we take the thickness of the head
to be the same as the shell thickness.
t = 10 mm
Shell wall design
Corrosion allowance of 2 mm,
Since the tube diameter is 2.6 m, the thickness is smaller
than the minimum thickness. Thus, new thickness will be
selected.
t = 10 mm
Tube wall thickness,๐‘ก๐‘ก (mm) 3.37 Wall thickness,๐‘ก๐‘ก (mm) 3.37
74
MECHANICAL DESIGN
Maximum Allowable Working Pressure
(MAWP)
๐‘€๐ด๐‘Š๐‘ƒ =
2 ร— ๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘™๐‘’ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘›๐‘”โ„Ž๐‘ก ๐‘‡๐‘† ร— ๐‘—๐‘œ๐‘–๐‘›๐‘ก ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘๐‘ฆ(๐ฝ) ร— ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘ (๐‘ก)
๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐ท ร— ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘ (๐‘ก)
Parameter Value
MAWP (N/mm2) 13.13
Design Pressure (N/mm2) 5.5
MAWP
>>>
Operating
pressure
Parameter Value
MAWP (N/mm2) 0.685
Design Pressure (N/mm2) 0.11
Parameter Value
MAWP (N/mm2) 0.685
Design Pressure (N/mm2) 0.11
For tube,
For shell,
For vessel head,
75
MECHANICAL DESIGN
Reactor dimension and stress analysis
Length of rector (m) 7.51
Diameter of reactor, ๐ท๐‘Ÿ(m) 2.62
L/D 2.89
Weight of tubes, ๐‘Š๐‘ก (kN) 213.38
Weight of shell, ๐‘Š
๐‘  (kN) 22.49
Weight of catalyst (kN) 162.57
Total weight (kN) 398.44
Ratio is still within
the optimum L/D
ratio (2โ€”5)
76
MECHANICAL DESIGN
Primary stress analysis
Total longitudinal stress, ฯƒz
Principal stress analysis: (๐‘/๐‘š๐‘š2
)
Maximum compressive stress
Longitudinal stress, ๐œŽ๐ฟ 7.21 ๐‘/๐‘š๐‘š2
Circumference stress, ๐œŽโ„Ž 14.43 ๐‘/๐‘š๐‘š2
Direct stress, ๐œŽ๐‘ค 4.86 ๐‘/๐‘š๐‘š2
Bending stress, ๐œŽ๐‘ 2.05 ๐‘/๐‘š๐‘š2
Total longitudinal stress
๐œŽ๐‘ง(๐‘ข๐‘๐‘ค๐‘–๐‘›๐‘‘) 4.40 ๐‘/๐‘š๐‘š2
๐œŽ๐‘ง(๐‘‘๐‘œ๐‘ค๐‘›๐‘ค๐‘–๐‘›๐‘‘) 0.30 ๐‘/๐‘š๐‘š2 Critical buckling stress, ๐œŽ๐‘ 76.41 ๐‘/๐‘š๐‘š2
Maximum compressive stress,
๐œŽ๐‘ค
6.91
๐‘/๐‘š๐‘š2
The greatest principal stress difference is still below the
design stress (105 N/mm2), thus the design in valid!
The maximum compressive stress doesn't exceed the
critical buckling stress, which is 76.41N/mm2, thus, the
design is acceptable.
Principle stresses Upwind Downwind
๐œŽ1 = ๐œŽโ„Ž 14.43 14.43
๐œŽ2 = ๐œŽ๐‘ง 4.40 0.30
๐œŽ3 = 0.5๐‘ƒ๐‘‘ 0.0550 0.0550
๐œŽ1 โˆ’ ๐œŽ2 10.03 14.13
๐œŽ1 โˆ’ ๐œŽ3 14.37 14.37
๐œŽ2 โˆ’ ๐œŽ3 4.34 -4.04
77
MECHANICAL DESIGN
Vessel support:
Dead weight in skirt:
๐œŽ๐‘ค๐‘  ๐‘ก๐‘’๐‘ ๐‘ก =
๐‘Š๐ป2๐‘‚ + ๐‘Š
๐‘ฃ
๐œ‹(๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก + ๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก)๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
๐œŽ๐‘ค๐‘  ๐‘œ๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘›๐‘” =
๐‘Š
๐‘ฃ
๐œ‹(๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก + ๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก)๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
Skirt base angle: ๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก = ๐‘ก๐‘Ž๐‘›โˆ’1 ๐ป๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
1
2
๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘กโˆ’๐ท๐‘ 
Know that
Both stresses satisfy the design criteria, thus the suggested
thickness of the skirt is acceptable.
๐œŽ๐‘  ๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘™๐‘’ < ๐‘“๐ฝ๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
๐œŽ๐‘  ๐‘๐‘œ๐‘š๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘–๐‘ฃ๐‘’ < 0.125๐ธ
๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
๐œŽ๐‘ (๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘™๐‘’) 1.08 ๐‘/๐‘š๐‘š2
๐œŽ๐‘ (๐‘๐‘œ๐‘š๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘–๐‘ฃ๐‘’) 13.34 ๐‘/๐‘š๐‘š2
๐‘“๐ฝ๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก 140.24 ๐‘/๐‘š๐‘š2
0.125๐ธ
๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
97.30 ๐‘/๐‘š๐‘š2
Since the base angle obtained is still within the
range (80-90ยฐ) as suggested by Coulson &
Richardson, the design is valid
Type of skirt Conical skirt
Skirt diameter (m) 2.70 ๐‘š
Skirt height (m) 4.05 ๐‘š
Dead weight in skirt (test) 7.50 N/mm2
Dead weight in skirt (operating) 4.68 N/mm2
Skirt base angle, 89.25ยฐ
78
MECHANICAL DESIGN
Base Ring and Anchor Bolt Design
Approximate pitch circle diameter, ๐ท = 2 ๐‘š
Circumference of bolt circle, ๐ถ๐‘ = 6283.19 ๐‘š๐‘š
Take minimum bolt spacing = 600 ๐‘š๐‘š
Maximum allowable bolt stress, ๐‘“๐‘ 125 N/mm2
Maximum moment of bottom skirt, ๐‘€๐‘  257851.04 ๐‘๐‘š
Area of bolt, ๐ด๐‘ 78.18 mm2
Diameter of bolt, ๐ท๐‘๐‘ก 9.98 ๐‘š๐‘š
Maximum allowable ring stress, ๐‘“
๐‘Ÿ 140 N/mm2
๐‘๐‘ =
๐ถ๐‘
600
= 10.48 โ‰ˆ 12 ๐‘๐‘œ๐‘™๐‘ก๐‘  ๐‘š๐‘ข๐‘™๐‘ก๐‘–๐‘๐‘™๐‘’ ๐‘œ๐‘“ 4
From Coulson & Richardsonโ€™s Chemical Engineering
Design, the bolt type selected is M24 as it is the closest
standard size bolt larger than 9.98 mm with a root area
of 78.18 mm2
Compressive load, Fb 158306.65 N/mm
Maximum allowable bearing,Fc 92134.46 N/mm2
Minimum width base ring, ๐ฟ๐‘ 13.16 ๐‘š๐‘š
Actual base ring width,๐‘Š๐‘ 131 ๐‘š๐‘š
Actual bearing pressure, ๐‘“
๐‘
โ€ฒ
0.703 ๐‘/mm2
Base ring thickness. tbr 10 ๐‘š๐‘š
79
For viscous flow in steel pipe, (mineral oil)
๐ท๐‘–,๐‘œ๐‘๐‘ก = 0.133๐‘š๐‘‰
0.4
๐œ‡0.13
For gas, (process fluid)
๐ท = 1.065
๐‘Š0.408
๐œŒ0.343
Stream Schedule No. Dopt (mm) Dopt (in)
Feed inlet 80s 787.4 31.0
Product outlet 80s 787.4 31.0
Mineral oil inlet 40 35.052 1.25
Mineral oil outlet 40 35.052 1.25
MECHANICAL DESIGN
Nozzle design (Kent, 1980)
80
SPECIFICATION DATA SHEET FOR REACTOR R-103
METHANOL REACTOR
Identification: R-103 Date: 27/12/2023
Item: Methanol Reactor By: MAH HIN MAN
No. of unit: 1
Function: To produce methanol via hydrogenation of syngas
Operation: Continuous
OPERATING DATA
Materials
handled
(kg/hr):
Feed Outlet
Carbon dioxide,
CO2
524778.46 507182.64
Nitrogen, N2 28802.59 28802.59
Carbon
Monoxide, CO
116213.93 49759.45
Hydrogen, H2 226904.76 215011.84
Methanol,
CH3OH
0.00 88744.94
Water, H2O 0.00 7198.29
Temperature
(ยฐC)
300.0 300.0
Pressure (bar) 50
OPERATIONAL DESIGN
Type of reactor:
Catalytic multi-
tubular reactor
Catalyst: Cu/ZnO/Al2O3
Catalyst bed void: 0.45
Catalyst density
(kg/m3
):
1300.00
Catalyst support: Support grid Catalyst diameter (m): 0.01
REACTOR TUBE DESIGN
Number of tubes: 1381
Mass of catalyst per
tube (kg):
12
Tube inner diameter (m): 0.04 Mass of catalyst (kg): 16572.00
Tube length (m): 6.10 Tube thickness (m): 0.01
Tube pressure drop (bar): 0.49 Shell diameter (m): 2.60
UTILITY DESIGN
Cooling duty (MJ/hr): -150729.74 Coolant: Mineral oil
Heat transfer area (m2
): 1276.44
Coolant flow rate
(kg/hr):
245409.11
Overall heat transfer coefficient
(W/m2
/ยฐC)
341.49
MECHANICAL DESIGN
Design pressure (bar): 55
Design temperature
(ยฐC):
310.0
Materials of construction:
Stainless steel
304
Vessel wall thickness
(mm):
10
Type of head: Ellipsoidal head
Corrosion allowance
(mm)
2
Vessel support: Conical skirt
Feed inlet nozzle size (mm) : 800.1
Product outlet nozzle
size (mm):
800.1
Coolant inlet nozzle size (mm) : 35.052
Coolant outlet nozzle
size (mm):
35.052
81
AUTOCAD DRAWING (R-103) 82
CONCLUSION 82
Catalyst weight
โ€ข 16572.00 kg
Tube length
โ€ข 6.1 m
Shell diameter
โ€ข 2.6 m
Shell wall thickness
โ€ข 10 mm
MASS TRANSFER
EQUIPMENT
DESIGN
83
CONTENT
GENERAL INFORMATION
DESIGN CALCULATION
SPECIFICATION SHEET
AUTOCAD DRAWING
84
T-101 DISTILLATION COLUMN
PURPOSE :
85
T-101 DISTILLATION COLUMN
DESIGN CRITERIA
Operating
Pressure
Methanol
Recovery
Type of
tray
Methanol
Purity
Type of
column
1 bar 98.18 % 99.85 wt% Tray
Column
Sieve Tray
86
03
PLATE HYDRAULIC DESIGN
T-101 DISTILLATION COLUMN
Operating
Pressure
01
COMPONENT DISTRIBUTION
02
COLUMN SIZING
04
MECHANICAL DESIGN
DESIGN
PARAMETERS
87
Step 1: Dew point, Bubble point & Relative volatilities
Raoultโ€™s Law & Daltonโ€™s Law :
-๐พ๐‘– =
๐‘ƒ๐‘–,๐‘ ๐‘Ž๐‘ก
๐‘ƒ
=
๐‘ฆ๐‘–
๐‘ฅ๐‘–
Dew point : โˆ‘ ๐‘ฅ๐‘– = 1 .
Bubble point : โˆ‘ ๐‘ฆ๐‘– = 1.
Relative volatility : ๐›ผ๐‘–,๐ป๐พ =
๐พ๐‘–
๐พ๐ป๐พ
SECTION 1 : COMPONENT DISTRIBUTION [2,3]
Identification Of Heavy Key (HK) and Light Key (LK)
LK โ€“ METHANOL
HK - WATER
88
Step 2 : Reflux ratio Calculation
๏‚ก Underwood Equation :
1 โˆ’ ๐‘ž = โˆ‘
๐›ผ๐‘–๐‘ฅ๐‘–๐‘“
๐›ผ๐‘–โˆ’๐œƒ
, solve for ฮธ, ฮธ=1.103.
๏‚ก Minimum Reflux Ratio:
๐‘…๐‘š๐‘–๐‘› + 1 = โˆ‘
๐›ผ๐‘–๐‘ฅ๐‘–๐ท
๐›ผ๐‘–โˆ’๐œƒ
= ๐‘…๐‘š๐‘–๐‘› = 0.3336.
๏‚ก Actual Reflux Ratio:
๐‘… = 1.5๐‘…๐‘š๐‘–๐‘› = 0.5005
Step 3 : Boil up Ratio
๏‚ง VB =
R+q xHK,Fโˆ’xHK,D
xHK,Bโˆ’xHK,F +qโˆ’1
; VB= 0.2095
89
Step 4 : Minimum No. of stages
๐›ผ๐ฟ๐พ,๐ป๐พ = ๐›ผ๐ฟ๐พ,๐ป๐พ
๐ท๐›ผ๐ฟ๐พ,๐ป๐พ
๐ต๐›ผ๐ฟ๐พ,๐ป๐พ
๐น = 3.8423
Using Fenske Equation:
๐‘๐‘š๐‘–๐‘› =
ln
๐‘ฅ๐ฟ๐พ,๐ท
๐‘ฅ๐ป๐พ,๐ท
๐‘ฅ๐ป๐พ,๐ต
๐‘ฅ๐ฟ๐พ,๐ต
ln ๐›ผ๐ฟ๐พ,๐ป๐พ
= 7.6805 ๐‘ ๐‘ก๐‘Ž๐‘”๐‘’๐‘ .
Step 5 : Theoretical No. of stages
Using Gilliland Correlation method:
๐‘Œ =
๐‘ โˆ’ ๐‘๐‘š๐‘–๐‘›
๐‘ + 1
= 0.75 1 โˆ’
๐‘… โˆ’ ๐‘…๐‘š๐‘–๐‘›
๐‘… + 1
0.566
Rearranging the equation:
N =
๐‘Œ+ ๐‘๐‘š๐‘–๐‘›
1โˆ’๐‘Œ
= 17.59 โ‰ˆ 18 ๐‘ ๐‘ก๐‘Ž๐‘”๐‘’๐‘ .
90
Step 6 : Column Efficiency (Oโ€™Connellโ€™s correlation)
๐ธ0 = 51 โˆ’ 32.5 log ๐œ‡๐ฟ๐›ผ๐ฟ๐พ,๐‘Ž๐‘ฃ = 48.47%
Step 7 : Actual No. of Stages
๐‘๐‘Ž๐‘๐‘ก =
๐‘
๐ธ0
= 37.13 ๐‘ ๐‘ก๐‘Ž๐‘”๐‘’๐‘  โ‰ˆ 37 ๐‘ ๐‘ก๐‘Ž๐‘”๐‘’๐‘  ๐‘’๐‘ฅ๐‘๐‘™๐‘ข๐‘‘๐‘–๐‘›๐‘” ๐‘Ÿ๐‘’๐‘๐‘œ๐‘–๐‘™๐‘’๐‘Ÿ
Step 8 : Location of Feed Tray
Using Kirkbride equation:
๐‘๐‘…
๐‘๐‘†
=
๐‘ฅ๐น,๐ป๐พ
๐‘ฅ๐น,๐ฟ๐พ
๐‘ฅ๐ต,๐ฟ๐พ
๐‘ฅ๐ท,๐ป๐พ
2
๐ต
๐ท
0.206
= 2.17
๐‘๐‘… = 2.17 ๐‘๐‘ 
๐‘ = ๐‘๐‘… + ๐‘๐‘† = 37
Solving Simultaneously:
โˆด ๐‘๐‘… = 26 ๐‘ ๐‘ก๐‘Ž๐‘”๐‘’๐‘  ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’ ๐‘“๐‘’๐‘’๐‘‘
๐‘๐‘† = 11 ๐‘ ๐‘ก๐‘Ž๐‘”๐‘’๐‘  ๐‘๐‘’๐‘™๐‘œ๐‘ค ๐‘“๐‘’๐‘’๐‘‘
โธซthe feed entered at 11th stage from bottom
91
Step 1 : Flooding Velocity
Graphical Method from Coulson & Richardson textbook
SECTION 2 : COLUMN SIZING [2,3]
Properties Top Bottom
Vapor Density, ๐œŒ๐‘ฃ kg/m3 1.138882 0.644467
Liquid density, ๐œŒ๐ฟ kg/m3 748.8824 941.2414
Surface tension, ๐œŽ J/m2 0.017391 0.028711
L kmol/h 1366.294 535.8854
V kmol/h 4096.416 92.82314
MW kg/kmol 31.96271 19.59347
FLV 0.013007 0.151066
K1 m/s 0.11 0.09
uf, max m/s 2.740864 3.696122
92
Step 2 : Actual Velocity
๏‚ก 85% flooding velocity
Step 3 : Net Column Area
๏‚ก ๐‘„ = ๐‘ข๐‘“,๐‘›๐‘’๐‘ค๐ด๐‘›
Step 4 : Column Cross-sectional Area
Assuming downcomer area as 10%
of net area ,
-๐ด๐‘ =
๐ด๐‘›
1โˆ’๐‘‘๐‘œ๐‘ค๐‘›๐‘๐‘œ๐‘š๐‘’๐‘Ÿ ๐‘“๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘›
Step 5 : Column Diameter
๏‚ก ๐ท๐‘ =
4๐ด๐‘
๐œ‹
uf top (actual) m/s 2.3297
uf bottom (actual) m/s 3.1417
A top m2 13.7076
A bottom m2 13.5081
Qmax top m3/s 31.9350
Qmax bottom m3/s 42.4385
A top (actual) m2 15.2306
A bottom (actual) m2 15.0090
D top m 4.800
D bottom m 4.372
The column diameter is taken to be 4.8m
93
SECTION 3 : PLATE HYDRAULIC DESIGN [2,3]
Step 1 : Liquid Flow Pattern
๏‚ก Liquid Flow Rate = 0.0291
๐‘š3
๐‘ 
, Column Diameter = 4.8 m, From figure 11.28 : Single-pass Cross flow
Step 2 : Provisional Plate Design
๏‚ก Cross sectional Area, ๐ด๐‘ =
๐œ‹๐ท2
4
= 20.1062๐‘š2
๏‚ก Downcomer Area, ๐ด๐‘‘ = 0.1๐ด๐‘ = 2.0106๐‘š2
๏‚ก Active Area, ๐ด๐‘Ž = ๐ด๐‘ โˆ’ 2๐ด๐‘‘ = 16.0850๐‘š2
Assuming hole area as 10% of active area
๏‚ก ๐ดโ„Ž = 0.10 ๐ด๐‘Ž = 1.6085 ๐‘š2
From figure 11.31 for
๐ด๐‘‘
๐ด๐‘
= 0.1
๏‚ก
๐‘™๐‘ค
๐ท๐‘
= 0.73, โˆด ๐‘™๐‘ค(๐‘ค๐‘’๐‘–๐‘Ÿ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž) = 3.504๐‘š
Assumption
๏‚ก Weir height, โ„Ž๐‘ค = 0.05 m
๏‚ก Hole diameter, ๐‘‘โ„Ž = 0.005 m
๏‚ก Plate thickness, ๐‘ก๐‘ = 0.005 m
0.73
95
Step 3 : Weeping point
๏‚ก Max liquid flow rate : 27.350 kg/s
๏‚ก Assuming 70% turndown, min liquid flow rate =
0.7(max flow rate) = 19.145 kg/s
๏‚ก Max โ„Ž๐‘œ๐‘ค = 750
๐ฟ๐‘ค
๐œŒ๐‘ค๐‘™๐‘ค
2/3
= 30.73 ๐‘š๐‘š
๏‚ก Min โ„Ž๐‘œ๐‘ค = 750
๐ฟ๐‘ค
๐œŒ๐‘ค๐‘™๐‘ค
2/3
= 24.22 ๐‘š๐‘š
๏‚ก โ„Ž๐‘œ๐‘ค + โ„Ž๐‘ค = 74.22 ๐‘š๐‘š.
๏‚ก From figure 11.30, ๐พ2 = 30.6
๏‚ก Vapor velocity through hole = ๐‘ขโ„Ž =
๐พ2 โˆ’0.90 25.4 โˆ’ ๐‘‘โ„Ž
๐œŒ๐‘ฃ
1/2 = 15.2469
m
s
๏‚ก Actual minimum vapor velocity = 18.4688 m/s
Since actual minimum vapor velocity >
weeping point, weeping will not occur
30.6
96
Step 4 : Plate Pressure Drop
๏‚ก Vapor velocity through hole,
๐‘ขโ„Ž =
๐‘„
๐ดโ„Ž
= 18.4688
๐‘š
๐‘ 
๏‚ก Plate thickness/hole diameter =1, perforated area
percent = 10, from figure 11.34, Orifice coefficient, ๐ถ0 =
0.84.
๏‚ก Dry plate pressure drop,
โ„Ž๐‘‘ = 51
๐‘ขโ„Ž
๐ถ๐‘œ
2
๐œŒ๐‘ฃ
๐œŒ๐ฟ
= 11.50 ๐‘š๐‘š
๏‚ก Residual head pressure drop,
โ„Ž๐‘Ÿ =
12.5 ร— 103
๐œŒ๐ฟ
= 13.28 ๐‘š๐‘š
๏‚ก Total pressure drop,
โ„Ž๐‘ก = โ„Ž๐‘‘ + โ„Ž๐‘œ๐‘ค + โ„Ž๐‘ค + โ„Ž๐‘Ÿ = 105.51 ๐‘š๐‘š
97
Step 5 : Downcomer Liquid Back-up
๏‚ก Head loss in downcomer, โ„Ž๐‘‘๐‘ = 166
๐ฟ๐‘ค๐‘‘
๐œŒ๐ฟ๐ด๐‘š
2
๏‚ก Take โ„Ž๐‘Ž๐‘ = โ„Ž๐‘ค โˆ’ 10 = 40 mm, ๐ด๐‘Ž๐‘ = โ„Ž๐‘Ž๐‘๐‘™๐‘ค = 0.1402๐‘š2
๏‚ก ๐ด๐‘š = ๐ด๐‘Ž๐‘, ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐ด๐‘Ž๐‘ < ๐ด๐‘‘ โˆด โ„Ž๐‘‘๐‘ = 7.135 ๐‘š๐‘š
๏‚ก Downcomer liquid back-up, โ„Ž๐‘ = โ„Ž๐‘œ๐‘ค + โ„Ž๐‘ค + โ„Ž๐‘ก + โ„Ž๐‘‘๐‘ = 0.1942๐‘š
๏‚ก
๐Ÿ
๐Ÿ
๐’‘๐’๐’‚๐’•๐’† ๐’”๐’‘๐’‚๐’„๐’Š๐’๐’ˆ + ๐’˜๐’†๐’Š๐’“ ๐’‰๐’†๐’Š๐’ˆ๐’‰๐’• = ๐ŸŽ. ๐Ÿ‘๐Ÿ๐Ÿ“๐’Ž > ๐’‰๐’ƒ โˆด ๐’…๐’†๐’”๐’Š๐’ˆ๐’ ๐’Š๐’” ๐’”๐’‚๐’•๐’Š๐’”๐’‡๐’‚๐’„๐’•๐’๐’“๐’š
Step 6 : Downcomer Residence Time
๏‚ก ๐’•๐’“ =
๐‘จ๐’…๐†๐‘ณ๐’‰๐’ƒ
๐‘ณ๐’˜๐’…
= ๐Ÿ๐Ÿ. ๐Ÿ’๐Ÿ–๐Ÿ–๐Ÿ๐’” > ๐Ÿ‘ (๐’”๐’‚๐’•๐’Š๐’”๐’‡๐’‚๐’„๐’•๐’๐’“๐’š)
98
Step 7 : Check Entrainment
๏‚ก Net area vapor velocity,
๐‘ข๐‘› =
๐‘„
๐ด๐‘›
= 2.3452 ๐‘š/๐‘ 
๏‚ก Percentage flooding,
๐‘ข๐‘›
๐‘ฃ๐‘“
ร— 100% = 74.65%
๏‚ก From Figure 11.29, when ๐น๐ฟ๐‘‰ = 0.1265, fractional
entrainment, ๐‹ = 0.01๐Ÿ‘ < ๐ŸŽ. ๐Ÿ(Satisfactory)
99
Step 8 : No. of Holes
๏‚ก Area of one hole =
๐œ‹๐‘‘โ„Ž
2
4
= 1.9635 ร— 10โˆ’5
๐‘š2
๏‚ก Number of holes =
๐ดโ„Ž
๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘œ๐‘›๐‘’ โ„Ž๐‘œ๐‘™๐‘’
= 81920 โ„Ž๐‘œ๐‘™๐‘’๐‘ 
100
SECTION 4 : MECHANICAL DESIGN
Construction
Material
โ€ข Stainless
Steel 304
Design
Temperature
โ€ข 107.3โ„ƒ
Design
Pressure
โ€ข 1.1 bar
Welded Joint
Efficiency
โ€ข Double
Welded
Butt
Wall Design
โ€ข 12mm
Head &
Closure
โ€ข Torispherical
Head
L/D ratio
โ€ข 4.747
Dead Weight
of Vessel
โ€ข 398.65 kN
Vessel
Support
โ€ข Conical Skirt
Nozzle Design
โ€ข Following
Kentโ€™s equation
(1980)
101
SECTION 4 : MECHANICAL DESIGN [2,3]
Design Pressure and Temperature
Design pressure is taken to be 1.1x operating
pressure.
Design temperature is taken to be the highest
operating temperature of the column, which is
at the bottom, +10ยฐC
Vessel Mechanical Design
Design pressure 0.11 N/mm2
Design temperature 107.3ยฐC
Material of construction
Welded joint efficiency, J
Material Stainless-steel 304
Design stress 165 N/mm2
Tensile strength 510 N/mm2
Type of joint Double-welded butt joint
Joint efficiency 0.85
102
SECTION 4 : MECHANICAL DESIGN
Vessel wall design
Corrosion allowance of 2 mm,
For column diameter of 4.8m, this does not suffice,
therefore we take
tt = 12mm
Vessel wall thickness,๐‘ก๐‘ก (mm) 5.883
Vessel head design
For torispherical head,
Corrosion allowance of 2 mm,
Since calculated head thickness is less than column
wall thickness, we take
th = 12mm
Crown radius, ๐‘…๐‘ (m) 4.7
Knuckle radius, ๐‘…๐พ (m) 0.282
Stress concentration, ๐ถ๐‘  (m) 1.7706
Vessel head thickness, ๐‘กโ„Ž (mm) 5.2615
103
SECTION 4 : MECHANICAL DESIGN
Maximum Allowable Working Pressure
(MAWP)
๐‘€๐ด๐‘Š๐‘ƒ =
2 ร— ๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘™๐‘’ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘›๐‘”โ„Ž๐‘ก ๐‘‡๐‘† ร— ๐‘—๐‘œ๐‘–๐‘›๐‘ก ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘๐‘ฆ(๐ฝ) ร— ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘ (๐‘ก)
๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐ท ร— ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘ (๐‘ก)
Parameter Value
MAWP (N/mm2) 2.16
Design Pressure (N/mm2) 0.11 MAWP
>>>
Operating
pressure
104
SECTION 4 : MECHANICAL DESIGN
Column dimension and stress analysis
Total column height, ๐ป๐‘‡ (m) 22.785
Diameter of column, ๐ท๐‘(m) 4.8
L/D 4.747
Approximate dead weight of
vessel, ๐‘Š๐‘‰ (kN)
398.6466
Maximum dead weight of
load, ๐‘Š๐ฟ (kN)
4044.7380
Total weight (testing) (kN) 4443.3846
Ratio is still within
the optimum L/D
ratio (2โ€”5)
105
SECTION 4 : MECHANICAL DESIGN
Primary stress analysis
Total longitudinal stress, ฯƒz
Principal stress analysis: (๐‘/๐‘š๐‘š2
)
Maximum compressive stress
Longitudinal stress, ๐œŽ๐ฟ 11.0550 ๐‘/๐‘š๐‘š2
Circumference stress, ๐œŽโ„Ž 22.1100 ๐‘/๐‘š๐‘š2
Direct stress, ๐œŽ๐‘ค 2.1920 ๐‘/๐‘š๐‘š2
Bending stress, ๐œŽ๐‘ 3.6405 ๐‘/๐‘š๐‘š2
Total longitudinal stress
๐œŽ๐‘ง(๐‘ข๐‘๐‘ค๐‘–๐‘›๐‘‘) 20.0223 ๐‘/๐‘š๐‘š2
๐œŽ๐‘ง(๐‘‘๐‘œ๐‘ค๐‘›๐‘ค๐‘–๐‘›๐‘‘) -2.3514 ๐‘/๐‘š๐‘š2 Critical buckling stress, ๐œŽ๐‘ 49.7512 ๐‘/๐‘š๐‘š2
Maximum compressive stress,
๐œŽ๐‘ค
13.4614
๐‘/๐‘š๐‘š2
The greatest principal stress difference is still below the
design stress (140.25 N/mm2), thus the design in valid!
The maximum difference doesn't exceed the critical
buckling stress, which is 49.7512 N/mm2, thus, the design
is acceptable.
Principle stresses Upwind Downwind
๐œŽ1 = ๐œŽโ„Ž 22.1100 22.1100
๐œŽ2 = ๐œŽ๐‘ง 20.0223 -2.3514
๐œŽ3 = 0.5๐‘ƒ๐‘‘ 0.0550 0.0550
๐œŽ1 โˆ’ ๐œŽ2 2.0877 24.4614
๐œŽ1 โˆ’ ๐œŽ3 22.0550 22.0550
๐œŽ2 โˆ’ ๐œŽ3 19.9673 -2.4064
106
SECTION 4 : MECHANICAL DESIGN
Vessel support:
Dead weight in skirt:
๐œŽ๐‘ค๐‘  ๐‘ก๐‘’๐‘ ๐‘ก =
๐‘Š๐ป2๐‘‚ + ๐‘Š
๐‘ฃ
๐œ‹(๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก + ๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก)๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
๐œŽ๐‘ค๐‘  ๐‘œ๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘›๐‘” =
๐‘Š
๐‘ฃ
๐œ‹(๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก + ๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก)๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
Skirt base angle: ๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก = ๐‘ก๐‘Ž๐‘›โˆ’1 ๐ป๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
1
2
๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘กโˆ’๐ท๐‘ 
Know that
Both stresses satisfy the design criteria, thus the suggested
thickness of the skirt is acceptable.
๐œŽ๐‘  ๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘™๐‘’ < ๐‘“๐ฝ๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
๐œŽ๐‘  ๐‘๐‘œ๐‘š๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘–๐‘ฃ๐‘’ < 0.125๐ธ
๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
๐œŽ๐‘ (๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘™๐‘’) 13.2256 ๐‘/๐‘š๐‘š2
๐œŽ๐‘ (๐‘๐‘œ๐‘š๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘–๐‘ฃ๐‘’) 49.6185 ๐‘/๐‘š๐‘š2
๐‘“๐ฝ๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก 140.2485 ๐‘/๐‘š๐‘š2
0.125๐ธ
๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก
51.5458 ๐‘/๐‘š๐‘š2
Since the base angle obtained is still within the
range (80-90ยฐ) as suggested by Coulson &
Richardson, the design is valid
Type of skirt Conical skirt
Skirt diameter (m) 4.85 ๐‘š
Skirt height (m) 5.335 ๐‘š
Dead weight in skirt (test) 33.1278 N/mm2
Dead weight in skirt (operating) 3.2651 N/mm2
Skirt base angle, 89.73ยฐ
107
SECTION 4 : MECHANICAL DESIGN
Base Ring and Anchor Bolt Design
Approximate pitch circle diameter, ๐ท = 4.90 ๐‘š
Circumference of bolt circle, ๐ถ๐‘ = 15393. 80 ๐‘š๐‘š
Take minimum bolt spacing = 600 ๐‘š๐‘š
Maximum allowable bolt stress, ๐‘“๐‘ 125 N/mm2
Maximum moment of bottom skirt, ๐‘€๐‘  2441281.76 ๐‘๐‘š
Area of bolt, ๐ด๐‘ 455.4961 mm2
Diameter of bolt, ๐ท๐‘๐‘ก 24.0823 ๐‘š๐‘š
Maximum allowable ring stress, ๐‘“
๐‘Ÿ 140 N/mm2
๐‘๐‘ =
๐ถ๐‘
600
= 25.6563 โ‰ˆ 28 ๐‘๐‘œ๐‘™๐‘ก๐‘  ๐‘š๐‘ข๐‘™๐‘ก๐‘–๐‘๐‘™๐‘’ ๐‘œ๐‘“ 4
From Coulson & Richardsonโ€™s Chemical Engineering
Design, the bolt type selected is M30 as it is the closest
standard size bolt larger than 24.0823 mm with a root
area of 561mm2
Compressive load, Fb 158306.65 N/mm
Maximum allowable bearing,Fc 7 N/mm2
Minimum width base ring, ๐ฟ๐‘ 22.6152 ๐‘š๐‘š
Actual base ring width,๐‘Š๐‘ 134 ๐‘š๐‘š
Actual bearing pressure, ๐‘“
๐‘
โ€ฒ
1.1814๐‘/mm2
Base ring thickness. tbr 12.0923 ๐‘š๐‘š
108
SECTION 4 : MECHANICAL DESIGN
Nozzle design (Kent, 1980)
For liquids
๐ท = 2.607
๐‘Š
๐œŒ
0.434
Whereas:
โ€ข D is in inches; W is in klbm/hr
Stream W (klbm/hr) r (lbm/ft3) Schedule No. Dopt (mm) Dopt (in)
Feed inlet 211.52 0.068 40s 641.35 25.25
Vapor top outlet 288.66 0.071 40 303.23 11.938
Reflux Inlet 96.28 46.75 40 102.26 4.026
bottom outlet 23.15 0.040 40 128.19 5.047
Boilup inlet 4.01 0.04 40 88.11 3.469
For gases
๐ท = 1.065
๐‘Š0.408
๐œŒ0.343
109
AUTOCAD DRAWING OF DISTILLATION COLUMN, T-101
Torispherical head
Plate design
110
SPECIFICATION SHEET
DSTILLATION COLUMN
Identification: T-101 Date: 3/1/2014
Item: Distillation Column By: MAH HIN MAN
No. of unit: 1
Function: To purify methanol up to desired purity of 99.85 wt%
Operation: Continuous
OPERATING DATA
Materials
handled:
Feed Distillate Bottom
Methanol
(ton/hr)
88.74 87.13 1.61
Water (ton/hr) 7.20 0.13 7.07
Temperature (ยฐC) 80.0 64.3 97.3
Pressure (bar) 1.01
OPERATIONAL DESIGN
Number of trays: 37 Reflux ratio: 0.5005
Feed point from
bottom:
10 Tray spacing (m): 0.6
Column diameter (m): 4.8 Column height (m): 22.785
Maximum liquid flow
rate (m3
/s):
0.03
Maximum vapor flow rate
(m3
/s):
42.4384577
PLATE HYDRAULIC DESIGN
Active area (m2): 16.0849544 Liquid flow arrangement: Cross flow
Type of tray: Sieve tray Tray thickness (mm): 5
Hole diameter (mm) 5 Weir length (m): 3.504
Active holes: 81920 Weir height (mm): 50
Flow rate turndown
(%):
70
Total plate pressure drop
(mm liquid):
105.512318
Flooding percentage
(%)
85 Entrainment: 0.018
Calming zone width
(mm):
50
Unperforated strip round
plate edge (mm):
50
MCHANICAL DESIGN
Design pressure (bar): 1.1 Design temperature (ยฐC): 107.274114
Materials of
construction
Stainless
steel 304
Column wall thickness (mm): 12
Type of head:
Torisperical
head
Head thickness (mm): 12
Vessel support: Skirt Skirt thickness (mm): 14
Feed inlet nozzle size
(in):
25.25 Corrosion allowance (mm): 2
Reflux inlet nozzle size
(in):
4.026 Top outlet nozzle size (in): 11.938
Boilup inlet nozzle size
(in)
3.469
Bottom outlet nozzle size
(in):
5.047
111
CONCLUSION FOR DISTILLATION COLUMN, T-101
โ€ข Column length = 22.785m
โ€ข Column diameter = 4.8m
โ€ข Number of actual stages = 37
โ€ข Column efficiency = 48.47%
โ€ข No weeping
โ€ข No flooding
โ€ข Stress analysis passed.
REFERENCES
[1] Tonkovich, A.L.Y., Yang, B., Perry, S.T., Fitzgerald, S.P., Wang, Y. (2007). From Seconds to Milliseconds Through
Tailored Microchannel Reactor Design of a Steam Methane Reformer, Catalysis Today, 120 (2007): 21-29.
[2] Sinnott, R. K. (2005). Coulson & Richardsonโ€™s Chemical Engineering Design, vol. 6. Elsevier.
[3] Towler, G. P., & Sinnott, R. K. (2008). Chemical Engineering Design: Principles, practice and economics of plant
and Process Design. Elsevier/Butterworth-Heinemann.
[4] Green, D. W., & Perry, R. H. (2008). Perryโ€™s Chemical Engineersโ€™handbook (8th ed.). McGraw-Hill.
[5] Arthur. T (2010). Control structure design for methanol process.
[6] Moulijn, J.A., Makkee, M., van Diepen, A.E. (2014). Chemical Process Technology, 2nd Edition. Doi:
10.1002/cite.201490040.
112

More Related Content

Similar to Methanol Process Design: Process Alternatives, Mass and Energy Balance, Equipment Design

Manufacturing process of methanol
Manufacturing process of methanolManufacturing process of methanol
Manufacturing process of methanolrita martin
ย 
Methanol production
Methanol productionMethanol production
Methanol productionRakhi Vishwakarma
ย 
Production of methanol from methane and air
Production of methanol from methane and airProduction of methanol from methane and air
Production of methanol from methane and airREESHMA SONA
ย 
Detlef Kratz at BASF Science Symposium 2015
Detlef Kratz at BASF Science Symposium 2015Detlef Kratz at BASF Science Symposium 2015
Detlef Kratz at BASF Science Symposium 2015BASF
ย 
Episode 3 : Production of Synthesis Gas by Steam Methane Reforming
Episode 3 :  Production of  Synthesis Gas  by Steam Methane ReformingEpisode 3 :  Production of  Synthesis Gas  by Steam Methane Reforming
Episode 3 : Production of Synthesis Gas by Steam Methane ReformingSAJJAD KHUDHUR ABBAS
ย 
Effect of co2 sequestration on headspace
Effect of co2 sequestration on  headspaceEffect of co2 sequestration on  headspace
Effect of co2 sequestration on headspacePreethi Velayutham
ย 
Final Year Project
Final Year ProjectFinal Year Project
Final Year ProjectNishant Shah
ย 
PRESENTATION
PRESENTATIONPRESENTATION
PRESENTATIONGanesh ps
ย 
Internship report engro fertilzer ammonia 2.docx
Internship report engro fertilzer ammonia 2.docxInternship report engro fertilzer ammonia 2.docx
Internship report engro fertilzer ammonia 2.docxAnfal zafar
ย 
UREA 1 REPORT TO A K SAXENA SIR
UREA 1 REPORT TO A K SAXENA SIRUREA 1 REPORT TO A K SAXENA SIR
UREA 1 REPORT TO A K SAXENA SIRDESHRAJ MEENA
ย 
petroleum refining,crackin and synthetic petrol-ppt
petroleum refining,crackin and synthetic petrol-pptpetroleum refining,crackin and synthetic petrol-ppt
petroleum refining,crackin and synthetic petrol-pptKrishna Peshivadiya
ย 
White hydrogen
White hydrogenWhite hydrogen
White hydrogenRecupera
ย 
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...Pratap Jung Rai
ย 
ammoniaproduction-131113173051-phpapp02 (1).pptx
ammoniaproduction-131113173051-phpapp02 (1).pptxammoniaproduction-131113173051-phpapp02 (1).pptx
ammoniaproduction-131113173051-phpapp02 (1).pptxsadafmunir4
ย 
HN by potentiometer.pdf
HN by potentiometer.pdfHN by potentiometer.pdf
HN by potentiometer.pdfTallaljoiya1
ย 
Acetic acid-plant-design
Acetic acid-plant-designAcetic acid-plant-design
Acetic acid-plant-designmkhurram79
ย 
293922418 acetic-acid-plant-design
293922418 acetic-acid-plant-design293922418 acetic-acid-plant-design
293922418 acetic-acid-plant-designBatuhanKse1
ย 
Presentation on a novel accelerated composting process.
Presentation on a novel accelerated composting process.Presentation on a novel accelerated composting process.
Presentation on a novel accelerated composting process.Kiran Parmar
ย 

Similar to Methanol Process Design: Process Alternatives, Mass and Energy Balance, Equipment Design (20)

Manufacturing process of methanol
Manufacturing process of methanolManufacturing process of methanol
Manufacturing process of methanol
ย 
Methanol production
Methanol productionMethanol production
Methanol production
ย 
Production of methanol from methane and air
Production of methanol from methane and airProduction of methanol from methane and air
Production of methanol from methane and air
ย 
Detlef Kratz at BASF Science Symposium 2015
Detlef Kratz at BASF Science Symposium 2015Detlef Kratz at BASF Science Symposium 2015
Detlef Kratz at BASF Science Symposium 2015
ย 
Episode 3 : Production of Synthesis Gas by Steam Methane Reforming
Episode 3 :  Production of  Synthesis Gas  by Steam Methane ReformingEpisode 3 :  Production of  Synthesis Gas  by Steam Methane Reforming
Episode 3 : Production of Synthesis Gas by Steam Methane Reforming
ย 
Effect of co2 sequestration on headspace
Effect of co2 sequestration on  headspaceEffect of co2 sequestration on  headspace
Effect of co2 sequestration on headspace
ย 
Final Year Project
Final Year ProjectFinal Year Project
Final Year Project
ย 
PRESENTATION
PRESENTATIONPRESENTATION
PRESENTATION
ย 
D2 Guรฐmundur Gunnarsson
D2 Guรฐmundur GunnarssonD2 Guรฐmundur Gunnarsson
D2 Guรฐmundur Gunnarsson
ย 
Internship report engro fertilzer ammonia 2.docx
Internship report engro fertilzer ammonia 2.docxInternship report engro fertilzer ammonia 2.docx
Internship report engro fertilzer ammonia 2.docx
ย 
UREA 1 REPORT TO A K SAXENA SIR
UREA 1 REPORT TO A K SAXENA SIRUREA 1 REPORT TO A K SAXENA SIR
UREA 1 REPORT TO A K SAXENA SIR
ย 
petroleum refining,crackin and synthetic petrol-ppt
petroleum refining,crackin and synthetic petrol-pptpetroleum refining,crackin and synthetic petrol-ppt
petroleum refining,crackin and synthetic petrol-ppt
ย 
White hydrogen
White hydrogenWhite hydrogen
White hydrogen
ย 
MTBE.ppt
MTBE.pptMTBE.ppt
MTBE.ppt
ย 
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
ย 
ammoniaproduction-131113173051-phpapp02 (1).pptx
ammoniaproduction-131113173051-phpapp02 (1).pptxammoniaproduction-131113173051-phpapp02 (1).pptx
ammoniaproduction-131113173051-phpapp02 (1).pptx
ย 
HN by potentiometer.pdf
HN by potentiometer.pdfHN by potentiometer.pdf
HN by potentiometer.pdf
ย 
Acetic acid-plant-design
Acetic acid-plant-designAcetic acid-plant-design
Acetic acid-plant-design
ย 
293922418 acetic-acid-plant-design
293922418 acetic-acid-plant-design293922418 acetic-acid-plant-design
293922418 acetic-acid-plant-design
ย 
Presentation on a novel accelerated composting process.
Presentation on a novel accelerated composting process.Presentation on a novel accelerated composting process.
Presentation on a novel accelerated composting process.
ย 

Recently uploaded

Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
ย 
Study on Air-Water & Water-Water Heat Exchange in a Finned ๏ปฟTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ๏ปฟTube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned ๏ปฟTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ๏ปฟTube ExchangerAnamika Sarkar
ย 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
ย 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
ย 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
ย 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
ย 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
ย 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
ย 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examplesDr. Gudipudi Nageswara Rao
ย 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
ย 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
ย 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
ย 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
ย 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
ย 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxnull - The Open Security Community
ย 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
ย 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
ย 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoรฃo Esperancinha
ย 

Recently uploaded (20)

Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
ย 
โ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
โ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCRโ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
โ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
ย 
Study on Air-Water & Water-Water Heat Exchange in a Finned ๏ปฟTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ๏ปฟTube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned ๏ปฟTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ๏ปฟTube Exchanger
ย 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
ย 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
ย 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
ย 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
ย 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
ย 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
ย 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
ย 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
ย 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
ย 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
ย 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
ย 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
ย 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
ย 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
ย 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
ย 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
ย 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
ย 

Methanol Process Design: Process Alternatives, Mass and Energy Balance, Equipment Design

  • 1. P R O D U C T I O N O F G R A D E A A M E T H A N O L GROUP 24 SHARMAINE IFFAH NABILAH BINTI MOHD SHAMSUDIN (153080) NUR AFZA NURINA BINTI ABDULLAH SANI (152967) MAH HIN MAN (148703) ALICIA CHIN YING JIE (153071) SUPERVISOR: DR. IRVAN DAHLAN
  • 3. CONTENT Product Process Alternatives Comparison of Process Alternatives Process Description of Chosen Alternative Demand and Supply for Next 10 Years Plant Capacity Process Flow Diagram Innovative Approach Conclusion 2
  • 4. METHANO L โ€ข Known as methyl alcohol, abbreviated as MeOH (a hydroxyl group linked to a methyl group) โ€ข The simplest alcohol with the chemical formula of CH3OH. โ€ข It is a light, volatile, colorless, flammable liquid with a distinctive odor similar to that of ethanol โ€ข Methanol is widely used as the raw materials for the production of various chemicals. โ€ข The final products of methanol are found in many household products PRODUCT 3
  • 5. USAGES OF METHANOL Usages of Methanol Example Chemical feedstock Formaldehydes, Acetic acid, MTBE, methanol-to- olefin (MTO), dimethyl ether (DME), solvents, paints, cleaning products and etc Transportation fuel MTBE (anti-knock reagent in gasoline) Fuel cell technology Fuel for methanol-fuel cell (energy dense, more energy-efficient) Wastewater denitrification Remove nitrates from water in denitrification 4
  • 6. ๐‘ƒ๐‘…๐‘‚๐ถ๐ธ๐‘†๐‘† ๐ด๐ฟ๐‘‡๐ธ๐‘…๐‘๐ด๐‘‡๐ผ๐‘‰๐ธ๐‘† Production of Methanol from Catalytic Partial Oxidation of Methane Production of Methanol from Coal Gasification โ€ข Catalytic partial oxidation of methane occurs when methane is oxidised to form methanol in the presence of Pd/Cu catalyst. โ€ข Coal is converted to syngas via pyrolysis and gasification, then the syngas reacts in a Cu/ZnO catalysed reactor to produce methanol. โ€ข CO2 captured from flue gas and H2 generated from electrolysis. โ€ข Catalytic hydrogenation of carbon dioxide takes place to form methanol and water in the presence of catalyst such as Cu/ZnO โ€ข Hydrocarbons from natural gas undergo steam reforming to form syngas, then react in a Cu/ZnO catalysed reactor to produce methanol. Production of Methanol from Catalytic Hydrogenation of Carbon Dioxide Backed up by Carbon Dioxide Captured from Flue Gas Production of Methanol by Hydrogenation of CO/CO2 from steam Reforming of Natural Gas 5
  • 7. ALTERNATIVE 1: PRODUCTION OF METHANOL FROM CATALYTIC PARTIAL OXIDATION OF METHANE โ€ข Pd/Cu catalyst is employed to catalyse the oxidation of methane to methanol Overall equation: Pd/Cu CO+O2+โ†’CH3OH+CO2 CO+H2Oโ†’CO2+ H2 H2+O2 โ†’H2O2 Pd/Cu CH4+H2O2 โ†’CH3OH+H2O PURIFICATION CATALYTIC REACTION(Pd/Cu) 600หšC, 30-60 bar CONDENSATION GAS-LIQUID SEPARATION DISTILLATION WATER WATER METHANOL CRUDE METHANOL METHANOL+ UNREACTED GAS METHANOL+ UNREACTED GAS METHANE NATURAL GAS CARBON MONOXIDE + AIR UNREACTED GAS 6
  • 8. ALTERNATIVE 2: PRODUCTION OF METHANOL FROM COAL GASIFICATION โ€ข Pyrolysis of coal: Coal heat โ†’ CH4 + C2H6 + CO + CO2 + H2 + H2O + NH3 + H2S + tar + char โ€ข The oxygen fed into the gasifier will further oxidise char to produce carbon monoxide and carbon dioxide: โ€ข 2C (s) + O2 (g) โ†’ 2CO (g) โ€ข C (s) + O2 (g) โ†’ CO2 (g) โ€ข Methanol synthesis: 2H2 (g) + CO (g) โ†” CH3OH (g) CO2 gasification C(s)+CO2(g) โ†’ 2CO(g) Steam gasification C(s)+H2O(g) โ†’ CO(g) +H2(g) Methanation reaction C(s)+2H2(g) โ†’CH4(g) Oxygen will also further react with volatiles: 2H2(g)+O2 โ†’2H2O(g) 2CO(g)+O2 โ†’2CO2(g) 2CH4(g)+O2 โ†’2CO(g)+4H2 C2H6+2O2 โ†’2CO(g)+3H2(g) C6H6+3O2 โ†’6CO(g)+3H2(g) COAL GASIFICATION 1560โ„ƒ DESULPHURIZING METHANOL SYNTHESIS 250โ„ƒ, 80 bar GAS-LIQUID SEPARATION DISTILLATION ASH SULPHUR POWER TO HYDROGEN METHANOL HYDROGEN CRUDE SYNGAS UNREACTED SYNGAS METHANOL+ UNREACTED SYNGAS CRUDE METHANOL OXYGEN WATER 7
  • 9. ALTERNATIVE 3: PRODUCTION OF METHANOL FROM CATALYTIC HYDROGENATION OF CARBON DIOXIDE BACKED UP BY CARBON DIOXIDE CAPTURED FROM FLUE GAS โ€ข Carbon dioxide and hydrogen are fed into a Cu/ZnO catalysed reactor for the hydrogenation of carbon dioxide to take place. โ€ข Then, the products are cooled down in a heat exchanger, prior to further downstream processing in distillation column(s) to ensure production of methanol with high purity โ€ข CO2 + 3H2 โ†” CO + H2O POWER-TO- HYDROGEN METHANOL SYNTHESIS 250หšC, 60 bar CARBON DIOXIDE CARBON CAPTURE UNIT GASโ€”LIQUID SEPARATION DISTILLATION CARBON DIOXIDE METHANOL WATER HYDROGEN CRUDE METHANOL PURGE GAS UNREACTED SYNGAS WATER FLUE GAS CRUDE METHANOL+ UNREACTED SYNGAS 8
  • 10. ALTERNATIVE 4: PRODUCTION OF METHANOL BY HYDROGENATION OF CO/CO2 FROM STEAM REFORMING OF NATURAL GAS โ€ข Methane in the natural gas reacts with steam in the presence of catalyst to produce syngas in a steam reforming unit. . โ€ข At such condition, methanol is produced in the reactions shown below: โ€ข CO + H2 โ†” CH3OH โ€ข CO2 + H2 โ†” H2O + CO Remaining methane and heavier hydrocarbons will be converted to syngas CH4+0.5O2 โ†” CO+2H2 C2H6+O2 โ†”2CO+3H2 C3H8+1.5O2 โ†”3CO+4H2 C4H10+2O2 โ†”4CO+5H2 C5H12+2.5O2 โ†”5CO+6H2 C6H14+3O2 โ†’6CO+7H2 Steam-methane reforming: CH4+H2O โ†”CO+3H2 Water-gas-shift reaction: CO+H2O โ†”CO2+H2 DESULPHURIZING STEAM REFORMING 800-900โ„ƒ, 15- 30 bar METHANOL SYNTHESIS 220-270โ„ƒ, 50-200 bar GAS-LIQUID SEPARATION DISTILLATION METHANOL CRUDE METHANOL METHANOL+WATER +UNREACTED SYNGAS SYNGAS METHANE NATURAL GAS STEAM WATER PURGE GAS UNREACTED SYNGAS 9
  • 11. ASPECT ALTERNATIVE 1 ALTERNATIVE 2 ALTERNATIVE 3 ALTERNATIVE 4 Sustainability Flexibility/Controll ability of Operation Economic Potential and Feasibility ASPECT ALTERNATIVE 1 ALTERNATIVE 2 ALTERNATIVE 3 ALTERNATIVE 4 Sustainability โ€ข Abundant raw material โ€ข X = 0.71 โ€ข Not abundant raw material โ€ข X = 0.9 โ€ข High cost due to coal pyrolysis unit and constant transport of coal โ€ข Abundant raw material โ€ข X = 0.9 โ€ข Relatively new technologies in CCUS and hydrogen generation โ€ข Abundant raw material โ€ข X = 0.9 โ€ข Commonly used steam reforming unit ASPECT ALTERNATIVE 1 ALTERNATIVE 2 ALTERNATIVE 3 ALTERNATIVE 4 Flexibility/Controll ability of Operation โ€ข โ€œRigidโ€ as changes in temperature may cause further oxidation of methanol to formaldehyde . โ€ข 600ยฐC for catalytic partial oxidation reactor. โ€ข Mature control strategies for pyrolysis and gasification unit. โ€ข 1500ยฐC for coal pyrolysis and gasification unit; 250ยฐC for for methanol reactor. โ€ข CCUS and hydrogen generation unit require further research for more mature control strategies โ€ข 250ยฐC for methanol synthesis reactor. โ€ข Mature control strategies for reformers and methanol synthesis reactor. โ€ข 800ยฐC for reformers, 250ยฐC for methanol synthesis reactor. COMPARISON OF PROCESS ALTERNATIVES Among four different alternatives proposed, the chosen alternative to be the process used in methanol production is by the hydrogenation of CO/CO2 from steam reforming of natural gas. ASPECT ALTERNATIVE 1 ALTERNATIVE 2 ALTERNATIVE 3 ALTERNATIVE 4 Economic Potential and Feasibility โ€ข Sufficient supply of natural gas, without depending on imports from foreign countries. โ€ข Production of coal is insufficient. โ€ข Needs to rely on import of coal. โ€ข Transport of coal requires more cost and time. โ€ข Scarcity of data to validate feasibility of large scale CCUS and hydrogen generation using electrolysis. โ€ข Sufficient supply of natural gas, without depending on imports from foreign countries. 10
  • 12. PROCESS DESCRIPTION OF CHOSEN ALTERNATIVE ๐ด๐ฟ๐‘‡๐ธ๐‘…๐‘๐ด๐‘‡๐ผ๐‘‰๐ธ 4 โ€ข Steam reforming and autothermal reforming: Rh/MgO/Al2O3 โ€ข Methanol synthesis: Cu/ZnO/Al2O3 โ€ข High yield with 0.93 conversion โ€ข Purity of more than 99.85% Autothermal reforming CH4+0.5O2 โ†” CO+2H2 C2H6+O2 โ†”2CO+3H2 C3H8+1.5O2 โ†”3CO+4H2 C4H10+2O2 โ†”4CO+5H2 C5H12+2.5O2 โ†”5CO+6H2 C6H14+3O2 โ†’6CO+7H2 Steam-methane reforming: CH4+H2O โ†”CO+3H2 Methanol synthesis CO + H2 โ†” CH3OH CO2 + 3H2 โ†” CH3OH + H2O Steam reforming: 800-900หšC, 15-30 bar Autothermal reforming: 800-1000หšC, 30-50 b Methanol synthesis: 220-270หšC, 50-200 bar Water-gas-shift reaction: CO+H2O โ†”CO2+H2 11
  • 13. The global production of methanol would reach 137 million tons in 2025 with CAGR of 5.66% per year. DEMAND AND SUPPLY FOR NEXT 10 YEARS 12
  • 14. PLANT CAPACITY Global market production 137 million tonnes Domestic methanol production 2.33 million tonnes Demand of methanol globally 145 million tonnes Demand of methanol in Malaysia in 2020 966 thousand tonnes Projected Consumption and Demand in 2025 Market Gap: = Demand of Methanol Globally โ€“ Global Market Production =145 million tonnes-137 million tonnes =8 million tonnes Planned Capacity based on domestic production = 30% of Domestic Methanol Production = 30% ร— 2.33 million tonnes = 690 000 tonnes Planned Capacity based on market gap: =8.63% of Market Gap = 8.63% ร—8 million tonnes = 690 000 tonnes 13
  • 16. AUTOTHERMAL REFORMER โ€ข Autothermal reforming, which is a secondary reforming unit, is employed to increase the conversion of natural gas to syngas. โ€ข This can increase the overall yield of methanol and reduce wastage in the form of unreacted natural gas components. R-102 15
  • 17. FLASH SEPARATOR โ€ข Placing a flash separator before the effluents from the autothermal reformer are fed into the methanol synthesis reactor. โ€ข The water content in the reactor feed can be greatly reduced, which in turn increases the yield of methanol V-101 16
  • 18. CONCLUSION This methanol production facility has an estimated annual capacity of 690,000 tonnes Alternative 4 is chosen due to its fairly well-rounded nature in sustainability, flexibility/controllability and economic potential. Autothermal reformer and flash separator are the innovative approaches used in the design 17
  • 20. Feedstock and products Feedstock: Natural Gas, Steam, Oxygen Products: Methanol Operating period โ€ข 330 working days โ€ข 24 hours/ day GENERAL REMARKS ON OPERATION Production capacity โ€ข 690 000 metric tonnes/year โ€ข 87121.21 kg/hr 19
  • 22. MASS BALANCE General mass balance equation in a system : ๐ผ๐‘›๐‘๐‘ข๐‘ก + ๐บ๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› โˆ’ ๐‘‚๐‘ข๐‘ก๐‘๐‘ข๐‘ก โˆ’ ๐ถ๐‘œ๐‘›๐‘ ๐‘ข๐‘š๐‘๐‘ก๐‘–๐‘œ๐‘› = ๐ด๐‘๐‘๐‘ข๐‘š๐‘ข๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘› For continuous process at steady state, the accumulation = 0 ๐ผ๐‘›๐‘๐‘ข๐‘ก + ๐บ๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› โˆ’ ๐‘‚๐‘ข๐‘ก๐‘๐‘ข๐‘ก โˆ’ ๐ถ๐‘œ๐‘›๐‘ ๐‘ข๐‘š๐‘๐‘ก๐‘–๐‘œ๐‘› = 0 For non-reactive process unit, the generation and consumption = 0 ๐ผ๐‘›๐‘๐‘ข๐‘ก = ๐‘‚๐‘ข๐‘ก๐‘๐‘ข๐‘ก For reactive processes, it is not appropriate to use mass balance for analysis since the atomic balance may not be the same before and after the unit operation. Therefore, mole balance is used instead: ๐‘š๐‘œ๐‘™๐‘–๐‘› โˆ’ ๐‘š๐‘œ๐‘™๐‘œ๐‘ข๐‘ก + ๐‘š๐‘œ๐‘™๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘ โˆ’ ๐‘š๐‘œ๐‘™๐‘๐‘œ๐‘›๐‘ ๐‘ข๐‘š๐‘’๐‘‘ = 0 21
  • 23. MASS BALANCE Reactive Equipment Non-Reactive Equipment Reactor โ€ข Steam Reformer, R-101 โ€ข Autothermal Reformer, R-102 โ€ข Methanol Reactor, R-103 ๐ผ๐‘›๐‘๐‘ข๐‘ก + ๐บ๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› = ๐‘‚๐‘ข๐‘ก๐‘๐‘ข๐‘ก + ๐ถ๐‘œ๐‘›๐‘ ๐‘ข๐‘š๐‘๐‘ก๐‘–๐‘œ๐‘› Flash Columns (V-101,V-102) Reflux Drum, V-103 Distillation Column, T-101 Condenser, E-105 Reboiler, E-106 Heater (E-102,E-104) Cooler (E-101, E-103) Compressor, K-101 Pressure Reducing Valve, PIC-101 ๐ผ๐‘›๐‘๐‘ข๐‘ก = ๐‘‚๐‘ข๐‘ก๐‘๐‘ข๐‘ก 22
  • 24. MASS BALANCE ANALYSIS FOR REACTIVE SYSTEM Component Inlet Molar Flow Rate Change in Molar Flow Outlet Molar Flow Rate Limiting Reactant FLR,i โˆ’X FLR,f = FLR,i(1 โˆ’ X) Reactant FR,i โˆ’ฮธRX FR,f = FR,i(1 โˆ’ ฮธRX) Product FP,i +ฮธPX FP,f = FP,i + ฮธPX Non-involving component FI 0 FI 23
  • 25. MASS BALANCE Operating Temperature: 300 โ„ƒ Operating Pressure: 50 bar Methanol Reactor, R-103 24
  • 26. Methanol is produced when the syngas component, CO and ๐ป2 reacts with one another in the presence of Cu/ZnO/๐ด๐‘™2๐‘‚3 catalyst. Reaction 1: Methanol Synthesis ๐ถ๐‘‚ + 2๐ป2 โ†” ๐ถ๐ป3๐‘‚๐ป Reaction 2: Reverse Water- Gas Shift Reaction ๐ถ๐‘‚2 + ๐ป2 โ†” ๐ป2๐‘‚ + ๐ถ๐‘‚ Methanol Reactor, R-103 Parameter Value Reaction 1 CO Conversion 0.66818 [5,6] Reaction 2 ๐ถ๐‘‚2 Conversion 0.03353 [5,6] Selectivity 6.93484 Yield 0.66818 25
  • 27. A simulation was run on MATLAB to verify these values taken for our calculation: Methanol Reactor, R-103 โ€ข Based on MATLAB simulation, the CO and ๐ถ๐‘‚2 conversion were found to be 0.700 and 0.00 respectively. โ€ข It is hard to achieve 0% conversion of reactant from the side reaction. โ€ข Therefore, the conversion values used in the manual calculation of mass balance analysis were valid. 26
  • 28. A sensitivity analysis is done to evaluate the economic potential by varying the CO conversion in R-103. Methanol Reactor, R-103 โ€ข It is found that the profit starts to plateau off beyond X = 0.6. โ€ข It is duly justified to take the conversion value of about 0.67 for the mass balance calculation. 27 RM0.00 RM50,000,000.00 RM100,000,000.00 RM150,000,000.00 RM200,000,000.00 RM250,000,000.00 RM300,000,000.00 RM350,000,000.00 RM400,000,000.00 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Profit (MYR) CO conversion in R-103 Profit (RM) vs CO Conversion in R-103
  • 29. MASS BALANCE In (Stream 13) Out (Stream 14) Mass Flow (kg/hr) Mass Fraction Mole Flow (kmol/hr) Mole Fraction Mass Flow (kg/hr) Mass Fraction Mole Flow (kmol/hr) Mole Fraction Methane, CH4 Ethane, C2H6 Propane, C3H8 Isobutane, iC4H10 Butane, C4H10 Isopentane, iC5H12 Pentane, C5H12 Hexane, C6H14 Carbon dioxide, CO2 524778.46182 0.58523 11926.78322 0.09135 507182.64000 0.56561 11526.87818 0.09221 Nitrogen, N2 28802.58953 0.03212 1028.66391 0.00788 28802.58953 0.03212 1028.66391 0.00823 Oxygen, O2 Carbon Monoxide, CO 116213.93187 0.12960 4150.49757 0.03179 49759.44804 0.05549 1777.12314 0.01422 Hydrogen, H2 226904.76338 0.25304 113452.38169 0.86898 215011.83544 0.23978 107505.91772 0.85997 Methanol, CH3OH 88744.94286 0.09897 2773.27946 0.02218 Water, H2O 7198.29075 0.00803 399.90504 0.00320 Total 896699.74661 1.00000 130558.32639 1.00000 896699.74661 1.00000 125011.76746 1.00000 28
  • 30. MASS BALANCE Distillation Column, T-101 Operating Pressure: 1 bar Light Key Component: Methanol Heavy Key Component: Water 29
  • 31. MASS BALANCE โ€ข The purity of grade AA methanol of 99.85 wt% is achieved using distillation column T-101. โ€ข A โ€œshortcutโ€ method known as Fenske-Underwood-Gilliland-Kirkbride (FUGK) method was used in this analysis. โ€ข Through mass balance analysis, the amount of methanol and water at the top and bottom product based on the required purity were determined. โ€ข Based on this composition distribution, top and bottom temperature were determined using dew point and bubble point calculations respectively. Distillation Column, T-101 Component Recovery Methanol 0.98182 Water 0.01818 30
  • 32. Vapor Pressure Equation ๐ถ1, ๐ถ2, ๐ถ3, ๐ถ4, ๐ถ5 is taken from Table 2-8 Vapor Pressure of Inorganic and Organic Liquids. P is in Pa and Temperature, T is in Kelvin. Antoine Equation ๐‘ƒ๐‘ฃ = exp ๐ถ1 + ๐ถ2 ๐‘‡ + ๐ถ3 ln ๐‘‡ + ๐ถ4๐‘‡๐ถ5 where ๐พ๐‘– = ๐‘ƒ๐‘ฃ๐‘Ž๐‘ ๐‘ƒ Raoultโ€™s Law ๐›ผ๐‘– = ๐พ๐‘– ๐พ๐ป2๐‘‚ โ€ข Dew Point (Top temperature) KH2O,new = โˆ‘ yi ฮฑi โ€ข Bubble Point (Bottom temperature) KH2O,new = โˆ‘xiฮฑi Distillation column Top temperature Bottom temperature C-101 64.41 โ„ƒ 92.53 โ„ƒ 31
  • 33. โ€ข To obtain ๐œƒ: 1 โˆ’ q = โˆ‘ ฮฑixi,F ฮฑiโˆ’ฮธ q = 1 since the feed consist only liquid โ€ข Minimum Reflux Ratio Rmin + 1 = โˆ‘ ฮฑixi,D ฮฑiโˆ’ฮธ โ€ข Actual Reflux Ratio, R R = 1.5Rmin = 0.5 Underwood Equation 32
  • 34. MASS BALANCE In Out Stream Number 21 26 29 Temperature (ยฐC) 80.00000 64.25222 97.27411 Pressure (bar) 1.00000 1.00000 1.00000 Component Mass Flow (kg/hr) Mass Fraction Mole Flow (kmol/hr) Mole Fraction Mass Flow (kg/hr) Mass Fraction Mole Flow (kmol/hr) Mole Fraction Mass Flow (kg/hr) Mass Fraction Mole Flow (kmol/hr) Mole Fraction Methanol, CH3OH 88744.94286 0.92497 2773.27946 0.87397 87131.21209 0.99850 2722.85038 0.99734 1613.73077 0.18589 50.42909 0.11382 Water, H2O 7198.29075 0.07503 399.90504 0.12603 130.89313 0.00150 7.27184 0.00266 7067.39762 0.81411 392.63320 0.88618 Total 95943.23360 1.00000 3173.18451 1.00000 87262.10522 1.00000 2730.12222 1.00000 8681.12838 1.00000 443.06229 1.00000 Mass In - Mass Out 0.00000 33
  • 35. MASS BALANCE โ€ข The outlet stream composition was obtained using the FUG calculation. โ€ข However, the inlet stream composition for this condenser was not known, which necessitates a backward mass balance calculation. โ€ข The reflux ratio and the boil-up ratio must be determined to find the vapor fraction inside the condenser and the reboiler. โ€ข Reflux ratio expression: ๐‘… = ๐ฟ ๐ท โ€ข Boil-up ratio: VB= R+q xHK,Fโˆ’xHK,D xHK,Bโˆ’xHK,F +qโˆ’1 Condenser & Reboiler 34
  • 37. ENERGY BALANCE โ€ข According to the second law of thermodynamics, the energy can neither be destroyed nor created as stated by the Principle of Conservation of energy. โ€ข Energy is typically transferred by heat or work in both open and closed system. โ€ข General Energy Balance Equation ๐ผ๐‘›๐‘๐‘ข๐‘ก โˆ’ ๐‘‚๐‘ข๐‘ก๐‘๐‘ข๐‘ก = ๐ด๐‘๐‘๐‘ข๐‘š๐‘ข๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘› Q โˆ’ W = โˆ†Ek + โˆ†Ep + โˆ†H โ€ข Steady-State Open System Energy Balance Q โˆ’ W = โˆ†H Whereas โˆ’W indicates the work is done by the system; +Q indicates heat supplied to the system Neglect kinetic and potential energy change 36
  • 38. โ€ข The reference state is set at 25ยฐC and 1 bar. Reference State 1) Change in kinetic energy and change in potential energy is assumed negligible. 2) Shaft work is assumed negligible due to lack of sufficient information. 3) Specific heat capacities are assumed to be independent of pressure and temperature. 4) Energy transfer efficiency for heat and work is 100%. 5) Heat of formation is involved in only reactors. 6) Heat of mixing and heat of solution are negligible since there is no dissolve of solute in solvent occur. 7) Isothermal reactors for R-101 and R-102. 8) Adiabatic reactor for R-103. 9) Adiabatic pressure changers K-101. 10)Adiabatic mixing at all mixing points and splitting pointes, net heat is zero. Assumption 37
  • 39. โ€ข Can be divided into a few components such as sensible heat, heat of reaction, latent heat and so on โˆ†H = mCpโˆ†T + โˆ†Hreaction + โˆ†Hvaporization Sensible Heat โ€ข The change in enthalpy due to sensible heat at constant pressure is as the following: โˆ†H = T1 T2 CpdT Latent Heat โ€ข Enthalpy change when one component changes from one phase to another at constant temperature and pressure. โ€ข Heat of Vaporization is computed using: โˆ†Hv = C1 1 โˆ’ Tr C2+C3Tr+C4Tr 2 Whereas Tr is T / Tc. Enthalpy, โˆ†๐‡ 38
  • 40. Heat of Reaction โ€ข Heat of formation is chosen to calculate the heat of reaction in the three reactors. โˆ†Hreaction = โˆ‘noutHformation,out โˆ’ โˆ‘ninHformation,in Enthalpy, โˆ†๐‡ โ€ข In compressor K-101, the process is considered as isentropic, which is adiabatic (i.e., Q = 0) and reversible process. โ€ข Isentropic process equation for work done and new temperature: W = โˆ†H T2 T1 = P2 P1 1โˆ’ 1 ฮณ = P2 P1 R Cp Work, W 39
  • 41. In Out Stream number 13 14 Temperature (ยฐC) 300.00 300.00 Temperature (K) 573.15 573.15 Pressure (bar) 50.00 50.00 Vapor Fraction 1.00 1.00 Component Mole flow (kmol/hr) Liquid phase sensible heat (kJ/mol) Heat of vaporisation (kJ/mol) Vapor phase sensible heat (kJ/mol) Heat of formation (kJ/mol) V ฮ”P (kJ/mol) Energy flow (kJ/kmol) Mole flow (kmol/hr) Liquid phase sensible heat (kJ/mol) Heat of vaporisation (kJ/mol) Vapor phase sensible heat (kJ/mol) Heat of formation (kJ/mol) V ฮ”P (kJ/mol) Energy flow (kJ/kmol) Methane, CH4 Ethane, C2H6 Propane, C3H8 Isobutane, iC4H10 Butane, C4H10 Isopentane, iC5H12 Pentane, C5H12 Hexane, C6H14 Carbon dioxide, CO2 11926.78 11.58 -393.50 - 4555109178.05 11526.88 11.58 -393.50 - 4402376367.31 Nitrogen, N2 1028.66 8.12 0.00 8351651.85 1028.66 8.12 0.00 8351651.85 Oxygen, O2 Carbon Monoxide, CO 4150.50 8.17 -110.52 -424793739.29 1777.12 8.17 -110.52 -181884406.24 Hydrogen, H2 113452.38 7.96 0.00 903334207.64 107505.92 7.96 0.00 855987080.69 Methanol, CH3OH 2773.28 2.66 35.65 13.84 -201.20 -413361760.12 Water, H2O 399.91 20.74 -241.83 -88417005.14 Total 130558.33 0.00 0.00 35.83 -504.02 0.00 - 4068217057.85 125011.77 23.39 35.65 49.68 -947.05 0.00 - 4221700806.28 Total Energy Flow Rate (kJ/hr) -4068217057.85 -4221700806.28 Energy Balance (kJ/hr) -153483748.43 Heat Duty (MJ/hr) -153483.75 Power requirement (kW) ENERGY BALANCE FOR REACTOR: R-103 Assume R-103 is an isothermal reactor in which the temperature of the reactor is maintained by continuous coolant supply to overcome the heat released by the reaction 40
  • 42. ENERGY BALANCE Condenser, E-105 Inlet Temperature: 64.41โ„ƒ Outlet Temperature: 64.25 โ„ƒ Operating Pressure: 1 bar Reboiler, E-106 Inlet Temperature: 92.53โ„ƒ Outlet Temperature: 97.27 โ„ƒ Operating Pressure: 1 bar 41
  • 43. ENERGY BALANCE FOR CONDENSER: E-105 E-105 is a total condenser, whereas all components from Stream 22 are condensed fully by the cooling supplied by the condenser In Out Stream number 22.00 23.00 Temperature (ยฐC) 64.41 64.25 Temperature (K) 337.56 337.40 Pressure (bar) 1.00 1.00 Vapor Fraction 1.00 0.00 Component Mole flow (kmol/hr) Liquid phase sensible heat (kJ/mol) Heat of vaporisation (kJ/mol) Vapor phase sensible heat (kJ/mol) Heat of formation (kJ/mol) V ฮ”P (kJ/mol) Energy flow (kJ/kmol) Mole flow (kmol/hr) Liquid phase sensible heat (kJ/mol) Heat of vaporisation (kJ/mol) Vapor phase sensible heat (kJ/mol) Heat of formation (kJ/mol) V ฮ”P (kJ/mol) Energy flow (kJ/kmol) Nitrogen, N2 Oxygen, O2 Carbon Monoxide, CO Hydrogen, H2 Methanol, CH3OH 4085.51 2.66 35.65 0.35 157922189.5 6 4085.51 3.27 13369733.88 Water, H2O 10.91 2.97 32424.80 10.91 2.96 32292.52 Total 4096.42 5.63 35.65 0.35 0.00 0.00 157954614.3 6 4096.42 6.23 0.00 0.00 0.00 0.00 13402026.40 Total Energy Flow Rate (kJ/hr) 157954614.36 13402026.40 Energy Balance (kJ/hr) -144552587.96 Heat Duty (MJ/hr) -144552.59 Power requirement (kW) 42
  • 44. ENERGY BALANCE FOR REBOILER: E-106 The boil-up stream is fully reboiled while the bottom product stream is fully in liquid phase. In Out Stream number 27.00 28.00 29.00 Temperature (ยฐC) 92.53 97.27 97.27 Temperature (K) 365.68 370.42 370.42 Pressure (bar) 0.00 1.00 1.00 Vapor Fraction 0.11 1.00 0.00 Component Mole flow (kmol/hr) Liquid phase sensible heat (kJ/mol) Heat of vaporisati on (kJ/mol) Vapor phase sensible heat (kJ/mol) Heat of formation (kJ/mol) V ฮ”P (kJ/mol) Energy flow (kJ/kmol) Mole flow (kmol/hr) Liquid phase sensible heat (kJ/mol) Heat of vaporisati on (kJ/mol) Vapor phase sensible heat (kJ/mol) Heat of formation (kJ/mol) V ฮ”P (kJ/mol) Energy flow (kJ/kmol) Mole flow (kmol/hr) Liquid phase sensible heat (kJ/mol) Heat of vaporisati on (kJ/mol) Vapor phase sensible heat (kJ/mol) Heat of formation (kJ/mol) V ฮ”P (kJ/mol) Energy flow (kJ/kmol) Nitrogen, N2 Oxygen, O2 Carbon Monoxide, CO Hydrogen, H2 Methanol, CH3OH 60.99 2.66 35.65 1.74 2442270.5 7 10.57 2.66 35.65 1.98 425574.90 50.43 6.23 313990.11 Water, H2O 474.89 5.09 2418009.0 7 82.26 5.09 39.91 3702099.8 1 392.63 5.09 1999174.7 7 Total 535.89 7.75 35.65 1.74 0.00 0.00 4860279.6 4 92.82 7.75 75.56 1.98 0.00 0.00 4127674.7 1 443.06 11.32 0.00 0.00 0.00 0.00 2313164.8 8 Total Energy Flow Rate (kJ/hr) 4860279.64 6440839.60 Energy Balance (kJ/hr) 1580559.96 Heat Duty (MJ/hr) 1580.56 Power requirement (kW) 43
  • 46. Natural gas is used as fuel to provide heat to steam methane reformer (R-101) ). Fuel Gas Steam is used as heating agent for heat exchangers E-102, E-104 and E-106. Heating Utilities Unit Code Heating Duty (MJ/hr) Fuel gas required (kmol/hr) Fuel gas required (ton/ year) Estimated cost (RM/yr) Steam reformer R-101 -558711403.34 789.35 106675.44 193,669,263.37 Code of Equipment Type Heating Duty (MJ/hr) Steam required (ton/ year) E-102 Superheated steam -787646.57 1778976.88 E-104 Superheated steam -103612.40 660053.422 E-106 Superheated steam -1580.55 10387.26554 Total -7064090353.08 2449417.568 Total water used for heating utility Price kg/ yr m3/yr RM/ yr 2449417568.26 2449417.57 4,898,835.14 Cost for natural gas used Approximately RM 5 millions is required for heating utilities per year 45
  • 47. โ€ข Cooling water utilities for cooler E-101 and E-103, and condenser E-105 as well as the cooling water utility equivalent for methanol reactor R-103 are tabulated below. โ€ข To solve for cooling utility, we first presume all the outlet stream of cooling water are recycled to a cooling tower, then being transported out to cooling unit again. The cooling utility is the make-up water required accounting for losses in cooling tower. โ€ข The inlet flow rate of the cooling tower is assumed as the sum of the flow rate of all cooling utility required. ๐‘€๐‘Ž๐‘˜๐‘’ โˆ’ ๐‘ข๐‘ ๐‘ค๐‘Ž๐‘ก๐‘’๐‘Ÿ = ๐‘’๐‘ฃ๐‘Ž๐‘๐‘œ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘™๐‘œ๐‘ ๐‘  + ๐‘‘๐‘Ÿ๐‘–๐‘“๐‘ก ๐‘™๐‘œ๐‘ ๐‘  + ๐‘๐‘™๐‘œ๐‘ค๐‘‘๐‘œ๐‘ค๐‘› ๐‘’๐‘ฃ๐‘Ž๐‘๐‘œ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘™๐‘œ๐‘ ๐‘  = 0.00085๐‘Š ๐‘(๐‘‡1 โˆ’ ๐‘‡2) ๐ท๐‘Ÿ๐‘–๐‘“๐‘ก ๐‘™๐‘œ๐‘ ๐‘  = 0.02% ๐‘œ๐‘“ ๐‘ค๐‘Ž๐‘ก๐‘’๐‘Ÿ ๐‘ ๐‘ข๐‘๐‘๐‘™๐‘ฆ ๐‘๐‘™๐‘œ๐‘ค๐‘‘๐‘œ๐‘ค๐‘› = ๐‘’๐‘ฃ๐‘Ž๐‘๐‘œ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘™๐‘œ๐‘ ๐‘  โˆ’ ๐ถ๐‘‚๐ถ โˆ’ 1 ร— ๐‘‘๐‘Ÿ๐‘–๐‘“๐‘ก ๐‘™๐‘œ๐‘ ๐‘  ๐ถ๐‘‚๐ถ โˆ’ 1 Cooling Utility Code Temperature (ยฐC) Heating Duty (MJ/hr) Cooling equivalence required (kg/ hr) Tin Tout E-101 20 45 797210.33 7612618.522 R-103 30 90 150729.75 599720.48 E-103 20 45 915436.33 8741567.104 E-105 30 57.41 144552.589 1258839.262 2007928.997 18212745.37 46
  • 48. Electricity is supplied to the compressor K-101. Electricity Code Power required (kW) Electricity usage (kWh/yr) Estimated cost per year Peak (14 hrs) Off-peak (10 hrs) RM/ yr K-101 8100.60 37424759.31 26731970.94 18,012,002.02 Cooling tower make-up water calculations: Cooling Utility Cost for cooling utilities is around RM 9 millions per year Cost for electricity is around RM 18 millions per year 47
  • 50. Liquid waste โ€ข The water separated from syngas-water separator, V-101 โ€ข Methanol-water mixture generated from the distillation column, T- 101 Wastewater โ€ข 923,325.45 tons per year is released Treatment Method Activated Sludge โ€ข methanol concentration decreases effectively after they are consumed by bacteria (Bacillus Methanolicus and Methylophilus methylotrophus) in the sludge vessel Slow Sand Filter โ€ข For methanol concentration of 1ppm, it can successfully provide the microbial activity to treat the drinking water Biologically Activated Filter โ€ข for higher concentrations of methanol from 100 to 1000 ppm, BAF designed with counter air flow is needed 49
  • 51. Gaseous waste โ€ข Purge gas produced from the methanol reactor effluent separator โ€ข Flue gas which is produced by the steam reformer Purge Gas โ€ข Most of the separated syngas is recycled back to stream 18 to improve conversion and the remaining syngas is purged and flared off to prevent inert accumulation and pressure build up โ€ข excess air is supplied to flare system so that the purge gas undergoes complete combustion Flue Gas โ€ข Composition of flue gas: โ€ข Amount of flue gas produced โ€ข Heat recovery can be implemented as the flue gas is released at 850 โ„ƒ โ€ข Flue gas can be discharged into the atmosphere without harming the environment. Stream Mass flow rate kg/yr ton/yr Stream 17 190259747.49 190,259.75 Flue gas component Mass fraction Carbon dioxide, CO2 0.15 Nitrogen, N2 0.71 Oxygen, O2 0.01 Argon, Ar 0.01 Water, H2O 0.12 Total 1.00 Mass flow rate kg/yr ton/yr 1940530852.91 1,940,530.85 50
  • 52. CONCLUSION The overall mass balance is zero as the inlet total mass flow rate is balanced by the outlet total mass flow rate The conversion of CO and ๐ถ๐‘‚2 is 0.66818 and 0.03353 respectively in Methanol Reactor to produce methanol The heat duty for reactor R-103 is -153483.75 MJ/hr while -144552.58 MJ/hr and 1580.55 MJ/hr for condenser and reboiler respectively Gaseous wastes which is flue gas is the highest waste produced at 1,940,530.85 ton/year Total utility cost per year is RM 225,775,715. Preliminary economic potential analysis is RM 352,587,481.95 51
  • 55. To produce methanol via hydrogenation of syngas GENERAL INFORMATION Purpose P = 50 bars ; T = 300 โ„ƒ Operating condition co-precipitated Cu/ZnO/Al2O3 Catalyst Conversion, X = 0.66181 Data Multi tubular fixed catalytic reactor 54
  • 56. REACTION KINETICS [1] Reactions: ๐ถ๐‘‚ + 2H2 โ†” ๐ถH3๐‘‚๐ป (main) Rate Equation: ๐‘Ÿ3 = ๐‘˜3๐พ๐ถ๐‘‚ ๐‘ƒ๐ถ๐‘‚๐‘ƒ๐ป2 1.5 โˆ’ ๐‘ƒ๐ถ๐ป3๐‘‚๐ป ๐‘ƒ๐ป2 0.5๐พ3 1+๐พ๐ถ๐‘‚๐‘ƒ๐ถ๐‘‚+๐พ๐ถ๐‘‚2๐‘ƒ๐ถ๐‘‚2 ๐‘ƒ๐ป2 0.5 + ๐พ๐ป2๐‘‚ ๐‘ƒ๐ป2 0.5 ๐‘ƒ๐ป2๐‘‚ (main) CO2 + H2 โ†” H2O + CO (side) ๐‘Ÿ4 = ๐‘˜4๐พ๐ถ๐‘‚2 ๐‘ƒ๐ถ๐‘‚2๐‘ƒ๐ป2 1.5 โˆ’ ๐‘ƒ๐ถ๐ป3๐‘‚๐ป๐‘ƒ๐ป2๐‘‚ ๐‘ƒ๐ป2 1.5๐พ4 1+๐พ๐ถ๐‘‚๐‘ƒ๐ถ๐‘‚+๐พ๐ถ๐‘‚2๐‘ƒ๐ถ๐‘‚2 ๐‘ƒ๐ป2 0.5 + ๐พ๐ป2๐‘‚ ๐พ๐ป2 0.5 ๐‘ƒ๐ป2๐‘‚ (side) [1] [1] 55
  • 57. CATALYST BED SIZING: POLYMATH RESULT 56
  • 58. STEP 1: CATALYST BED SIZING From polymath, the mass of catalyst required for one single tube is approximately 12 kg. Since the number of tube used is 1381, the total mass of catalyst required is approximately 12 x 1381 kg = 16572.00 kg. Assuming the catalyst bed is cylindrical, ๐‘‰๐‘๐‘’๐‘‘ = ๐‘Š ๐œŒ๐‘ 1 โˆ’ ๐œ™ Whereas ๐œŒ๐‘ = 1300 kg/m3-catalyst; ๐œ™ = 0.45. Therefore, ๐‘‰๐‘๐‘’๐‘‘ = 23.18 ๐‘š3 Component Initial flow rate (kmol/s) Final flow rate (kmol/s) Conversion CO 0.000835 0.000248 0.7033 57
  • 59. STEP 2: COOLING REQUIREMENT Mineral oil supplied by Radco Industries (XCELTHERMยฎ600) which has the maximum bulk fluid operating temperature of 316ยฐ๐ถ will be used to constantly remove heat to maintain the catalyst packed tube temperature, Tw at 300ยฐC . Generally, temperature approach of 20ยฐC will be implemented. So, the coolant return temperature will be set at 280ยฐC . The cooling duty required from energy balance is: ๐‘ธ = โˆ’๐Ÿ๐Ÿ“๐ŸŽ, ๐Ÿ•๐Ÿ๐Ÿ—. ๐Ÿ•๐Ÿ’ ๐‘ด๐‘ฑ/๐’‰๐’“ Fluid properties Shell Side Tube Side Fluid Mineral oil Process fluid Inlet temperature (ยฐC) 30 300 Outlet temperature (ยฐC) 280 Mean temperature (ยฐC) 155 58
  • 60. STEP 2: COOLING REQUIREMENT [2,3] The process fluid properties are taken as the average values of those of reactants and products in the tube. The data are taken from ASPEN PLUS. Mineral oil properties Value Density, ๐œŒ (kg/m3) 769.7968759 Viscosity, ๐œ‡ (Pa-s) 0.001014167 Thermal conductivity, k (W/m/ยฐC) 0.125171433 Specific heat capacity, Cp (J/kg/ยฐC) 2456.791229 Prandtl number, Prb 19.90547933 Reactant Product Average Density, ฯฑ (kg/m3) 7.111478329 7.42745129 7.26946481 Viscosity, ยต (Pa-s) 2.03E-05 2.04E-05 2.03857E-05 Thermal conductivity, k (W/m/ยฐC) 0.238914355 0.233826115 0.236370235 Specific heat capacity, Cp (J/kg/ยฐC) 4514.239624 4443.179332 4478.709478 Prandtl number, Prb 0.38626562 59
  • 61. STEP 2: COOLING REQUIREMENT Log mean temperature difference (LMTD) โˆ†๐‘‡๐ฟ๐‘€๐‘‡๐ท = ๐‘‡1 โˆ’ ๐‘ก2 โˆ’ (๐‘‡2 โˆ’ ๐‘ก1) ln ๐‘‡1 โˆ’ ๐‘ก2 ๐‘‡2 โˆ’ ๐‘ก1 โˆ†๐‘‡๐ฟ๐‘€๐‘‡๐ท = 300 โˆ’ 280 โˆ’ (300 โˆ’ 30) ln 300 โˆ’ 280 300 โˆ’ 30 = 96.05ยฐ๐ถ Mass flow rate of coolant required: ๐‘„ = ๐‘š๐ถ๐‘โˆ†๐‘‡ โˆ’150729.74 ๐‘€๐ฝ โ„Ž๐‘Ÿ ร— 106 ๐ฝ 1๐‘€๐ฝ ร— 1โ„Ž๐‘Ÿ 3600๐‘  = ๐‘š 2456.791229 J kg โˆ’ ยฐC 30 โˆ’ 280 ยฐ๐ถ ๐‘š = 68.17 ๐‘˜๐‘”/๐‘  Heat transfer area, S Take converged U = 341.49 W/m2/ยฐC, the heat transfer area is obtained as below: ๐‘„ = ๐‘ˆ๐‘†โˆ†๐‘‡๐ฟ๐‘€๐‘‡๐ท โˆ’150729.74 ๐‘€๐ฝ โ„Ž๐‘Ÿ ร— 106 ๐ฝ 1๐‘€๐ฝ ร— 1โ„Ž๐‘Ÿ 3600๐‘  = 341.49 ๐‘Š ๐‘š2ยฐ๐ถ ๐‘† 96.05ยฐ๐ถ ๐‘† = 1276.45 ๐‘š2 60
  • 62. STEP 2: COOLING REQUIREMENT Fixed V/S ratio ๐‘‰ ๐‘† = ๐‘๐œ‹๐‘Ÿ2๐ฟ 2๐‘๐œ‹๐‘Ÿ๐ฟ = ๐‘Ÿ 2 = ๐‘‘ 4 ๐‘‘๐‘š๐‘Ž๐‘ฅ = 4๐‘‰ ๐‘† ๐‘‘๐‘š๐‘Ž๐‘ฅ = 4 23.18๐‘š3 1276.45๐‘š2 = 0.07263๐‘š = 72.63๐‘š๐‘š Number of tube and tube length ๐‘ = ๐‘† ๐œ‹๐‘‘๐‘œ๐‘™ Parameter Value Chosen tube 1.5 in Schedule 80 Inner diameter, di (mm) 38.1 Outer diameter, do (mm) 48.26 Thickness (mm) 10.16 Cross section area, Ac,tube (m2) 0.001829214 Tube length (m) 6.1 (as recommended by Coulson and Richardson) Number of tube 1380.174798 which is 1381 maximum number of tubes for multitubular reactor used in the industries is 4000 tubes. hence 1381 is acceptable. 61
  • 63. STEP 2: COOLING REQUIREMENT Tube arrangement To minimise pressure drop and for ease of cleaning, the square pitch is used. The tube pitch is calculated as below: ๐‘ƒ๐‘ก = 1.25๐‘‘๐‘œ ๐‘ƒ๐‘ก = 1.25 0.04826๐‘š = 0.06033๐‘š = 2.375 ๐‘–๐‘›๐‘โ„Ž๐‘’๐‘  62
  • 64. STEP 2: COOLING REQUIREMENT The tube bundle diameter is calculated as below: ๐ท๐‘ = ๐‘‘0 ๐‘๐‘ก ๐พ1 1 ๐‘›1 Since only one tube pass in established in the reactor, constants used are: K1 = 0.215 and n1 = 2.207 Therefore, the bundle diameter is: ๐ท๐‘ = 0.04826๐‘š 1381 0.215 1 2.207 = 2.56๐‘š The tube in the center row is determined by Db/Pt = 2.56/0.06 = 42.5 which is 43 tubes. 63
  • 65. STEP 2: COOLING REQUIREMENT Based on the plot, an extrapolation equation has been established to correlate the bundle diameter and the clearance for fixed-tube type ๐ถ๐‘™๐‘’๐‘Ž๐‘Ÿ๐‘Ž๐‘›๐‘๐‘’, ๐ถ ๐‘š๐‘š = 10๐ท๐‘ + 8 = 10 2.56 + 8 ๐ถ = 33.64 ๐‘š๐‘š Therefore, the shell diameter is: ๐ท๐‘  = ๐ท๐‘ + ๐ถ = 2.56 + 33.64 1000 ๐ท๐‘  = 2.60๐‘š 64
  • 66. STEP 2: COOLING REQUIREMENT Generally, a baffle cut of 20 to 25 per cent will be the optimum, giving good heat-transfer rates, without excessive pressure drop. The optimum spacing will usually be between 0.3 to 0.5 times the shell diameter. Spacing of 0.3x Shell diameter is used: Baffle spacing, lb = 0.3Ds = 0.3(2.60) = 0.78m. As the tube length used for the catalyst packing is 6.10 m, the number of baffle to be installed can be calculated as: ๐‘๐‘ = ๐ฟ๐‘ก ๐‘™๐‘ โˆ’ 1 = 6.10 0.78 โˆ’ 1 ๐‘๐‘ = 6.83 ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘–๐‘  7 ๐‘๐‘Ž๐‘“๐‘“๐‘™๐‘’๐‘ . 65
  • 67. STEP 2: COOLING REQUIREMENT Tube-side heat transfer coefficient, hi ๐‘๐‘ข = โ„Ž๐‘–๐‘‘๐‘’ ๐‘˜๐‘“ Parameter Value Remark Mass flow rate (kg/s) 249.08 From mass balance Volumetric flow rate (m3/s) 34.26 ๐‘„ = ๐‘š/๐œŒ๐‘ฃ Cross sectional area of one tube (m2) 1.83 ร— 10โˆ’3 Total cross sectional area (m2) 2.53 ๐ด๐‘ก = ๐‘๐‘ก โ‹… ๐ด๐‘ , ๐‘œ๐‘›๐‘’ ๐‘ก๐‘ข๐‘๐‘’ Fluid velocity (m/s) 13.56 ๐‘ข = ๐‘„/๐ด๐‘ก Equivalent diameter, de = di 0.04 Reynold number 1.84E+05 ๐‘…๐‘’ = ๐œŒ๐‘ข๐‘‘/๐œ‡ Since the Reynold number, Re > 4000, the flow is turbulent flow, the Nusselt number, Nu can be determined using equation: ๐‘๐‘ข = ๐ถ๐‘…๐‘’0.8 Pr0.33 C = 0.021 for gases ๐‘๐‘ข = 2.50 ร— 102 โ„Ž๐‘– = 1.55 ร— 103 ๐‘Š ๐‘š2ยฐ๐ถ 66
  • 68. STEP 2: COOLING REQUIREMENT Shell side heat transfer coefficient, ho ๐‘ข = ๐‘—โ„Ž๐‘…๐‘’๐‘ƒ๐‘Ÿ0.33 ๐œ‡ ๐œ‡๐‘ค 0.14 = โ„Ž๐‘œ๐‘‘๐‘’ ๐‘˜๐‘“ From the chart above, with baffle cut of 25% and Reynold number of 6.72 ร— 104 , heat transfer factor, jh is ๐Ÿ. ๐Ÿ– ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘. Parameter Value As (m2) 0.41 ๐‘‘โ„Ž(m) 0.048 ๐‘ข๐‘  (m/s) 0.86 Re 6.72 ร— 104 Parameter Value Tw (ยฐC) 300 ๐œ‡๐‘ค (Pa-s) 2.76 ร— 10โˆ’4 Nu 3.89 ร— 102 ho (W/m2/ยฐC) 1.02 ร— 103 โ„Ž๐‘œ = 1.02 ร— 103 ๐‘Š ๐‘š2ยฐ๐ถ 67
  • 69. STEP 2: COOLING REQUIREMENT Overall heat transfer coefficient, Uo The overall heat transfer coefficient is computed as blow: 1 ๐‘ˆ๐‘œ = 1 โ„Ž๐‘œ + 1 โ„Ž๐‘œ๐‘‘ + ๐‘‘๐‘œln( ๐‘‘๐‘œ ๐‘‘๐‘– ) 2๐‘˜๐‘ค + ๐‘‘๐‘œ ๐‘‘๐‘– ๐‘ฅ 1 โ„Ž๐‘–๐‘‘ + ๐‘‘๐‘œ ๐‘‘๐‘– ๐‘ฅ 1 โ„Ž๐‘– Since the tube material used is the stainless steel 316, the thermal conductivity is between 13-17 W/m ยฐ๐ถ An average value of 15 W/mยฐ๐ถ is used for calculation. The mineral oil in the shell side is considered to be heavy hydrocarbon with fouling factor of 2000 W/m2 ยฐ๐ถ while the process gases in the tube side is considered as organic vapor with fouling factor of 5000 W/m2ยฐ๐ถ. U = 341.49 W/m2ยฐC ( error = 0%) Since the error is less than 30% as recommended by Coulson and Richardson, all the computations above are correct. 68
  • 71. MECHANICAL DESIGN Construction Material โ€ข Stainless Steel 304 Design Temperature โ€ข 310โ„ƒ Design Pressure โ€ข 55 bar Welded Joint Efficiency โ€ข Double Welded Butt Wall Design โ€ข 3.02 mm Head & Closure โ€ข Ellipsoidal Head L/D ratio โ€ข 2.89 Dead Weight of Vessel โ€ข 398.44 kN Vessel Support โ€ข Conical Skirt Nozzle Design ๐ท๐‘–,๐‘œ๐‘๐‘ก = 0.133๐‘š๐‘‰ 0.4 ๐œ‡0.13 ๐ท = 1.065 ๐‘Š0.408 ๐œŒ0.343 70
  • 72. MECHANICAL DESIGN [2,3] Design Pressure and Temperature Design pressure is taken to be 1.1x operating pressure. Design temperature is taken to be the operating temperature of the reactor +10ยฐC Vessel Mechanical Design Design pressure 5.5 N/mm2 Design temperature 310 ยฐC Material of construction Welded joint efficiency, J Material Stainless-steel 304 Design stress 105 N/mm2 Tensile strength 510 N/mm2 Type of joint Double-welded butt joint Joint efficiency 0.85 71
  • 73. MECHANICAL DESIGN Tube wall design Corrosion allowance of 2 mm, Since the tube diameter is less than 1m, the thickness computed is more than the minimum thickness needed. t = 3.02 mm Tube wall thickness,๐‘ก๐‘ก (mm) 3.02 Reactor vessel head design For ellipsoidal head, Corrosion allowance of 2 mm, Since the reactor vessel head thickness is less than the shell wall thickness, we take the thickness of the head to be the same as the shell thickness. t = 10 mm Shell wall design Corrosion allowance of 2 mm, Since the tube diameter is 2.6 m, the thickness is smaller than the minimum thickness. Thus, new thickness will be selected. t = 10 mm Tube wall thickness,๐‘ก๐‘ก (mm) 3.37 Wall thickness,๐‘ก๐‘ก (mm) 3.37 74
  • 74. MECHANICAL DESIGN Maximum Allowable Working Pressure (MAWP) ๐‘€๐ด๐‘Š๐‘ƒ = 2 ร— ๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘™๐‘’ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘›๐‘”โ„Ž๐‘ก ๐‘‡๐‘† ร— ๐‘—๐‘œ๐‘–๐‘›๐‘ก ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘๐‘ฆ(๐ฝ) ร— ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘ (๐‘ก) ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐ท ร— ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘ (๐‘ก) Parameter Value MAWP (N/mm2) 13.13 Design Pressure (N/mm2) 5.5 MAWP >>> Operating pressure Parameter Value MAWP (N/mm2) 0.685 Design Pressure (N/mm2) 0.11 Parameter Value MAWP (N/mm2) 0.685 Design Pressure (N/mm2) 0.11 For tube, For shell, For vessel head, 75
  • 75. MECHANICAL DESIGN Reactor dimension and stress analysis Length of rector (m) 7.51 Diameter of reactor, ๐ท๐‘Ÿ(m) 2.62 L/D 2.89 Weight of tubes, ๐‘Š๐‘ก (kN) 213.38 Weight of shell, ๐‘Š ๐‘  (kN) 22.49 Weight of catalyst (kN) 162.57 Total weight (kN) 398.44 Ratio is still within the optimum L/D ratio (2โ€”5) 76
  • 76. MECHANICAL DESIGN Primary stress analysis Total longitudinal stress, ฯƒz Principal stress analysis: (๐‘/๐‘š๐‘š2 ) Maximum compressive stress Longitudinal stress, ๐œŽ๐ฟ 7.21 ๐‘/๐‘š๐‘š2 Circumference stress, ๐œŽโ„Ž 14.43 ๐‘/๐‘š๐‘š2 Direct stress, ๐œŽ๐‘ค 4.86 ๐‘/๐‘š๐‘š2 Bending stress, ๐œŽ๐‘ 2.05 ๐‘/๐‘š๐‘š2 Total longitudinal stress ๐œŽ๐‘ง(๐‘ข๐‘๐‘ค๐‘–๐‘›๐‘‘) 4.40 ๐‘/๐‘š๐‘š2 ๐œŽ๐‘ง(๐‘‘๐‘œ๐‘ค๐‘›๐‘ค๐‘–๐‘›๐‘‘) 0.30 ๐‘/๐‘š๐‘š2 Critical buckling stress, ๐œŽ๐‘ 76.41 ๐‘/๐‘š๐‘š2 Maximum compressive stress, ๐œŽ๐‘ค 6.91 ๐‘/๐‘š๐‘š2 The greatest principal stress difference is still below the design stress (105 N/mm2), thus the design in valid! The maximum compressive stress doesn't exceed the critical buckling stress, which is 76.41N/mm2, thus, the design is acceptable. Principle stresses Upwind Downwind ๐œŽ1 = ๐œŽโ„Ž 14.43 14.43 ๐œŽ2 = ๐œŽ๐‘ง 4.40 0.30 ๐œŽ3 = 0.5๐‘ƒ๐‘‘ 0.0550 0.0550 ๐œŽ1 โˆ’ ๐œŽ2 10.03 14.13 ๐œŽ1 โˆ’ ๐œŽ3 14.37 14.37 ๐œŽ2 โˆ’ ๐œŽ3 4.34 -4.04 77
  • 77. MECHANICAL DESIGN Vessel support: Dead weight in skirt: ๐œŽ๐‘ค๐‘  ๐‘ก๐‘’๐‘ ๐‘ก = ๐‘Š๐ป2๐‘‚ + ๐‘Š ๐‘ฃ ๐œ‹(๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก + ๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก)๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก ๐œŽ๐‘ค๐‘  ๐‘œ๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘›๐‘” = ๐‘Š ๐‘ฃ ๐œ‹(๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก + ๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก)๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก Skirt base angle: ๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก = ๐‘ก๐‘Ž๐‘›โˆ’1 ๐ป๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก 1 2 ๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘กโˆ’๐ท๐‘  Know that Both stresses satisfy the design criteria, thus the suggested thickness of the skirt is acceptable. ๐œŽ๐‘  ๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘™๐‘’ < ๐‘“๐ฝ๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก ๐œŽ๐‘  ๐‘๐‘œ๐‘š๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘–๐‘ฃ๐‘’ < 0.125๐ธ ๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก ๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก ๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก ๐œŽ๐‘ (๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘™๐‘’) 1.08 ๐‘/๐‘š๐‘š2 ๐œŽ๐‘ (๐‘๐‘œ๐‘š๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘–๐‘ฃ๐‘’) 13.34 ๐‘/๐‘š๐‘š2 ๐‘“๐ฝ๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก 140.24 ๐‘/๐‘š๐‘š2 0.125๐ธ ๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก ๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก ๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก 97.30 ๐‘/๐‘š๐‘š2 Since the base angle obtained is still within the range (80-90ยฐ) as suggested by Coulson & Richardson, the design is valid Type of skirt Conical skirt Skirt diameter (m) 2.70 ๐‘š Skirt height (m) 4.05 ๐‘š Dead weight in skirt (test) 7.50 N/mm2 Dead weight in skirt (operating) 4.68 N/mm2 Skirt base angle, 89.25ยฐ 78
  • 78. MECHANICAL DESIGN Base Ring and Anchor Bolt Design Approximate pitch circle diameter, ๐ท = 2 ๐‘š Circumference of bolt circle, ๐ถ๐‘ = 6283.19 ๐‘š๐‘š Take minimum bolt spacing = 600 ๐‘š๐‘š Maximum allowable bolt stress, ๐‘“๐‘ 125 N/mm2 Maximum moment of bottom skirt, ๐‘€๐‘  257851.04 ๐‘๐‘š Area of bolt, ๐ด๐‘ 78.18 mm2 Diameter of bolt, ๐ท๐‘๐‘ก 9.98 ๐‘š๐‘š Maximum allowable ring stress, ๐‘“ ๐‘Ÿ 140 N/mm2 ๐‘๐‘ = ๐ถ๐‘ 600 = 10.48 โ‰ˆ 12 ๐‘๐‘œ๐‘™๐‘ก๐‘  ๐‘š๐‘ข๐‘™๐‘ก๐‘–๐‘๐‘™๐‘’ ๐‘œ๐‘“ 4 From Coulson & Richardsonโ€™s Chemical Engineering Design, the bolt type selected is M24 as it is the closest standard size bolt larger than 9.98 mm with a root area of 78.18 mm2 Compressive load, Fb 158306.65 N/mm Maximum allowable bearing,Fc 92134.46 N/mm2 Minimum width base ring, ๐ฟ๐‘ 13.16 ๐‘š๐‘š Actual base ring width,๐‘Š๐‘ 131 ๐‘š๐‘š Actual bearing pressure, ๐‘“ ๐‘ โ€ฒ 0.703 ๐‘/mm2 Base ring thickness. tbr 10 ๐‘š๐‘š 79
  • 79. For viscous flow in steel pipe, (mineral oil) ๐ท๐‘–,๐‘œ๐‘๐‘ก = 0.133๐‘š๐‘‰ 0.4 ๐œ‡0.13 For gas, (process fluid) ๐ท = 1.065 ๐‘Š0.408 ๐œŒ0.343 Stream Schedule No. Dopt (mm) Dopt (in) Feed inlet 80s 787.4 31.0 Product outlet 80s 787.4 31.0 Mineral oil inlet 40 35.052 1.25 Mineral oil outlet 40 35.052 1.25 MECHANICAL DESIGN Nozzle design (Kent, 1980) 80
  • 80. SPECIFICATION DATA SHEET FOR REACTOR R-103 METHANOL REACTOR Identification: R-103 Date: 27/12/2023 Item: Methanol Reactor By: MAH HIN MAN No. of unit: 1 Function: To produce methanol via hydrogenation of syngas Operation: Continuous OPERATING DATA Materials handled (kg/hr): Feed Outlet Carbon dioxide, CO2 524778.46 507182.64 Nitrogen, N2 28802.59 28802.59 Carbon Monoxide, CO 116213.93 49759.45 Hydrogen, H2 226904.76 215011.84 Methanol, CH3OH 0.00 88744.94 Water, H2O 0.00 7198.29 Temperature (ยฐC) 300.0 300.0 Pressure (bar) 50 OPERATIONAL DESIGN Type of reactor: Catalytic multi- tubular reactor Catalyst: Cu/ZnO/Al2O3 Catalyst bed void: 0.45 Catalyst density (kg/m3 ): 1300.00 Catalyst support: Support grid Catalyst diameter (m): 0.01 REACTOR TUBE DESIGN Number of tubes: 1381 Mass of catalyst per tube (kg): 12 Tube inner diameter (m): 0.04 Mass of catalyst (kg): 16572.00 Tube length (m): 6.10 Tube thickness (m): 0.01 Tube pressure drop (bar): 0.49 Shell diameter (m): 2.60 UTILITY DESIGN Cooling duty (MJ/hr): -150729.74 Coolant: Mineral oil Heat transfer area (m2 ): 1276.44 Coolant flow rate (kg/hr): 245409.11 Overall heat transfer coefficient (W/m2 /ยฐC) 341.49 MECHANICAL DESIGN Design pressure (bar): 55 Design temperature (ยฐC): 310.0 Materials of construction: Stainless steel 304 Vessel wall thickness (mm): 10 Type of head: Ellipsoidal head Corrosion allowance (mm) 2 Vessel support: Conical skirt Feed inlet nozzle size (mm) : 800.1 Product outlet nozzle size (mm): 800.1 Coolant inlet nozzle size (mm) : 35.052 Coolant outlet nozzle size (mm): 35.052 81
  • 82. CONCLUSION 82 Catalyst weight โ€ข 16572.00 kg Tube length โ€ข 6.1 m Shell diameter โ€ข 2.6 m Shell wall thickness โ€ข 10 mm
  • 86. T-101 DISTILLATION COLUMN DESIGN CRITERIA Operating Pressure Methanol Recovery Type of tray Methanol Purity Type of column 1 bar 98.18 % 99.85 wt% Tray Column Sieve Tray 86
  • 87. 03 PLATE HYDRAULIC DESIGN T-101 DISTILLATION COLUMN Operating Pressure 01 COMPONENT DISTRIBUTION 02 COLUMN SIZING 04 MECHANICAL DESIGN DESIGN PARAMETERS 87
  • 88. Step 1: Dew point, Bubble point & Relative volatilities Raoultโ€™s Law & Daltonโ€™s Law : -๐พ๐‘– = ๐‘ƒ๐‘–,๐‘ ๐‘Ž๐‘ก ๐‘ƒ = ๐‘ฆ๐‘– ๐‘ฅ๐‘– Dew point : โˆ‘ ๐‘ฅ๐‘– = 1 . Bubble point : โˆ‘ ๐‘ฆ๐‘– = 1. Relative volatility : ๐›ผ๐‘–,๐ป๐พ = ๐พ๐‘– ๐พ๐ป๐พ SECTION 1 : COMPONENT DISTRIBUTION [2,3] Identification Of Heavy Key (HK) and Light Key (LK) LK โ€“ METHANOL HK - WATER 88
  • 89. Step 2 : Reflux ratio Calculation ๏‚ก Underwood Equation : 1 โˆ’ ๐‘ž = โˆ‘ ๐›ผ๐‘–๐‘ฅ๐‘–๐‘“ ๐›ผ๐‘–โˆ’๐œƒ , solve for ฮธ, ฮธ=1.103. ๏‚ก Minimum Reflux Ratio: ๐‘…๐‘š๐‘–๐‘› + 1 = โˆ‘ ๐›ผ๐‘–๐‘ฅ๐‘–๐ท ๐›ผ๐‘–โˆ’๐œƒ = ๐‘…๐‘š๐‘–๐‘› = 0.3336. ๏‚ก Actual Reflux Ratio: ๐‘… = 1.5๐‘…๐‘š๐‘–๐‘› = 0.5005 Step 3 : Boil up Ratio ๏‚ง VB = R+q xHK,Fโˆ’xHK,D xHK,Bโˆ’xHK,F +qโˆ’1 ; VB= 0.2095 89
  • 90. Step 4 : Minimum No. of stages ๐›ผ๐ฟ๐พ,๐ป๐พ = ๐›ผ๐ฟ๐พ,๐ป๐พ ๐ท๐›ผ๐ฟ๐พ,๐ป๐พ ๐ต๐›ผ๐ฟ๐พ,๐ป๐พ ๐น = 3.8423 Using Fenske Equation: ๐‘๐‘š๐‘–๐‘› = ln ๐‘ฅ๐ฟ๐พ,๐ท ๐‘ฅ๐ป๐พ,๐ท ๐‘ฅ๐ป๐พ,๐ต ๐‘ฅ๐ฟ๐พ,๐ต ln ๐›ผ๐ฟ๐พ,๐ป๐พ = 7.6805 ๐‘ ๐‘ก๐‘Ž๐‘”๐‘’๐‘ . Step 5 : Theoretical No. of stages Using Gilliland Correlation method: ๐‘Œ = ๐‘ โˆ’ ๐‘๐‘š๐‘–๐‘› ๐‘ + 1 = 0.75 1 โˆ’ ๐‘… โˆ’ ๐‘…๐‘š๐‘–๐‘› ๐‘… + 1 0.566 Rearranging the equation: N = ๐‘Œ+ ๐‘๐‘š๐‘–๐‘› 1โˆ’๐‘Œ = 17.59 โ‰ˆ 18 ๐‘ ๐‘ก๐‘Ž๐‘”๐‘’๐‘ . 90
  • 91. Step 6 : Column Efficiency (Oโ€™Connellโ€™s correlation) ๐ธ0 = 51 โˆ’ 32.5 log ๐œ‡๐ฟ๐›ผ๐ฟ๐พ,๐‘Ž๐‘ฃ = 48.47% Step 7 : Actual No. of Stages ๐‘๐‘Ž๐‘๐‘ก = ๐‘ ๐ธ0 = 37.13 ๐‘ ๐‘ก๐‘Ž๐‘”๐‘’๐‘  โ‰ˆ 37 ๐‘ ๐‘ก๐‘Ž๐‘”๐‘’๐‘  ๐‘’๐‘ฅ๐‘๐‘™๐‘ข๐‘‘๐‘–๐‘›๐‘” ๐‘Ÿ๐‘’๐‘๐‘œ๐‘–๐‘™๐‘’๐‘Ÿ Step 8 : Location of Feed Tray Using Kirkbride equation: ๐‘๐‘… ๐‘๐‘† = ๐‘ฅ๐น,๐ป๐พ ๐‘ฅ๐น,๐ฟ๐พ ๐‘ฅ๐ต,๐ฟ๐พ ๐‘ฅ๐ท,๐ป๐พ 2 ๐ต ๐ท 0.206 = 2.17 ๐‘๐‘… = 2.17 ๐‘๐‘  ๐‘ = ๐‘๐‘… + ๐‘๐‘† = 37 Solving Simultaneously: โˆด ๐‘๐‘… = 26 ๐‘ ๐‘ก๐‘Ž๐‘”๐‘’๐‘  ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’ ๐‘“๐‘’๐‘’๐‘‘ ๐‘๐‘† = 11 ๐‘ ๐‘ก๐‘Ž๐‘”๐‘’๐‘  ๐‘๐‘’๐‘™๐‘œ๐‘ค ๐‘“๐‘’๐‘’๐‘‘ โธซthe feed entered at 11th stage from bottom 91
  • 92. Step 1 : Flooding Velocity Graphical Method from Coulson & Richardson textbook SECTION 2 : COLUMN SIZING [2,3] Properties Top Bottom Vapor Density, ๐œŒ๐‘ฃ kg/m3 1.138882 0.644467 Liquid density, ๐œŒ๐ฟ kg/m3 748.8824 941.2414 Surface tension, ๐œŽ J/m2 0.017391 0.028711 L kmol/h 1366.294 535.8854 V kmol/h 4096.416 92.82314 MW kg/kmol 31.96271 19.59347 FLV 0.013007 0.151066 K1 m/s 0.11 0.09 uf, max m/s 2.740864 3.696122 92
  • 93. Step 2 : Actual Velocity ๏‚ก 85% flooding velocity Step 3 : Net Column Area ๏‚ก ๐‘„ = ๐‘ข๐‘“,๐‘›๐‘’๐‘ค๐ด๐‘› Step 4 : Column Cross-sectional Area Assuming downcomer area as 10% of net area , -๐ด๐‘ = ๐ด๐‘› 1โˆ’๐‘‘๐‘œ๐‘ค๐‘›๐‘๐‘œ๐‘š๐‘’๐‘Ÿ ๐‘“๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘› Step 5 : Column Diameter ๏‚ก ๐ท๐‘ = 4๐ด๐‘ ๐œ‹ uf top (actual) m/s 2.3297 uf bottom (actual) m/s 3.1417 A top m2 13.7076 A bottom m2 13.5081 Qmax top m3/s 31.9350 Qmax bottom m3/s 42.4385 A top (actual) m2 15.2306 A bottom (actual) m2 15.0090 D top m 4.800 D bottom m 4.372 The column diameter is taken to be 4.8m 93
  • 94. SECTION 3 : PLATE HYDRAULIC DESIGN [2,3] Step 1 : Liquid Flow Pattern ๏‚ก Liquid Flow Rate = 0.0291 ๐‘š3 ๐‘  , Column Diameter = 4.8 m, From figure 11.28 : Single-pass Cross flow Step 2 : Provisional Plate Design ๏‚ก Cross sectional Area, ๐ด๐‘ = ๐œ‹๐ท2 4 = 20.1062๐‘š2 ๏‚ก Downcomer Area, ๐ด๐‘‘ = 0.1๐ด๐‘ = 2.0106๐‘š2 ๏‚ก Active Area, ๐ด๐‘Ž = ๐ด๐‘ โˆ’ 2๐ด๐‘‘ = 16.0850๐‘š2 Assuming hole area as 10% of active area ๏‚ก ๐ดโ„Ž = 0.10 ๐ด๐‘Ž = 1.6085 ๐‘š2 From figure 11.31 for ๐ด๐‘‘ ๐ด๐‘ = 0.1 ๏‚ก ๐‘™๐‘ค ๐ท๐‘ = 0.73, โˆด ๐‘™๐‘ค(๐‘ค๐‘’๐‘–๐‘Ÿ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž) = 3.504๐‘š Assumption ๏‚ก Weir height, โ„Ž๐‘ค = 0.05 m ๏‚ก Hole diameter, ๐‘‘โ„Ž = 0.005 m ๏‚ก Plate thickness, ๐‘ก๐‘ = 0.005 m 0.73 95
  • 95. Step 3 : Weeping point ๏‚ก Max liquid flow rate : 27.350 kg/s ๏‚ก Assuming 70% turndown, min liquid flow rate = 0.7(max flow rate) = 19.145 kg/s ๏‚ก Max โ„Ž๐‘œ๐‘ค = 750 ๐ฟ๐‘ค ๐œŒ๐‘ค๐‘™๐‘ค 2/3 = 30.73 ๐‘š๐‘š ๏‚ก Min โ„Ž๐‘œ๐‘ค = 750 ๐ฟ๐‘ค ๐œŒ๐‘ค๐‘™๐‘ค 2/3 = 24.22 ๐‘š๐‘š ๏‚ก โ„Ž๐‘œ๐‘ค + โ„Ž๐‘ค = 74.22 ๐‘š๐‘š. ๏‚ก From figure 11.30, ๐พ2 = 30.6 ๏‚ก Vapor velocity through hole = ๐‘ขโ„Ž = ๐พ2 โˆ’0.90 25.4 โˆ’ ๐‘‘โ„Ž ๐œŒ๐‘ฃ 1/2 = 15.2469 m s ๏‚ก Actual minimum vapor velocity = 18.4688 m/s Since actual minimum vapor velocity > weeping point, weeping will not occur 30.6 96
  • 96. Step 4 : Plate Pressure Drop ๏‚ก Vapor velocity through hole, ๐‘ขโ„Ž = ๐‘„ ๐ดโ„Ž = 18.4688 ๐‘š ๐‘  ๏‚ก Plate thickness/hole diameter =1, perforated area percent = 10, from figure 11.34, Orifice coefficient, ๐ถ0 = 0.84. ๏‚ก Dry plate pressure drop, โ„Ž๐‘‘ = 51 ๐‘ขโ„Ž ๐ถ๐‘œ 2 ๐œŒ๐‘ฃ ๐œŒ๐ฟ = 11.50 ๐‘š๐‘š ๏‚ก Residual head pressure drop, โ„Ž๐‘Ÿ = 12.5 ร— 103 ๐œŒ๐ฟ = 13.28 ๐‘š๐‘š ๏‚ก Total pressure drop, โ„Ž๐‘ก = โ„Ž๐‘‘ + โ„Ž๐‘œ๐‘ค + โ„Ž๐‘ค + โ„Ž๐‘Ÿ = 105.51 ๐‘š๐‘š 97
  • 97. Step 5 : Downcomer Liquid Back-up ๏‚ก Head loss in downcomer, โ„Ž๐‘‘๐‘ = 166 ๐ฟ๐‘ค๐‘‘ ๐œŒ๐ฟ๐ด๐‘š 2 ๏‚ก Take โ„Ž๐‘Ž๐‘ = โ„Ž๐‘ค โˆ’ 10 = 40 mm, ๐ด๐‘Ž๐‘ = โ„Ž๐‘Ž๐‘๐‘™๐‘ค = 0.1402๐‘š2 ๏‚ก ๐ด๐‘š = ๐ด๐‘Ž๐‘, ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐ด๐‘Ž๐‘ < ๐ด๐‘‘ โˆด โ„Ž๐‘‘๐‘ = 7.135 ๐‘š๐‘š ๏‚ก Downcomer liquid back-up, โ„Ž๐‘ = โ„Ž๐‘œ๐‘ค + โ„Ž๐‘ค + โ„Ž๐‘ก + โ„Ž๐‘‘๐‘ = 0.1942๐‘š ๏‚ก ๐Ÿ ๐Ÿ ๐’‘๐’๐’‚๐’•๐’† ๐’”๐’‘๐’‚๐’„๐’Š๐’๐’ˆ + ๐’˜๐’†๐’Š๐’“ ๐’‰๐’†๐’Š๐’ˆ๐’‰๐’• = ๐ŸŽ. ๐Ÿ‘๐Ÿ๐Ÿ“๐’Ž > ๐’‰๐’ƒ โˆด ๐’…๐’†๐’”๐’Š๐’ˆ๐’ ๐’Š๐’” ๐’”๐’‚๐’•๐’Š๐’”๐’‡๐’‚๐’„๐’•๐’๐’“๐’š Step 6 : Downcomer Residence Time ๏‚ก ๐’•๐’“ = ๐‘จ๐’…๐†๐‘ณ๐’‰๐’ƒ ๐‘ณ๐’˜๐’… = ๐Ÿ๐Ÿ. ๐Ÿ’๐Ÿ–๐Ÿ–๐Ÿ๐’” > ๐Ÿ‘ (๐’”๐’‚๐’•๐’Š๐’”๐’‡๐’‚๐’„๐’•๐’๐’“๐’š) 98
  • 98. Step 7 : Check Entrainment ๏‚ก Net area vapor velocity, ๐‘ข๐‘› = ๐‘„ ๐ด๐‘› = 2.3452 ๐‘š/๐‘  ๏‚ก Percentage flooding, ๐‘ข๐‘› ๐‘ฃ๐‘“ ร— 100% = 74.65% ๏‚ก From Figure 11.29, when ๐น๐ฟ๐‘‰ = 0.1265, fractional entrainment, ๐‹ = 0.01๐Ÿ‘ < ๐ŸŽ. ๐Ÿ(Satisfactory) 99
  • 99. Step 8 : No. of Holes ๏‚ก Area of one hole = ๐œ‹๐‘‘โ„Ž 2 4 = 1.9635 ร— 10โˆ’5 ๐‘š2 ๏‚ก Number of holes = ๐ดโ„Ž ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘œ๐‘›๐‘’ โ„Ž๐‘œ๐‘™๐‘’ = 81920 โ„Ž๐‘œ๐‘™๐‘’๐‘  100
  • 100. SECTION 4 : MECHANICAL DESIGN Construction Material โ€ข Stainless Steel 304 Design Temperature โ€ข 107.3โ„ƒ Design Pressure โ€ข 1.1 bar Welded Joint Efficiency โ€ข Double Welded Butt Wall Design โ€ข 12mm Head & Closure โ€ข Torispherical Head L/D ratio โ€ข 4.747 Dead Weight of Vessel โ€ข 398.65 kN Vessel Support โ€ข Conical Skirt Nozzle Design โ€ข Following Kentโ€™s equation (1980) 101
  • 101. SECTION 4 : MECHANICAL DESIGN [2,3] Design Pressure and Temperature Design pressure is taken to be 1.1x operating pressure. Design temperature is taken to be the highest operating temperature of the column, which is at the bottom, +10ยฐC Vessel Mechanical Design Design pressure 0.11 N/mm2 Design temperature 107.3ยฐC Material of construction Welded joint efficiency, J Material Stainless-steel 304 Design stress 165 N/mm2 Tensile strength 510 N/mm2 Type of joint Double-welded butt joint Joint efficiency 0.85 102
  • 102. SECTION 4 : MECHANICAL DESIGN Vessel wall design Corrosion allowance of 2 mm, For column diameter of 4.8m, this does not suffice, therefore we take tt = 12mm Vessel wall thickness,๐‘ก๐‘ก (mm) 5.883 Vessel head design For torispherical head, Corrosion allowance of 2 mm, Since calculated head thickness is less than column wall thickness, we take th = 12mm Crown radius, ๐‘…๐‘ (m) 4.7 Knuckle radius, ๐‘…๐พ (m) 0.282 Stress concentration, ๐ถ๐‘  (m) 1.7706 Vessel head thickness, ๐‘กโ„Ž (mm) 5.2615 103
  • 103. SECTION 4 : MECHANICAL DESIGN Maximum Allowable Working Pressure (MAWP) ๐‘€๐ด๐‘Š๐‘ƒ = 2 ร— ๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘™๐‘’ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘›๐‘”โ„Ž๐‘ก ๐‘‡๐‘† ร— ๐‘—๐‘œ๐‘–๐‘›๐‘ก ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘๐‘ฆ(๐ฝ) ร— ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘ (๐‘ก) ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐ท ร— ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘ (๐‘ก) Parameter Value MAWP (N/mm2) 2.16 Design Pressure (N/mm2) 0.11 MAWP >>> Operating pressure 104
  • 104. SECTION 4 : MECHANICAL DESIGN Column dimension and stress analysis Total column height, ๐ป๐‘‡ (m) 22.785 Diameter of column, ๐ท๐‘(m) 4.8 L/D 4.747 Approximate dead weight of vessel, ๐‘Š๐‘‰ (kN) 398.6466 Maximum dead weight of load, ๐‘Š๐ฟ (kN) 4044.7380 Total weight (testing) (kN) 4443.3846 Ratio is still within the optimum L/D ratio (2โ€”5) 105
  • 105. SECTION 4 : MECHANICAL DESIGN Primary stress analysis Total longitudinal stress, ฯƒz Principal stress analysis: (๐‘/๐‘š๐‘š2 ) Maximum compressive stress Longitudinal stress, ๐œŽ๐ฟ 11.0550 ๐‘/๐‘š๐‘š2 Circumference stress, ๐œŽโ„Ž 22.1100 ๐‘/๐‘š๐‘š2 Direct stress, ๐œŽ๐‘ค 2.1920 ๐‘/๐‘š๐‘š2 Bending stress, ๐œŽ๐‘ 3.6405 ๐‘/๐‘š๐‘š2 Total longitudinal stress ๐œŽ๐‘ง(๐‘ข๐‘๐‘ค๐‘–๐‘›๐‘‘) 20.0223 ๐‘/๐‘š๐‘š2 ๐œŽ๐‘ง(๐‘‘๐‘œ๐‘ค๐‘›๐‘ค๐‘–๐‘›๐‘‘) -2.3514 ๐‘/๐‘š๐‘š2 Critical buckling stress, ๐œŽ๐‘ 49.7512 ๐‘/๐‘š๐‘š2 Maximum compressive stress, ๐œŽ๐‘ค 13.4614 ๐‘/๐‘š๐‘š2 The greatest principal stress difference is still below the design stress (140.25 N/mm2), thus the design in valid! The maximum difference doesn't exceed the critical buckling stress, which is 49.7512 N/mm2, thus, the design is acceptable. Principle stresses Upwind Downwind ๐œŽ1 = ๐œŽโ„Ž 22.1100 22.1100 ๐œŽ2 = ๐œŽ๐‘ง 20.0223 -2.3514 ๐œŽ3 = 0.5๐‘ƒ๐‘‘ 0.0550 0.0550 ๐œŽ1 โˆ’ ๐œŽ2 2.0877 24.4614 ๐œŽ1 โˆ’ ๐œŽ3 22.0550 22.0550 ๐œŽ2 โˆ’ ๐œŽ3 19.9673 -2.4064 106
  • 106. SECTION 4 : MECHANICAL DESIGN Vessel support: Dead weight in skirt: ๐œŽ๐‘ค๐‘  ๐‘ก๐‘’๐‘ ๐‘ก = ๐‘Š๐ป2๐‘‚ + ๐‘Š ๐‘ฃ ๐œ‹(๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก + ๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก)๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก ๐œŽ๐‘ค๐‘  ๐‘œ๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘›๐‘” = ๐‘Š ๐‘ฃ ๐œ‹(๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก + ๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก)๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก Skirt base angle: ๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก = ๐‘ก๐‘Ž๐‘›โˆ’1 ๐ป๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก 1 2 ๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘กโˆ’๐ท๐‘  Know that Both stresses satisfy the design criteria, thus the suggested thickness of the skirt is acceptable. ๐œŽ๐‘  ๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘™๐‘’ < ๐‘“๐ฝ๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก ๐œŽ๐‘  ๐‘๐‘œ๐‘š๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘–๐‘ฃ๐‘’ < 0.125๐ธ ๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก ๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก ๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก ๐œŽ๐‘ (๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘™๐‘’) 13.2256 ๐‘/๐‘š๐‘š2 ๐œŽ๐‘ (๐‘๐‘œ๐‘š๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘–๐‘ฃ๐‘’) 49.6185 ๐‘/๐‘š๐‘š2 ๐‘“๐ฝ๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก 140.2485 ๐‘/๐‘š๐‘š2 0.125๐ธ ๐‘ก๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก ๐ท๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก ๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘˜๐‘–๐‘Ÿ๐‘ก 51.5458 ๐‘/๐‘š๐‘š2 Since the base angle obtained is still within the range (80-90ยฐ) as suggested by Coulson & Richardson, the design is valid Type of skirt Conical skirt Skirt diameter (m) 4.85 ๐‘š Skirt height (m) 5.335 ๐‘š Dead weight in skirt (test) 33.1278 N/mm2 Dead weight in skirt (operating) 3.2651 N/mm2 Skirt base angle, 89.73ยฐ 107
  • 107. SECTION 4 : MECHANICAL DESIGN Base Ring and Anchor Bolt Design Approximate pitch circle diameter, ๐ท = 4.90 ๐‘š Circumference of bolt circle, ๐ถ๐‘ = 15393. 80 ๐‘š๐‘š Take minimum bolt spacing = 600 ๐‘š๐‘š Maximum allowable bolt stress, ๐‘“๐‘ 125 N/mm2 Maximum moment of bottom skirt, ๐‘€๐‘  2441281.76 ๐‘๐‘š Area of bolt, ๐ด๐‘ 455.4961 mm2 Diameter of bolt, ๐ท๐‘๐‘ก 24.0823 ๐‘š๐‘š Maximum allowable ring stress, ๐‘“ ๐‘Ÿ 140 N/mm2 ๐‘๐‘ = ๐ถ๐‘ 600 = 25.6563 โ‰ˆ 28 ๐‘๐‘œ๐‘™๐‘ก๐‘  ๐‘š๐‘ข๐‘™๐‘ก๐‘–๐‘๐‘™๐‘’ ๐‘œ๐‘“ 4 From Coulson & Richardsonโ€™s Chemical Engineering Design, the bolt type selected is M30 as it is the closest standard size bolt larger than 24.0823 mm with a root area of 561mm2 Compressive load, Fb 158306.65 N/mm Maximum allowable bearing,Fc 7 N/mm2 Minimum width base ring, ๐ฟ๐‘ 22.6152 ๐‘š๐‘š Actual base ring width,๐‘Š๐‘ 134 ๐‘š๐‘š Actual bearing pressure, ๐‘“ ๐‘ โ€ฒ 1.1814๐‘/mm2 Base ring thickness. tbr 12.0923 ๐‘š๐‘š 108
  • 108. SECTION 4 : MECHANICAL DESIGN Nozzle design (Kent, 1980) For liquids ๐ท = 2.607 ๐‘Š ๐œŒ 0.434 Whereas: โ€ข D is in inches; W is in klbm/hr Stream W (klbm/hr) r (lbm/ft3) Schedule No. Dopt (mm) Dopt (in) Feed inlet 211.52 0.068 40s 641.35 25.25 Vapor top outlet 288.66 0.071 40 303.23 11.938 Reflux Inlet 96.28 46.75 40 102.26 4.026 bottom outlet 23.15 0.040 40 128.19 5.047 Boilup inlet 4.01 0.04 40 88.11 3.469 For gases ๐ท = 1.065 ๐‘Š0.408 ๐œŒ0.343 109
  • 109. AUTOCAD DRAWING OF DISTILLATION COLUMN, T-101 Torispherical head Plate design 110
  • 110. SPECIFICATION SHEET DSTILLATION COLUMN Identification: T-101 Date: 3/1/2014 Item: Distillation Column By: MAH HIN MAN No. of unit: 1 Function: To purify methanol up to desired purity of 99.85 wt% Operation: Continuous OPERATING DATA Materials handled: Feed Distillate Bottom Methanol (ton/hr) 88.74 87.13 1.61 Water (ton/hr) 7.20 0.13 7.07 Temperature (ยฐC) 80.0 64.3 97.3 Pressure (bar) 1.01 OPERATIONAL DESIGN Number of trays: 37 Reflux ratio: 0.5005 Feed point from bottom: 10 Tray spacing (m): 0.6 Column diameter (m): 4.8 Column height (m): 22.785 Maximum liquid flow rate (m3 /s): 0.03 Maximum vapor flow rate (m3 /s): 42.4384577 PLATE HYDRAULIC DESIGN Active area (m2): 16.0849544 Liquid flow arrangement: Cross flow Type of tray: Sieve tray Tray thickness (mm): 5 Hole diameter (mm) 5 Weir length (m): 3.504 Active holes: 81920 Weir height (mm): 50 Flow rate turndown (%): 70 Total plate pressure drop (mm liquid): 105.512318 Flooding percentage (%) 85 Entrainment: 0.018 Calming zone width (mm): 50 Unperforated strip round plate edge (mm): 50 MCHANICAL DESIGN Design pressure (bar): 1.1 Design temperature (ยฐC): 107.274114 Materials of construction Stainless steel 304 Column wall thickness (mm): 12 Type of head: Torisperical head Head thickness (mm): 12 Vessel support: Skirt Skirt thickness (mm): 14 Feed inlet nozzle size (in): 25.25 Corrosion allowance (mm): 2 Reflux inlet nozzle size (in): 4.026 Top outlet nozzle size (in): 11.938 Boilup inlet nozzle size (in) 3.469 Bottom outlet nozzle size (in): 5.047 111
  • 111. CONCLUSION FOR DISTILLATION COLUMN, T-101 โ€ข Column length = 22.785m โ€ข Column diameter = 4.8m โ€ข Number of actual stages = 37 โ€ข Column efficiency = 48.47% โ€ข No weeping โ€ข No flooding โ€ข Stress analysis passed.
  • 112. REFERENCES [1] Tonkovich, A.L.Y., Yang, B., Perry, S.T., Fitzgerald, S.P., Wang, Y. (2007). From Seconds to Milliseconds Through Tailored Microchannel Reactor Design of a Steam Methane Reformer, Catalysis Today, 120 (2007): 21-29. [2] Sinnott, R. K. (2005). Coulson & Richardsonโ€™s Chemical Engineering Design, vol. 6. Elsevier. [3] Towler, G. P., & Sinnott, R. K. (2008). Chemical Engineering Design: Principles, practice and economics of plant and Process Design. Elsevier/Butterworth-Heinemann. [4] Green, D. W., & Perry, R. H. (2008). Perryโ€™s Chemical Engineersโ€™handbook (8th ed.). McGraw-Hill. [5] Arthur. T (2010). Control structure design for methanol process. [6] Moulijn, J.A., Makkee, M., van Diepen, A.E. (2014). Chemical Process Technology, 2nd Edition. Doi: 10.1002/cite.201490040. 112

Editor's Notes

  1. Pd/Cu: Palladium supported on Copper
  2. - Korobitsyn et. al,
  3. - Korobitsyn et. al,
  4. Alpha values = Klerk et. al.
  5. Reaction kinetics from: Yates and Saterfield
  6. Insert line