SlideShare a Scribd company logo
Short Term Temperature and Hourly
Precipitation Prediction System
Nithyakumaran Gnanasekar
Under the Guidance of
Arthur Helmicki, Victor Hunt and Paul Talaga
Agenda
•Motivation
•Background
•Suggested Algorithm
•Results and discussion
•Future Work
Motivation
• During winter, ice accumulates onto the bridge stays,
which later drops down on the traffic when the
temperature increases.
• In Dec 19 2012 one such incident was occurred,
where a huge piece of ice to crashed on a vehicle’s
windshield
• Huge amount of multi dimensional data is collected
from the bridge and local weather station every few
minutes.
• UCII has designed and developed a warning system
providing timely warning and alert messages.
Background
• Prediction System can be classified into
• Univariate models
• Multivariate models
• The models can be further classified into
• Statistical method
• neural network based methods.
• Use of pre trained neural networks to provide online prediction is
exploited in this work.
• Once the network is trained the multivariate prediction can be
performed in real time.
Background
List of Inputs
Temperature
Humidity
Wind speed
Solar Radiation
Hourly Precipitation
Input
5*24= 120 Input Neurons
Output
8 Temperature neurons
Jain, Abhishek. Predicting air temperature for frost warning using artificial neural networks. Diss. uga, 2003
• Jain, Abhishek in his work used single layer neural
network to predict temperature for next eight
hours
• The Temperature Prediction was performed only
during early spring during sunrise.
• To warn the farmers about morning frost that
damage orchids
Suggested Algorithm
• Temperature Prediction System
• Hourly Precipitation Prediction
System
• Data Collection
• Data Segmentation
• Neural Network Design
• Train Network
• Decay and Weights
• Input/output variable selection
• Predict Data
• Algorithm
• Variable Selection
• Stations Selection
• Number of hours of input data
• Output representation
• Bagging
Algorithm- Temperature Prediction System
Data Collection Segment Data Train
Network
Predict SectionTrain Section
Predict Data Web Interface
Data Collection
Stations Type Time Interval
Local Weather Stations 5,10,12,15 min
Airports 60 – 30 min
On Bridge Sensors 10,15 min
Data Collection:
• Data is collected at irregular Time intervals
• Cubic Spline interpolation is used to fix
missing values
• The data is aggregated to be hourly
frequency.
Station 1
Station 2
Station 15
South Tower
Cubic Spline Imputation
Aggregate to Hourly Data
.
.
.
.
.
.
.
.
.DB
Stations, Airports, Sensors
Algorithm- Temperature Prediction System
Data Collection
Segment Data Train
Network
Predict Data Web Interface.
.
Training Section Cubic Spline Interpolation
Predict Section
Segment Data
Data
-7 to 0
0-15
15-28
28-34
Hourly Aggregated data Classifier
Normalized data with Min Max Information
Normalize
Normalize
Normalize
Normalize
Data
Data
Data
Data
• The Hourly Aggregated Data from Data
Collection section is used as input.
• The Data is first segmented into four buckets.
• This is accordance with neural network design.
• The Mean temperature for every 24 hours is
calculated and is used for classification
• Every variable is then normalized to read
between 1-0.
• The Min Max information required for de-
normalization is attached along with the data.
Temperature
Hourly
Precipitation Humidity
Wind
Speed
Solar
Radiation
Max 7.016667 3.704762 97 35.30526 643.75
Min -10.1696 0 35.1875 0 0
Min Max Information Stored along with Data
Expert System Design
-7 to 0
0-15
15-28
28-34
Classifier
Output
The Classifier sends the input based on
mean temperature to corresponding
network.
Every input is given to only one neural
network for training.
Only one output is computed at any
given time.
This system performs well and reduces
error due to large denormalization
* All four Blocks are classical back propagation network with one hidden layer
Algorithm- Temperature Prediction System
Data Collection
Segment Data Train
Network
Predict Data Web Interface
Training Section Cubic Spline Interpolation Segment Data
Predict Section Normalized Data with Min Max info
Segment Data
.
.
Train Network
• The train network can be tuned for
parameter
• Decay
• Number of weights
• The network splits the training set into two set
• 90% data for Training
• 10% for evaluating.
• The 10% of evaluation sample is a
random set picked from training set.
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RMSE(C)
Decay Parameter
Decay Parameter
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
0 5 10 15 20 25 30 35
RMSE(C)
Number of Neurons
Number of Neurons
Train Network
• The decay and weights can be
provided as sequence.
• The network would iterate through
the combination
• Provide a report on such a data set. S.no neuron decay rmse sse maxerror meanerror
1 1 1.00E-01 2.290552 23588.85 8.499794 0.30368227
2 1 1.00E-05 2.572076 29743.62 10.92812 -0.09750547
3 1 1.00E-02 2.472744 27490.63 10.154952 -0.07979373
4 2 1.00E-01 2.283635 23446.58 8.616908 0.49384269
5 2 1.00E-05 3.73943 62869.07 14.439244 -0.97010542
6 2 1.00E-02 2.284121 23456.56 8.953333 -0.08007818
7 3 1.00E-01 2.157424 20926.54 7.961871 0.39193959
8 3 1.00E-05 6.009436 162365.5 20.995079 2.84870665
9 3 1.00E-02 2.322157 24244.28 11.334819 0.87290343
10 4 1.00E-01 2.143207 20651.63 7.892792 0.36539226
11 4 1.00E-05 3.81584 65464.6 12.887219 -0.53080024
12 4 1.00E-02 2.210153 21961.95 10.485526 0.57920437
13 5 1.00E-01 2.079384 19439.97 7.621765 0.32835461
14 5 1.00E-05 3.700756 61575.39 12.738093 0.48186848
15 5 1.00E-02 2.173325 21236.15 10.482595 0.32212886
16 6 1.00E-01 2.047381 18846.18 7.54331 0.28953601
17 6 1.00E-05 5.057563 115002.9 17.145608 0.18968488
18 6 1.00E-02 2.102648 19877.39 7.163767 -0.17827613
19 7 1.00E-01 2.064283 19158.65 7.525051 0.26114947
20 7 1.00E-05 4.861489 106258.8 12.917473 -1.98795079
$net
a 144-10-8 network with 1538 weights options were - decay=0.1
$minMax
row Temperature HourlyPrecipitation Humidity WindSpeed SolarRadiation diff
1 Max 7.016667 3.704762 97.0000 35.30526 643.75 2.413333
2 Min -10.169565 0.000000 35.1875 0.00000 0.00 -2.520000
$bestNet
"Best selected configuration has hidden neuron 10 and decay 0.1"
$rmse 2.290552
Network
Description
Min Max
Information Chosen
Network
Configuration
Detailed
Report for all
combination
Neural Network Training Section Cubic Spline Interpolation Normalized Data with Min Max info
Online Prediction and Web Section Trained Neural Network Segment Data
Algorithm- Temperature Prediction System
Data Collection
Train
Network
Predict Data Web Interface
Segment Data Train Network
Segment Data.
.
Output/Input Selection
• In the previous works listed in the
background
• All the variables collected were fed to
neural network as input.
• No were performed on the correlation
between the variables.
• Correlation analysis between the variables
led to using better set of input and in
improving prediction result.
Correlation Plot Between Variables
http://10.39.8.247/predict/correlation.php#tabs-1
Temperature Difference Correlation plot
http://10.39.8.247/predict/correlation.php#tabs-2
Output/Input Selection
List of Inputs
Temperature
Hourly Precipitation
Solar Radiation
Pressure
Wind Speed
Humidity
Temperature Difference
Input
7*24= 168 Input Neurons
Output
8 Temperature Difference neurons
AfterCorrelationAnalysisandsimulation
http://10.39.8.247/predict/TemperatureDiff.php
0
5
10
15
20
25
30
Numberofneurons
Neuron
0.39
0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
(C)
Root Mean Square Error for Variable Combination
Neural Network Training Section Cubic Spline Interpolation Normalized Data with Min Max info
Online Prediction and Web Section Trained Neural Network Segment Data
Algorithm- Temperature Prediction System
Data Collection
Predict Data Web Interface
Segment Data Train Network
Train
Network
Segment Data.
.
Predict Data
[1] [2]Data Classifier
[1] Data Collection Section [2] Data Segmentation Section Trained Neural Network
data w/o minMax Normalized Data with MinMax
Data
• Last 24 hours of data is picked. It is passed through data
collection section
• This data is then sent to classifier to identify the
appropriate Neural network
• This provides the minMax Information for normalization
• The data is then passed thorough segmentation section
• This is then provided to network to predict newer values
*Note Every Hour has 8 predicted values
Neural Network Training Section Cubic Spline Interpolation Normalize Data Multiple Sections
Online Prediction and Web Section Trained Neural Network Segment Data
Algorithm- Temperature Prediction System
Data Collection
Web Interface
Segment Data Train Network
Train
Network
Segment Data.
.
Web Interface
• Configuration
• PHP 5.4
• Zend Framework
• D3.js for plotting
• Uses MYSQL Database
• Complaint with UCII site.
Algorithm- Temperature Prediction System
Data Collection Segment Data Train Network Predict Data Web Interface
Train
Network
Segment Data.
.
Neural Network Training Section Cubic Spline Interpolation Normalize Data Multiple Sections
Online Prediction and Web Section Trained Neural Network Segment Data
Suggested Algorithm
• Temperature Prediction System
• Hourly Precipitation Prediction
System
• Data Collection
• Data Segmentation
• Neural Network Design
• Train Network
• Decay and Weights
• Input/output variable selection
• Predict Data
• Algorithm
• Variable Selection
• Stations Selection
• Number of hours of input data
• Output representation
• Bagging
Algorithm- Hourly Prediction System
Data Collection Train Network Predict Data Web Interface
Train
Network
Normalize Data.
.
Neural Network Training Section Cubic Spline Interpolation Multiple Sections
Online Prediction and Web Section Trained Neural Network Aggregate Data
Variable Selection-Correlation
• Output
• 4 hours of Probability data for
Hourly Precipitation
http://10.39.8.247/predict/correlation.php#div-1
All Variables
Temperature
Humidity
Dew point
Pressure
Wind Speed
Wind Speed Gust
Wind Direction
Wind Direction Degree
Daily Rain
Hourly Precipitation
Selected Variables
Hourly Precipitation
Humidity
Wind Direction
Daily Rain
Solar Radiation
Temperature
Cross Correlation Between Variables
HP Vs Humidity HP Vs Pressure HP Vs Solar Radiation
HP Vs Temperature HP Vs Wind Direction Degree HP Vs Wind Speed
*HP- Hourly Precipitation
Variable Selection-Cross Correlation
HP Vs Humidity HP Vs Pressure HP Vs Solar Radiation
HP Vs Temperature HP Vs Wind Direction Degree HP Vs Wind Speed
Selected Variables
Hourly Precipitation
Humidity
Wind Direction
Daily Rain
Solar Radiation
Temperature
All Variables
Temperature
Humidity
Dew point
Pressure
Wind Speed
Wind Speed Gust
Wind Direction
Wind Direction Degree
Daily Rain
Hourly Precipitation
Selected Variables
Hourly Precipitation
Humidity
Daily Rain
Wind Direction
Correlation
Cross Correlation
*Daily Rain is Picked for further analysis as it similar to Hourly Precipitation
Simulation –Variable Combination
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
HP-WD-DR-T
HP-P-WD-H-T
HP-P-WD-T
HP-WD-H-T
HP-SR-P-WS
HP-P-WD-DR-T
HP-SR-P-WD-WS
HP-P-WS-DR
HP-T
HP-H-T
HP-SR-WS-H-DR
T-HP-SR-P-WD-WS-DR
HP-SR-WS-H-T
HP-SR-P-WS-H
HP-WS-DR-T
HP-WD-DR
HP-SR-T
T-HP-SR-P-WD-H-DR
HP-P-WD
HP-SR-WD-WS-DR-T
HP-SR-P-WD-WS-T
HP-SR-P-WD-H-T
HP-WS-H-DR-T
HP-SR-H-DR-T
HP-SR-P-H-T
HP-P-WD-H
HP-P-WS
HP-SR-P-H
HP-P-T
HP-SR-P
HP-P-WD-WS-H-T
HP-SR-WD-H-DR-T
MeanAbsoluteError
Mean Absolute Error
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0 1 2 3 4 5 6 7 8
MeanAbsoluteError
Number of Variables used
Mean Absolute Error
• List of Selected Variables Combinations
• HP-WD-H-DR
• HP-WD-DR-T
• HP-WD-H-DR-T
• HP-P-WD-WS-DR
• HP-P-WD-H-T
• Legend
• T- Temperature
• HP- Hourly Precipitation
• WD- Wind Direction
• WS- Wind Speed
• P- Pressure
• H- Humidity
• DR- Daily Rain
• SR- Solar Radiation
• HP-SR-WD-DR
• HP-P-WD-DR
• HP-P-WD-WS-H
• HP-P-WD-T
• HP-WD-WS-H-T
Variable Selection-Simulation
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
HP-WD-DR-T
HP-P-WD-WS-DR
HP-P-WD-DR
HP-WD-WS-H-T
HP-WD-H-T
HP-WD-WS-DR-T
HP-P-WD-H-DR
HP-SR-H-DR
HP-SR-P-WD-WS
HP-SR-DR-T
HP-SR
HP-SR-WS-DR
HP-H-T
HP-SR-WS-DR-T
HP-SR-WD-WS
HP-H
HP-SR-WS-H-T
HP-SR-WD-H-DR
T-HP-SR-P-WS-…
HP-SR-P-WD-H
HP-WD-DR
HP-SR-P-WD-…
HP-SR-WS-H-DR-T
HP-P-WS-H-T
HP-P-WD
HP-SR-H
HP-SR-P-WD-DR-T
HP-SR-WD-WS-…
HP-SR-P-WD-H-T
HP-WD-WS
HP-P-H-DR
HP-SR-P-H-DR
HP-SR-P-H-T
HP-WD-WS-H-DR
HP-WD-WS-H
HP-SR-WS-H
HP-SR-P-H
HP-H-DR
HP-P-H-DR-T
HP-WD
HP-P-WD-WS-H-T
HP-SR-P-WS-DR-T
MeanAbsoluteError
Mean Absolute Error
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0 1 2 3 4 5 6 7 8
MeanAbsoluteError
Number of Variables used
Mean Absolute ErrorSelected Variables
Hourly Precipitation
Humidity
Wind Direction
Daily Rain
Solar Radiation
Temperature
All Variables
Temperature
Humidity
Dew point
Pressure
Wind Speed
Wind Speed Gust
Wind Direction
Wind Direction Degree
Daily Rain
Hourly Precipitation
Selected Variables
Hourly Precipitation
Humidity
Daily Rain
Wind Direction
Selected Variables
Hourly Precipitation
Humidity
Daily Rain
Wind Direction
Correlation
Cross Correlation
Simulation
Stations that can be used as Good Predictors
0
5
10
15
20
25
-7 -6 -5 -4 -3 -2 -1
Burna10
CWWK
Ibccoqui5
Ibcpittm3
Surre10
Surre6
Cross Correlation Between Stations for Hourly Precipitation
SURRE21-COQUI5 SURRE21-SURRE6 SURRE21-PITTM3
SURRE21-BURNA 10 SURRE21-SURRE10
Cross Correlation Between Stations for Hourly Precipitation- Daily Rain
SURRE21-Surre10 SURRE21-Surre6
SURRE21-COQUI5 SURRE21-BURNA10
Cross Correlation Between Stations for Hourly Precipitation- Humidity
SURRE21-BURNA10 SURRE21-CWMM SURRE21-CWWK
SURRE21-COQUI5 SURRE21-SURRE6 SURRE21-SURRE10
Input Selection –Station Combination
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0 1 2 3 4 5 6 7
MAE
Number of Input Variables
MEAN Absolute Error
Best Combination
Surre21,Burna 10, Ibccoqui5
Surre21,Burna 10, PITM3
Surre21,PITM3, Surre6
0
0.05
0.1
0.15
0.2
0.25
0.3
Sur21-NA10-IBC5
Sur21-PIT3-Sur10-CWMM
Sur21-NA10-IBC5-PIT3-Sur6
Sur21-NA10-PIT3-Sur10-CWMM-CWWK
Sur21-NA10-IBC5-Sur10-Sur6
Sur21-NA10-IBC5-PIT3-Sur6-CWWK
Sur21-NA10-PIT3-Sur6-CWMM-CWWK
Sur21-NA10-IBC5-Sur6-CWWK
Sur21-IBC5-Sur10-Sur6
Sur21-IBC5-Sur6
Sur21-IBC5-PIT3-Sur10-Sur6
Sur21-NA10-IBC5-PIT3-Sur6-CWMM
Sur21-IBC5-Sur10-Sur6-CWWK
Sur21-Sur10-CWMM-CWWK
Sur21-PIT3-Sur10-CWWK
Sur21-IBC5
Sur21-NA10-IBC5-PIT3-Sur10
Sur21-NA10-PIT3-CWMM
Sur21-IBC5-PIT3-Sur10-CWWK
Sur21-IBC5-CWMM
Sur21-NA10-PIT3-Sur10-CWWK
Sur21-Sur10-Sur6-CWWK
Sur21-IBC5-PIT3-Sur6
Sur21-Sur6-CWMM
Sur21-IBC5-Sur10-CWWK
Sur21-PIT3-Sur10-Sur6-CWMM
Sur21-IBC5-Sur6-CWMM
Sur21-NA10-Sur10-CWWK
Sur21-IBC5-Sur6-CWWK
Sur21-IBC5-Sur6-CWMM-CWWK
Sur21-Sur10-Sur6-CWMM
Sur21-NA10-Sur10-CWMM-CWWK
Sur21-NA10-IBC5-PIT3-CWMM
Sur21-Sur10-CWMM
Sur21-PIT3
MeanAbsoluteError
Combination Plot for Stations
Number of Hours of Input Data
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0 5 10 15 20 25 30
MAE
Number of hours
Number of Input hours of data required
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
0 5 10 15 20 25 30 35
MAE
Number of Neurons
Number of Neurons
• Number of Hours input data- 24
• Number of hidden Neurons=13
Input/Output Representation
• Input is 24 hour Normalized data from three stations and 3 variables from
the stations.
• Output is 4 variable. Each variable indicating probability of rain for every
hour ahead.
Date Time Hour1 Hour2 Hour3 Hour4
… 0 0 0 0
…. 0 1 0 0
… 1 0 0 0
…. 0 0 0 1
• Sample Actual Output Data Used for Training
• Rainfall>1(mm) ? Output=1 : Output =0
2^4= 16 different Combinations of possible Output
Distribution of Actual Output Classes
2011-2013
Bagging
• Bagging is way of
boosting the system
performance by
altering the class
distribution in the
training set.
• This ensures
prediction is not
always skewed
towards the largest
occurring class
Agenda
•Motivation
•Background
•Suggested Algorithm
•Results and discussion
•Future Work
Results –Temperature Prediction System
Evening Morning On a Rainy day
Before rainfall During Snowfall
Error Plot For Jan ‘14 to March ‘14
y = 0.9791x + 0.1056
RMSE=0.569079
-10
-5
0
5
10
15
20
-10 -5 0 5 10 15 20
PredictedTemperature(C)
Actual Temperature (C)
Predicted Temperature 1-2 (hour)
y = 0.9519x + 0.2233
RMSE= 0.875618
-10
-5
0
5
10
15
20
-10 -5 0 5 10 15 20
ActualTemperature(C)
Predicted Value (C)
Predicted Temperature 3-4 th (hour)
y = 0.927x + 0.3126
RMSE=1.083171
-10
-5
0
5
10
15
20
-10 -5 0 5 10 15 20
ActualTemperature(C)
Predicted Temperature (C)
Predicted Temperature 5-6 (hour)
y = 0.9022x + 0.4126
RMSE=1.302739
-10
-5
0
5
10
15
20
-10 -5 0 5 10 15 20
ActualTemperature Predicted Temperature (C)
Predicted Temperature 7-8(hour)
Error Plots
Jan 14
April 14
Feb 14
Jan- Apr 14
Hourly Precipitation Results
0
0.5
1
1.5
2
2.5
3
0
10
20
30
40
50
60
70
80
90
100
12:00AM
1:00AM
2:00AM
3:00AM
4:00AM
5:00AM
6:00AM
7:00AM
8:00AM
9:00AM
10:00AM
11:00AM
12:00PM
1:00PM
2:00PM
3:00PM
4:00PM
5:00PM
6:00PM
Precipitation(mm)
Probability(%)
Low Rain 1/7/2014
0
0.5
1
1.5
2
2.5
3
3.5
4
0
10
20
30
40
50
60
70
80
90
100
2:00AM
3:00AM
4:00AM
5:00AM
6:00AM
7:00AM
8:00AM
9:00AM
10:00AM
11:00AM
12:00PM
1:00PM
2:00PM
3:00PM
4:00PM
5:00PM
6:00PM
7:00PM
8:00PM
Precipitation(mm)
Probability(%)
Average Rain 1/2/2014
0
1
2
3
4
5
6
7
8
0
20
40
60
80
100
Precipitation(mm)
Probability(%)
Heavy Rain 1/11/2014
0
0.5
1
1.5
2
2.5
3
0
10
20
30
40
50
60
70
80
90
100
6:00AM
7:00AM
8:00AM
9:00AM
10:00AM
11:00AM
12:00PM
1:00PM
2:00PM
3:00PM
4:00PM
5:00PM
6:00PM
7:00PM
8:00PM
9:00PM
10:00PM
11:00PM
Precipitation(mm)
Probability(%)
Snow Fall 2/22/2014
Legend
Precipitation(mm)- Right axis
Probability (%) -Left axis
Error Plot
Predicted
Error Computed for Random Sample data 2011-2013
*This data was not used for Training
Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Output Class 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Predicted
actual actual
counts percentage
Agenda
•Motivation
•Background
•Suggested Algorithm
•Results and discussion
•Future Work
Future Work
• Extending Hourly Precipitation algorithm to other stations and bridge
sensors
• Study of using predicted data as an input to another prediction to
creating a feed back network.
• Using radar data to predict hourly precipitation to increase accuracy.
Questions?
Thank you
Additional Materials
Hourly Precipitation Vs Humidity
6-23-13
5-11-13
1-3-13
Hourly Precipitation Vs Pressure
6-23-13
5-11-13
1-3-13
Hourly Precipitation Vs Solar Radiation
6-23-13
5-25-13
1-3-13
Hourly Precipitation Vs Temperature
6-23-13
5-25-13
1-3-13
Hourly Precipitation Vs Wind Direction
6-23-13
5-25-13
1-3-13
Back time lagged correlation
Hourly Precipitation Vs Wind Direction
Back time lagged correlation
0
50
100
150
200
250
300
350
Degree
Direction Vs Degress
2013- 6 Hours Prior to Rainfall- Wind Direction Distribution
Temperature Prediction - Evening Drop
-3
-2
-1
0
1
2
3
4
5
6
12:00:00PM
2:24:00PM
4:48:00PM
7:12:00PM
9:36:00PM
12:00:00AM
2:24:00AM
4:48:00AM
7:12:00AM
9:36:00AM
(C)
Temperature Prediction 1-4-14
Temperature Prediction 1 Prediction2 Prediction3 Prediction 4 Prediction 5 Prediction 6 Prediction 7 Prediction 8
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
12:00:00 PM 2:24:00 PM 4:48:00 PM 7:12:00 PM 9:36:00 PM 12:00:00 AM 2:24:00 AM 4:48:00 AM 7:12:00 AM 9:36:00 AM
(C)
Mean Error
Temperature Prediction- Morning Rise.
-2
-1
0
1
2
3
4
19:12
0:00
4:48
9:36
14:24
19:12
0:00
(C)
Temperature Prediction (1-6-14)
Temperature Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Predict 7 Predict 8
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
0 5 10 15 20 25 30
(C)
Mean Error
Temperature Prediction for Complete rainy
day
6
6.5
7
7.5
8
7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00 2:24
(C)
Temperature Prediction 1-11-14
Temperature Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00 2:24
(C)
Mean Error
Temperature Prediction Before Rainfall
0
1
2
3
4
5
0:00 2:24 4:48 7:12 9:36 12:00 14:24 16:48
(C)
Temperature Prediction 2-10-14
Temperature Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
0 2 4 6 8 10 12 14 16 18 20
(C)
DateTime
Mean Error
Temperature Prediction During Snow
-2
-1
0
1
2
3
9:36 12:00 14:24 16:48 19:12 21:36 0:00 2:24 4:48
(C)
Temperature Prediction 02-22-14
Temperature Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
0 2 4 6 8 10 12 14 16 18
(C)
Date Time
Mean Error
Hourly Precipitation – Low rain
0
0.5
1
1.5
2
2.5
3
0
10
20
30
40
50
60
70
80
90
100
12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM
Precipitation(mm)
Probability(%)
Rainfall Prediction 1/7/2014
Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 Precipitation
Hourly Precipitation – Average rain
0
0.5
1
1.5
2
2.5
3
3.5
4
0
10
20
30
40
50
60
70
80
90
100
2:00
AM
3:00
AM
4:00
AM
5:00
AM
6:00
AM
7:00
AM
8:00
AM
9:00
AM
10:00
AM
11:00
AM
12:00
PM
1:00
PM
2:00
PM
3:00
PM
4:00
PM
5:00
PM
6:00
PM
7:00
PM
8:00
PM
PRECIPITATION(MM)
PROBABILITY(%)
Rainfall Prediction 1/2/2014
Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 Precipitation
Hourly Precipitation – Heavy rain
0
1
2
3
4
5
6
7
8
0
20
40
60
80
100
4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM 9:00 PM 10:00 PM 11:00 PM 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 8:00 PM
Precipitation(mm)
Probability(%)
Rainfall Prediction 1/11/2014
Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 Precipitation
Hourly Precipitation – Snow Fall
0
0.5
1
1.5
2
2.5
3
0
10
20
30
40
50
60
70
80
90
100
6:00
AM
7:00
AM
8:00
AM
9:00
AM
10:00
AM
11:00
AM
12:00
PM
1:00
PM
2:00
PM
3:00
PM
4:00
PM
5:00
PM
6:00
PM
7:00
PM
8:00
PM
9:00
PM
10:00
PM
11:00
PM
PRECIPITATION(MM)
PROBABILITY(%)
Rainfall Prediction 2/22/2014
Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 Precipitation

More Related Content

What's hot

Short term power forecasting Awea 2014
Short term power forecasting Awea 2014Short term power forecasting Awea 2014
Short term power forecasting Awea 2014
Jean-Claude Meteodyn
 
Primary mirror edge sensor project for the Southern African Large Telescope
Primary mirror edge sensor project for the Southern African Large TelescopePrimary mirror edge sensor project for the Southern African Large Telescope
Primary mirror edge sensor project for the Southern African Large Telescope
DeonBester4
 
Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scie...
Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scie...Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scie...
Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scie...
Igor Sfiligoi
 
An energy efficient and delay-aware wireless computing system for industrial ...
An energy efficient and delay-aware wireless computing system for industrial ...An energy efficient and delay-aware wireless computing system for industrial ...
An energy efficient and delay-aware wireless computing system for industrial ...
redpel dot com
 
Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all ...
Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all ...Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all ...
Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all ...
Igor Sfiligoi
 
SkyhookDM - Towards an Arrow-Native Storage System
SkyhookDM - Towards an Arrow-Native Storage SystemSkyhookDM - Towards an Arrow-Native Storage System
SkyhookDM - Towards an Arrow-Native Storage System
JayjeetChakraborty
 
An Energy-Efficient and Delay-Aware Wireless Computing System for Industrial ...
An Energy-Efficient and Delay-Aware Wireless Computing System for Industrial ...An Energy-Efficient and Delay-Aware Wireless Computing System for Industrial ...
An Energy-Efficient and Delay-Aware Wireless Computing System for Industrial ...
Arun Das
 
Timing-pulse measurement and detector calibration for the OsteoQuant®.
Timing-pulse measurement and detector calibration for the OsteoQuant®.Timing-pulse measurement and detector calibration for the OsteoQuant®.
Timing-pulse measurement and detector calibration for the OsteoQuant®.
Binu Enchakalody
 
Solar panel monitoring solution using IoT-Faststream Technologies
Solar panel monitoring solution using IoT-Faststream TechnologiesSolar panel monitoring solution using IoT-Faststream Technologies
Solar panel monitoring solution using IoT-Faststream Technologies
Sudipta Maity
 
Monitoring of Transmission and Distribution Grids using PMUs
Monitoring of Transmission and Distribution Grids using PMUsMonitoring of Transmission and Distribution Grids using PMUs
Monitoring of Transmission and Distribution Grids using PMUs
Luigi Vanfretti
 
clase de evidencia y procedimiento
clase de evidencia y procedimientoclase de evidencia y procedimiento
clase de evidencia y procedimiento
mariaramossalgado
 
SENSOR SELECTION SCHEME IN TEMPERATURE WIRELESS SENSOR NETWORK
SENSOR SELECTION SCHEME IN TEMPERATURE WIRELESS SENSOR NETWORKSENSOR SELECTION SCHEME IN TEMPERATURE WIRELESS SENSOR NETWORK
SENSOR SELECTION SCHEME IN TEMPERATURE WIRELESS SENSOR NETWORK
ijwmn
 
IRJET- Land Mine Data Collection System using Long Range WiFi and P2P Com...
IRJET-  	  Land Mine Data Collection System using Long Range WiFi and P2P Com...IRJET-  	  Land Mine Data Collection System using Long Range WiFi and P2P Com...
IRJET- Land Mine Data Collection System using Long Range WiFi and P2P Com...
IRJET Journal
 
"Building and running the cloud GPU vacuum cleaner"
"Building and running the cloud GPU vacuum cleaner""Building and running the cloud GPU vacuum cleaner"
"Building and running the cloud GPU vacuum cleaner"
Frank Wuerthwein
 
NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic...
 NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic... NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic...
NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic...
Igor Sfiligoi
 
Burst data retrieval after 50k GPU Cloud run
Burst data retrieval after 50k GPU Cloud runBurst data retrieval after 50k GPU Cloud run
Burst data retrieval after 50k GPU Cloud run
Igor Sfiligoi
 

What's hot (16)

Short term power forecasting Awea 2014
Short term power forecasting Awea 2014Short term power forecasting Awea 2014
Short term power forecasting Awea 2014
 
Primary mirror edge sensor project for the Southern African Large Telescope
Primary mirror edge sensor project for the Southern African Large TelescopePrimary mirror edge sensor project for the Southern African Large Telescope
Primary mirror edge sensor project for the Southern African Large Telescope
 
Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scie...
Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scie...Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scie...
Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scie...
 
An energy efficient and delay-aware wireless computing system for industrial ...
An energy efficient and delay-aware wireless computing system for industrial ...An energy efficient and delay-aware wireless computing system for industrial ...
An energy efficient and delay-aware wireless computing system for industrial ...
 
Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all ...
Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all ...Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all ...
Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all ...
 
SkyhookDM - Towards an Arrow-Native Storage System
SkyhookDM - Towards an Arrow-Native Storage SystemSkyhookDM - Towards an Arrow-Native Storage System
SkyhookDM - Towards an Arrow-Native Storage System
 
An Energy-Efficient and Delay-Aware Wireless Computing System for Industrial ...
An Energy-Efficient and Delay-Aware Wireless Computing System for Industrial ...An Energy-Efficient and Delay-Aware Wireless Computing System for Industrial ...
An Energy-Efficient and Delay-Aware Wireless Computing System for Industrial ...
 
Timing-pulse measurement and detector calibration for the OsteoQuant®.
Timing-pulse measurement and detector calibration for the OsteoQuant®.Timing-pulse measurement and detector calibration for the OsteoQuant®.
Timing-pulse measurement and detector calibration for the OsteoQuant®.
 
Solar panel monitoring solution using IoT-Faststream Technologies
Solar panel monitoring solution using IoT-Faststream TechnologiesSolar panel monitoring solution using IoT-Faststream Technologies
Solar panel monitoring solution using IoT-Faststream Technologies
 
Monitoring of Transmission and Distribution Grids using PMUs
Monitoring of Transmission and Distribution Grids using PMUsMonitoring of Transmission and Distribution Grids using PMUs
Monitoring of Transmission and Distribution Grids using PMUs
 
clase de evidencia y procedimiento
clase de evidencia y procedimientoclase de evidencia y procedimiento
clase de evidencia y procedimiento
 
SENSOR SELECTION SCHEME IN TEMPERATURE WIRELESS SENSOR NETWORK
SENSOR SELECTION SCHEME IN TEMPERATURE WIRELESS SENSOR NETWORKSENSOR SELECTION SCHEME IN TEMPERATURE WIRELESS SENSOR NETWORK
SENSOR SELECTION SCHEME IN TEMPERATURE WIRELESS SENSOR NETWORK
 
IRJET- Land Mine Data Collection System using Long Range WiFi and P2P Com...
IRJET-  	  Land Mine Data Collection System using Long Range WiFi and P2P Com...IRJET-  	  Land Mine Data Collection System using Long Range WiFi and P2P Com...
IRJET- Land Mine Data Collection System using Long Range WiFi and P2P Com...
 
"Building and running the cloud GPU vacuum cleaner"
"Building and running the cloud GPU vacuum cleaner""Building and running the cloud GPU vacuum cleaner"
"Building and running the cloud GPU vacuum cleaner"
 
NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic...
 NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic... NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic...
NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic...
 
Burst data retrieval after 50k GPU Cloud run
Burst data retrieval after 50k GPU Cloud runBurst data retrieval after 50k GPU Cloud run
Burst data retrieval after 50k GPU Cloud run
 

Similar to Masters Thesis

A Scalable and Distributed Electrical Power Monitoring System Utilizing Cloud...
A Scalable and Distributed Electrical Power Monitoring System Utilizing Cloud...A Scalable and Distributed Electrical Power Monitoring System Utilizing Cloud...
A Scalable and Distributed Electrical Power Monitoring System Utilizing Cloud...
Ryousei Takano
 
DEVNET-1163 Data in Motion APIs
DEVNET-1163	Data in Motion APIsDEVNET-1163	Data in Motion APIs
DEVNET-1163 Data in Motion APIs
Cisco DevNet
 
Application of machine learning and cognitive computing in intrusion detectio...
Application of machine learning and cognitive computing in intrusion detectio...Application of machine learning and cognitive computing in intrusion detectio...
Application of machine learning and cognitive computing in intrusion detectio...
Mahdi Hosseini Moghaddam
 
Thesis
ThesisThesis
Lecture+9+-+SCADA+Systems.pptx
Lecture+9+-+SCADA+Systems.pptxLecture+9+-+SCADA+Systems.pptx
Lecture+9+-+SCADA+Systems.pptx
surangagw
 
ROLE OF DIGITAL SIMULATION IN CONFIGURING NETWORK PARAMETERS
ROLE OF DIGITAL SIMULATION IN CONFIGURING NETWORK PARAMETERSROLE OF DIGITAL SIMULATION IN CONFIGURING NETWORK PARAMETERS
ROLE OF DIGITAL SIMULATION IN CONFIGURING NETWORK PARAMETERS
Deepak Shankar
 
Revisiting Sensor MAC for Periodic Monitoring: Why Should Transmitters Be Ear...
Revisiting Sensor MAC for Periodic Monitoring: Why Should Transmitters Be Ear...Revisiting Sensor MAC for Periodic Monitoring: Why Should Transmitters Be Ear...
Revisiting Sensor MAC for Periodic Monitoring: Why Should Transmitters Be Ear...
deawoo Kim
 
How HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental scienceHow HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental science
inside-BigData.com
 
VIP - Wheelchair Project Final Presentation
VIP - Wheelchair Project Final PresentationVIP - Wheelchair Project Final Presentation
VIP - Wheelchair Project Final Presentation
Karvin Dassanayake
 
A Cyber Physical Approach to a Combined Hardware-Software
A Cyber Physical Approach to a Combined Hardware-Software A Cyber Physical Approach to a Combined Hardware-Software
A Cyber Physical Approach to a Combined Hardware-Software
GreenLSI Team, LSI, UPM
 
Sdn future of networks
Sdn future of networksSdn future of networks
Sdn future of networks
Ahmed El-Sayed
 
Lecture+9+-+SCADA+Systems.pdf
Lecture+9+-+SCADA+Systems.pdfLecture+9+-+SCADA+Systems.pdf
Lecture+9+-+SCADA+Systems.pdf
SmritiGarg21
 
Future Grid Overview 2018
Future Grid Overview 2018Future Grid Overview 2018
Future Grid Overview 2018
Chris J Law
 
RECAP: The Simulation Approach
RECAP: The Simulation ApproachRECAP: The Simulation Approach
RECAP: The Simulation Approach
RECAP Project
 
Mannasim for NS2
Mannasim for NS2Mannasim for NS2
Mannasim for NS2
Pradeep Kumar TS
 
Multilin™ Intelligent Line Monitoring System
Multilin™ Intelligent Line Monitoring SystemMultilin™ Intelligent Line Monitoring System
Multilin™ Intelligent Line Monitoring System
Corporación Eléctrica del Ecuador, CELEC EP
 
⭐⭐⭐⭐⭐ Learning-based Energy Consumption Prediction
⭐⭐⭐⭐⭐ Learning-based Energy Consumption Prediction⭐⭐⭐⭐⭐ Learning-based Energy Consumption Prediction
⭐⭐⭐⭐⭐ Learning-based Energy Consumption Prediction
Victor Asanza
 
Artificial neural networks
Artificial neural networks Artificial neural networks
Artificial neural networks
Tharushi Ruwandika
 
A Low-cost and Scalable Visualization System for Electricity Consumption
A Low-cost and Scalable Visualization System for Electricity ConsumptionA Low-cost and Scalable Visualization System for Electricity Consumption
A Low-cost and Scalable Visualization System for Electricity Consumption
Ryousei Takano
 
DNA: an overview
DNA: an overviewDNA: an overview
DNA: an overview
Cisco DevNet
 

Similar to Masters Thesis (20)

A Scalable and Distributed Electrical Power Monitoring System Utilizing Cloud...
A Scalable and Distributed Electrical Power Monitoring System Utilizing Cloud...A Scalable and Distributed Electrical Power Monitoring System Utilizing Cloud...
A Scalable and Distributed Electrical Power Monitoring System Utilizing Cloud...
 
DEVNET-1163 Data in Motion APIs
DEVNET-1163	Data in Motion APIsDEVNET-1163	Data in Motion APIs
DEVNET-1163 Data in Motion APIs
 
Application of machine learning and cognitive computing in intrusion detectio...
Application of machine learning and cognitive computing in intrusion detectio...Application of machine learning and cognitive computing in intrusion detectio...
Application of machine learning and cognitive computing in intrusion detectio...
 
Thesis
ThesisThesis
Thesis
 
Lecture+9+-+SCADA+Systems.pptx
Lecture+9+-+SCADA+Systems.pptxLecture+9+-+SCADA+Systems.pptx
Lecture+9+-+SCADA+Systems.pptx
 
ROLE OF DIGITAL SIMULATION IN CONFIGURING NETWORK PARAMETERS
ROLE OF DIGITAL SIMULATION IN CONFIGURING NETWORK PARAMETERSROLE OF DIGITAL SIMULATION IN CONFIGURING NETWORK PARAMETERS
ROLE OF DIGITAL SIMULATION IN CONFIGURING NETWORK PARAMETERS
 
Revisiting Sensor MAC for Periodic Monitoring: Why Should Transmitters Be Ear...
Revisiting Sensor MAC for Periodic Monitoring: Why Should Transmitters Be Ear...Revisiting Sensor MAC for Periodic Monitoring: Why Should Transmitters Be Ear...
Revisiting Sensor MAC for Periodic Monitoring: Why Should Transmitters Be Ear...
 
How HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental scienceHow HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental science
 
VIP - Wheelchair Project Final Presentation
VIP - Wheelchair Project Final PresentationVIP - Wheelchair Project Final Presentation
VIP - Wheelchair Project Final Presentation
 
A Cyber Physical Approach to a Combined Hardware-Software
A Cyber Physical Approach to a Combined Hardware-Software A Cyber Physical Approach to a Combined Hardware-Software
A Cyber Physical Approach to a Combined Hardware-Software
 
Sdn future of networks
Sdn future of networksSdn future of networks
Sdn future of networks
 
Lecture+9+-+SCADA+Systems.pdf
Lecture+9+-+SCADA+Systems.pdfLecture+9+-+SCADA+Systems.pdf
Lecture+9+-+SCADA+Systems.pdf
 
Future Grid Overview 2018
Future Grid Overview 2018Future Grid Overview 2018
Future Grid Overview 2018
 
RECAP: The Simulation Approach
RECAP: The Simulation ApproachRECAP: The Simulation Approach
RECAP: The Simulation Approach
 
Mannasim for NS2
Mannasim for NS2Mannasim for NS2
Mannasim for NS2
 
Multilin™ Intelligent Line Monitoring System
Multilin™ Intelligent Line Monitoring SystemMultilin™ Intelligent Line Monitoring System
Multilin™ Intelligent Line Monitoring System
 
⭐⭐⭐⭐⭐ Learning-based Energy Consumption Prediction
⭐⭐⭐⭐⭐ Learning-based Energy Consumption Prediction⭐⭐⭐⭐⭐ Learning-based Energy Consumption Prediction
⭐⭐⭐⭐⭐ Learning-based Energy Consumption Prediction
 
Artificial neural networks
Artificial neural networks Artificial neural networks
Artificial neural networks
 
A Low-cost and Scalable Visualization System for Electricity Consumption
A Low-cost and Scalable Visualization System for Electricity ConsumptionA Low-cost and Scalable Visualization System for Electricity Consumption
A Low-cost and Scalable Visualization System for Electricity Consumption
 
DNA: an overview
DNA: an overviewDNA: an overview
DNA: an overview
 

Masters Thesis

  • 1. Short Term Temperature and Hourly Precipitation Prediction System Nithyakumaran Gnanasekar Under the Guidance of Arthur Helmicki, Victor Hunt and Paul Talaga
  • 3. Motivation • During winter, ice accumulates onto the bridge stays, which later drops down on the traffic when the temperature increases. • In Dec 19 2012 one such incident was occurred, where a huge piece of ice to crashed on a vehicle’s windshield • Huge amount of multi dimensional data is collected from the bridge and local weather station every few minutes. • UCII has designed and developed a warning system providing timely warning and alert messages.
  • 4. Background • Prediction System can be classified into • Univariate models • Multivariate models • The models can be further classified into • Statistical method • neural network based methods. • Use of pre trained neural networks to provide online prediction is exploited in this work. • Once the network is trained the multivariate prediction can be performed in real time.
  • 5. Background List of Inputs Temperature Humidity Wind speed Solar Radiation Hourly Precipitation Input 5*24= 120 Input Neurons Output 8 Temperature neurons Jain, Abhishek. Predicting air temperature for frost warning using artificial neural networks. Diss. uga, 2003 • Jain, Abhishek in his work used single layer neural network to predict temperature for next eight hours • The Temperature Prediction was performed only during early spring during sunrise. • To warn the farmers about morning frost that damage orchids
  • 6. Suggested Algorithm • Temperature Prediction System • Hourly Precipitation Prediction System • Data Collection • Data Segmentation • Neural Network Design • Train Network • Decay and Weights • Input/output variable selection • Predict Data • Algorithm • Variable Selection • Stations Selection • Number of hours of input data • Output representation • Bagging
  • 7. Algorithm- Temperature Prediction System Data Collection Segment Data Train Network Predict SectionTrain Section Predict Data Web Interface
  • 8. Data Collection Stations Type Time Interval Local Weather Stations 5,10,12,15 min Airports 60 – 30 min On Bridge Sensors 10,15 min Data Collection: • Data is collected at irregular Time intervals • Cubic Spline interpolation is used to fix missing values • The data is aggregated to be hourly frequency. Station 1 Station 2 Station 15 South Tower Cubic Spline Imputation Aggregate to Hourly Data . . . . . . . . .DB Stations, Airports, Sensors
  • 9. Algorithm- Temperature Prediction System Data Collection Segment Data Train Network Predict Data Web Interface. . Training Section Cubic Spline Interpolation Predict Section
  • 10. Segment Data Data -7 to 0 0-15 15-28 28-34 Hourly Aggregated data Classifier Normalized data with Min Max Information Normalize Normalize Normalize Normalize Data Data Data Data • The Hourly Aggregated Data from Data Collection section is used as input. • The Data is first segmented into four buckets. • This is accordance with neural network design. • The Mean temperature for every 24 hours is calculated and is used for classification • Every variable is then normalized to read between 1-0. • The Min Max information required for de- normalization is attached along with the data. Temperature Hourly Precipitation Humidity Wind Speed Solar Radiation Max 7.016667 3.704762 97 35.30526 643.75 Min -10.1696 0 35.1875 0 0 Min Max Information Stored along with Data
  • 11. Expert System Design -7 to 0 0-15 15-28 28-34 Classifier Output The Classifier sends the input based on mean temperature to corresponding network. Every input is given to only one neural network for training. Only one output is computed at any given time. This system performs well and reduces error due to large denormalization * All four Blocks are classical back propagation network with one hidden layer
  • 12. Algorithm- Temperature Prediction System Data Collection Segment Data Train Network Predict Data Web Interface Training Section Cubic Spline Interpolation Segment Data Predict Section Normalized Data with Min Max info Segment Data . .
  • 13. Train Network • The train network can be tuned for parameter • Decay • Number of weights • The network splits the training set into two set • 90% data for Training • 10% for evaluating. • The 10% of evaluation sample is a random set picked from training set. 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 RMSE(C) Decay Parameter Decay Parameter 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 0 5 10 15 20 25 30 35 RMSE(C) Number of Neurons Number of Neurons
  • 14. Train Network • The decay and weights can be provided as sequence. • The network would iterate through the combination • Provide a report on such a data set. S.no neuron decay rmse sse maxerror meanerror 1 1 1.00E-01 2.290552 23588.85 8.499794 0.30368227 2 1 1.00E-05 2.572076 29743.62 10.92812 -0.09750547 3 1 1.00E-02 2.472744 27490.63 10.154952 -0.07979373 4 2 1.00E-01 2.283635 23446.58 8.616908 0.49384269 5 2 1.00E-05 3.73943 62869.07 14.439244 -0.97010542 6 2 1.00E-02 2.284121 23456.56 8.953333 -0.08007818 7 3 1.00E-01 2.157424 20926.54 7.961871 0.39193959 8 3 1.00E-05 6.009436 162365.5 20.995079 2.84870665 9 3 1.00E-02 2.322157 24244.28 11.334819 0.87290343 10 4 1.00E-01 2.143207 20651.63 7.892792 0.36539226 11 4 1.00E-05 3.81584 65464.6 12.887219 -0.53080024 12 4 1.00E-02 2.210153 21961.95 10.485526 0.57920437 13 5 1.00E-01 2.079384 19439.97 7.621765 0.32835461 14 5 1.00E-05 3.700756 61575.39 12.738093 0.48186848 15 5 1.00E-02 2.173325 21236.15 10.482595 0.32212886 16 6 1.00E-01 2.047381 18846.18 7.54331 0.28953601 17 6 1.00E-05 5.057563 115002.9 17.145608 0.18968488 18 6 1.00E-02 2.102648 19877.39 7.163767 -0.17827613 19 7 1.00E-01 2.064283 19158.65 7.525051 0.26114947 20 7 1.00E-05 4.861489 106258.8 12.917473 -1.98795079 $net a 144-10-8 network with 1538 weights options were - decay=0.1 $minMax row Temperature HourlyPrecipitation Humidity WindSpeed SolarRadiation diff 1 Max 7.016667 3.704762 97.0000 35.30526 643.75 2.413333 2 Min -10.169565 0.000000 35.1875 0.00000 0.00 -2.520000 $bestNet "Best selected configuration has hidden neuron 10 and decay 0.1" $rmse 2.290552 Network Description Min Max Information Chosen Network Configuration Detailed Report for all combination
  • 15. Neural Network Training Section Cubic Spline Interpolation Normalized Data with Min Max info Online Prediction and Web Section Trained Neural Network Segment Data Algorithm- Temperature Prediction System Data Collection Train Network Predict Data Web Interface Segment Data Train Network Segment Data. .
  • 16. Output/Input Selection • In the previous works listed in the background • All the variables collected were fed to neural network as input. • No were performed on the correlation between the variables. • Correlation analysis between the variables led to using better set of input and in improving prediction result.
  • 17. Correlation Plot Between Variables http://10.39.8.247/predict/correlation.php#tabs-1
  • 18. Temperature Difference Correlation plot http://10.39.8.247/predict/correlation.php#tabs-2
  • 19. Output/Input Selection List of Inputs Temperature Hourly Precipitation Solar Radiation Pressure Wind Speed Humidity Temperature Difference Input 7*24= 168 Input Neurons Output 8 Temperature Difference neurons AfterCorrelationAnalysisandsimulation http://10.39.8.247/predict/TemperatureDiff.php 0 5 10 15 20 25 30 Numberofneurons Neuron 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 (C) Root Mean Square Error for Variable Combination
  • 20. Neural Network Training Section Cubic Spline Interpolation Normalized Data with Min Max info Online Prediction and Web Section Trained Neural Network Segment Data Algorithm- Temperature Prediction System Data Collection Predict Data Web Interface Segment Data Train Network Train Network Segment Data. .
  • 21. Predict Data [1] [2]Data Classifier [1] Data Collection Section [2] Data Segmentation Section Trained Neural Network data w/o minMax Normalized Data with MinMax Data • Last 24 hours of data is picked. It is passed through data collection section • This data is then sent to classifier to identify the appropriate Neural network • This provides the minMax Information for normalization • The data is then passed thorough segmentation section • This is then provided to network to predict newer values *Note Every Hour has 8 predicted values
  • 22. Neural Network Training Section Cubic Spline Interpolation Normalize Data Multiple Sections Online Prediction and Web Section Trained Neural Network Segment Data Algorithm- Temperature Prediction System Data Collection Web Interface Segment Data Train Network Train Network Segment Data. .
  • 23. Web Interface • Configuration • PHP 5.4 • Zend Framework • D3.js for plotting • Uses MYSQL Database • Complaint with UCII site.
  • 24. Algorithm- Temperature Prediction System Data Collection Segment Data Train Network Predict Data Web Interface Train Network Segment Data. . Neural Network Training Section Cubic Spline Interpolation Normalize Data Multiple Sections Online Prediction and Web Section Trained Neural Network Segment Data
  • 25. Suggested Algorithm • Temperature Prediction System • Hourly Precipitation Prediction System • Data Collection • Data Segmentation • Neural Network Design • Train Network • Decay and Weights • Input/output variable selection • Predict Data • Algorithm • Variable Selection • Stations Selection • Number of hours of input data • Output representation • Bagging
  • 26. Algorithm- Hourly Prediction System Data Collection Train Network Predict Data Web Interface Train Network Normalize Data. . Neural Network Training Section Cubic Spline Interpolation Multiple Sections Online Prediction and Web Section Trained Neural Network Aggregate Data
  • 27. Variable Selection-Correlation • Output • 4 hours of Probability data for Hourly Precipitation http://10.39.8.247/predict/correlation.php#div-1 All Variables Temperature Humidity Dew point Pressure Wind Speed Wind Speed Gust Wind Direction Wind Direction Degree Daily Rain Hourly Precipitation Selected Variables Hourly Precipitation Humidity Wind Direction Daily Rain Solar Radiation Temperature
  • 28. Cross Correlation Between Variables HP Vs Humidity HP Vs Pressure HP Vs Solar Radiation HP Vs Temperature HP Vs Wind Direction Degree HP Vs Wind Speed *HP- Hourly Precipitation
  • 29. Variable Selection-Cross Correlation HP Vs Humidity HP Vs Pressure HP Vs Solar Radiation HP Vs Temperature HP Vs Wind Direction Degree HP Vs Wind Speed Selected Variables Hourly Precipitation Humidity Wind Direction Daily Rain Solar Radiation Temperature All Variables Temperature Humidity Dew point Pressure Wind Speed Wind Speed Gust Wind Direction Wind Direction Degree Daily Rain Hourly Precipitation Selected Variables Hourly Precipitation Humidity Daily Rain Wind Direction Correlation Cross Correlation *Daily Rain is Picked for further analysis as it similar to Hourly Precipitation
  • 30. Simulation –Variable Combination 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 HP-WD-DR-T HP-P-WD-H-T HP-P-WD-T HP-WD-H-T HP-SR-P-WS HP-P-WD-DR-T HP-SR-P-WD-WS HP-P-WS-DR HP-T HP-H-T HP-SR-WS-H-DR T-HP-SR-P-WD-WS-DR HP-SR-WS-H-T HP-SR-P-WS-H HP-WS-DR-T HP-WD-DR HP-SR-T T-HP-SR-P-WD-H-DR HP-P-WD HP-SR-WD-WS-DR-T HP-SR-P-WD-WS-T HP-SR-P-WD-H-T HP-WS-H-DR-T HP-SR-H-DR-T HP-SR-P-H-T HP-P-WD-H HP-P-WS HP-SR-P-H HP-P-T HP-SR-P HP-P-WD-WS-H-T HP-SR-WD-H-DR-T MeanAbsoluteError Mean Absolute Error 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 1 2 3 4 5 6 7 8 MeanAbsoluteError Number of Variables used Mean Absolute Error • List of Selected Variables Combinations • HP-WD-H-DR • HP-WD-DR-T • HP-WD-H-DR-T • HP-P-WD-WS-DR • HP-P-WD-H-T • Legend • T- Temperature • HP- Hourly Precipitation • WD- Wind Direction • WS- Wind Speed • P- Pressure • H- Humidity • DR- Daily Rain • SR- Solar Radiation • HP-SR-WD-DR • HP-P-WD-DR • HP-P-WD-WS-H • HP-P-WD-T • HP-WD-WS-H-T
  • 31. Variable Selection-Simulation 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 HP-WD-DR-T HP-P-WD-WS-DR HP-P-WD-DR HP-WD-WS-H-T HP-WD-H-T HP-WD-WS-DR-T HP-P-WD-H-DR HP-SR-H-DR HP-SR-P-WD-WS HP-SR-DR-T HP-SR HP-SR-WS-DR HP-H-T HP-SR-WS-DR-T HP-SR-WD-WS HP-H HP-SR-WS-H-T HP-SR-WD-H-DR T-HP-SR-P-WS-… HP-SR-P-WD-H HP-WD-DR HP-SR-P-WD-… HP-SR-WS-H-DR-T HP-P-WS-H-T HP-P-WD HP-SR-H HP-SR-P-WD-DR-T HP-SR-WD-WS-… HP-SR-P-WD-H-T HP-WD-WS HP-P-H-DR HP-SR-P-H-DR HP-SR-P-H-T HP-WD-WS-H-DR HP-WD-WS-H HP-SR-WS-H HP-SR-P-H HP-H-DR HP-P-H-DR-T HP-WD HP-P-WD-WS-H-T HP-SR-P-WS-DR-T MeanAbsoluteError Mean Absolute Error 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 1 2 3 4 5 6 7 8 MeanAbsoluteError Number of Variables used Mean Absolute ErrorSelected Variables Hourly Precipitation Humidity Wind Direction Daily Rain Solar Radiation Temperature All Variables Temperature Humidity Dew point Pressure Wind Speed Wind Speed Gust Wind Direction Wind Direction Degree Daily Rain Hourly Precipitation Selected Variables Hourly Precipitation Humidity Daily Rain Wind Direction Selected Variables Hourly Precipitation Humidity Daily Rain Wind Direction Correlation Cross Correlation Simulation
  • 32. Stations that can be used as Good Predictors 0 5 10 15 20 25 -7 -6 -5 -4 -3 -2 -1 Burna10 CWWK Ibccoqui5 Ibcpittm3 Surre10 Surre6
  • 33. Cross Correlation Between Stations for Hourly Precipitation SURRE21-COQUI5 SURRE21-SURRE6 SURRE21-PITTM3 SURRE21-BURNA 10 SURRE21-SURRE10
  • 34. Cross Correlation Between Stations for Hourly Precipitation- Daily Rain SURRE21-Surre10 SURRE21-Surre6 SURRE21-COQUI5 SURRE21-BURNA10
  • 35. Cross Correlation Between Stations for Hourly Precipitation- Humidity SURRE21-BURNA10 SURRE21-CWMM SURRE21-CWWK SURRE21-COQUI5 SURRE21-SURRE6 SURRE21-SURRE10
  • 36. Input Selection –Station Combination 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0 1 2 3 4 5 6 7 MAE Number of Input Variables MEAN Absolute Error Best Combination Surre21,Burna 10, Ibccoqui5 Surre21,Burna 10, PITM3 Surre21,PITM3, Surre6 0 0.05 0.1 0.15 0.2 0.25 0.3 Sur21-NA10-IBC5 Sur21-PIT3-Sur10-CWMM Sur21-NA10-IBC5-PIT3-Sur6 Sur21-NA10-PIT3-Sur10-CWMM-CWWK Sur21-NA10-IBC5-Sur10-Sur6 Sur21-NA10-IBC5-PIT3-Sur6-CWWK Sur21-NA10-PIT3-Sur6-CWMM-CWWK Sur21-NA10-IBC5-Sur6-CWWK Sur21-IBC5-Sur10-Sur6 Sur21-IBC5-Sur6 Sur21-IBC5-PIT3-Sur10-Sur6 Sur21-NA10-IBC5-PIT3-Sur6-CWMM Sur21-IBC5-Sur10-Sur6-CWWK Sur21-Sur10-CWMM-CWWK Sur21-PIT3-Sur10-CWWK Sur21-IBC5 Sur21-NA10-IBC5-PIT3-Sur10 Sur21-NA10-PIT3-CWMM Sur21-IBC5-PIT3-Sur10-CWWK Sur21-IBC5-CWMM Sur21-NA10-PIT3-Sur10-CWWK Sur21-Sur10-Sur6-CWWK Sur21-IBC5-PIT3-Sur6 Sur21-Sur6-CWMM Sur21-IBC5-Sur10-CWWK Sur21-PIT3-Sur10-Sur6-CWMM Sur21-IBC5-Sur6-CWMM Sur21-NA10-Sur10-CWWK Sur21-IBC5-Sur6-CWWK Sur21-IBC5-Sur6-CWMM-CWWK Sur21-Sur10-Sur6-CWMM Sur21-NA10-Sur10-CWMM-CWWK Sur21-NA10-IBC5-PIT3-CWMM Sur21-Sur10-CWMM Sur21-PIT3 MeanAbsoluteError Combination Plot for Stations
  • 37. Number of Hours of Input Data 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0 5 10 15 20 25 30 MAE Number of hours Number of Input hours of data required 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 0 5 10 15 20 25 30 35 MAE Number of Neurons Number of Neurons • Number of Hours input data- 24 • Number of hidden Neurons=13
  • 38. Input/Output Representation • Input is 24 hour Normalized data from three stations and 3 variables from the stations. • Output is 4 variable. Each variable indicating probability of rain for every hour ahead. Date Time Hour1 Hour2 Hour3 Hour4 … 0 0 0 0 …. 0 1 0 0 … 1 0 0 0 …. 0 0 0 1 • Sample Actual Output Data Used for Training • Rainfall>1(mm) ? Output=1 : Output =0 2^4= 16 different Combinations of possible Output Distribution of Actual Output Classes 2011-2013
  • 39. Bagging • Bagging is way of boosting the system performance by altering the class distribution in the training set. • This ensures prediction is not always skewed towards the largest occurring class
  • 41. Results –Temperature Prediction System Evening Morning On a Rainy day Before rainfall During Snowfall
  • 42. Error Plot For Jan ‘14 to March ‘14 y = 0.9791x + 0.1056 RMSE=0.569079 -10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20 PredictedTemperature(C) Actual Temperature (C) Predicted Temperature 1-2 (hour) y = 0.9519x + 0.2233 RMSE= 0.875618 -10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20 ActualTemperature(C) Predicted Value (C) Predicted Temperature 3-4 th (hour) y = 0.927x + 0.3126 RMSE=1.083171 -10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20 ActualTemperature(C) Predicted Temperature (C) Predicted Temperature 5-6 (hour) y = 0.9022x + 0.4126 RMSE=1.302739 -10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20 ActualTemperature Predicted Temperature (C) Predicted Temperature 7-8(hour)
  • 43. Error Plots Jan 14 April 14 Feb 14 Jan- Apr 14
  • 44. Hourly Precipitation Results 0 0.5 1 1.5 2 2.5 3 0 10 20 30 40 50 60 70 80 90 100 12:00AM 1:00AM 2:00AM 3:00AM 4:00AM 5:00AM 6:00AM 7:00AM 8:00AM 9:00AM 10:00AM 11:00AM 12:00PM 1:00PM 2:00PM 3:00PM 4:00PM 5:00PM 6:00PM Precipitation(mm) Probability(%) Low Rain 1/7/2014 0 0.5 1 1.5 2 2.5 3 3.5 4 0 10 20 30 40 50 60 70 80 90 100 2:00AM 3:00AM 4:00AM 5:00AM 6:00AM 7:00AM 8:00AM 9:00AM 10:00AM 11:00AM 12:00PM 1:00PM 2:00PM 3:00PM 4:00PM 5:00PM 6:00PM 7:00PM 8:00PM Precipitation(mm) Probability(%) Average Rain 1/2/2014 0 1 2 3 4 5 6 7 8 0 20 40 60 80 100 Precipitation(mm) Probability(%) Heavy Rain 1/11/2014 0 0.5 1 1.5 2 2.5 3 0 10 20 30 40 50 60 70 80 90 100 6:00AM 7:00AM 8:00AM 9:00AM 10:00AM 11:00AM 12:00PM 1:00PM 2:00PM 3:00PM 4:00PM 5:00PM 6:00PM 7:00PM 8:00PM 9:00PM 10:00PM 11:00PM Precipitation(mm) Probability(%) Snow Fall 2/22/2014 Legend Precipitation(mm)- Right axis Probability (%) -Left axis
  • 45. Error Plot Predicted Error Computed for Random Sample data 2011-2013 *This data was not used for Training Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Output Class 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Predicted actual actual counts percentage
  • 47. Future Work • Extending Hourly Precipitation algorithm to other stations and bridge sensors • Study of using predicted data as an input to another prediction to creating a feed back network. • Using radar data to predict hourly precipitation to increase accuracy.
  • 51. Hourly Precipitation Vs Humidity 6-23-13 5-11-13 1-3-13
  • 52. Hourly Precipitation Vs Pressure 6-23-13 5-11-13 1-3-13
  • 53. Hourly Precipitation Vs Solar Radiation 6-23-13 5-25-13 1-3-13
  • 54. Hourly Precipitation Vs Temperature 6-23-13 5-25-13 1-3-13
  • 55. Hourly Precipitation Vs Wind Direction 6-23-13 5-25-13 1-3-13 Back time lagged correlation
  • 56. Hourly Precipitation Vs Wind Direction Back time lagged correlation 0 50 100 150 200 250 300 350 Degree Direction Vs Degress 2013- 6 Hours Prior to Rainfall- Wind Direction Distribution
  • 57. Temperature Prediction - Evening Drop -3 -2 -1 0 1 2 3 4 5 6 12:00:00PM 2:24:00PM 4:48:00PM 7:12:00PM 9:36:00PM 12:00:00AM 2:24:00AM 4:48:00AM 7:12:00AM 9:36:00AM (C) Temperature Prediction 1-4-14 Temperature Prediction 1 Prediction2 Prediction3 Prediction 4 Prediction 5 Prediction 6 Prediction 7 Prediction 8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 12:00:00 PM 2:24:00 PM 4:48:00 PM 7:12:00 PM 9:36:00 PM 12:00:00 AM 2:24:00 AM 4:48:00 AM 7:12:00 AM 9:36:00 AM (C) Mean Error
  • 58. Temperature Prediction- Morning Rise. -2 -1 0 1 2 3 4 19:12 0:00 4:48 9:36 14:24 19:12 0:00 (C) Temperature Prediction (1-6-14) Temperature Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Predict 7 Predict 8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0 5 10 15 20 25 30 (C) Mean Error
  • 59. Temperature Prediction for Complete rainy day 6 6.5 7 7.5 8 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00 2:24 (C) Temperature Prediction 1-11-14 Temperature Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00 2:24 (C) Mean Error
  • 60. Temperature Prediction Before Rainfall 0 1 2 3 4 5 0:00 2:24 4:48 7:12 9:36 12:00 14:24 16:48 (C) Temperature Prediction 2-10-14 Temperature Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0 2 4 6 8 10 12 14 16 18 20 (C) DateTime Mean Error
  • 61. Temperature Prediction During Snow -2 -1 0 1 2 3 9:36 12:00 14:24 16:48 19:12 21:36 0:00 2:24 4:48 (C) Temperature Prediction 02-22-14 Temperature Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0 2 4 6 8 10 12 14 16 18 (C) Date Time Mean Error
  • 62. Hourly Precipitation – Low rain 0 0.5 1 1.5 2 2.5 3 0 10 20 30 40 50 60 70 80 90 100 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM Precipitation(mm) Probability(%) Rainfall Prediction 1/7/2014 Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 Precipitation
  • 63. Hourly Precipitation – Average rain 0 0.5 1 1.5 2 2.5 3 3.5 4 0 10 20 30 40 50 60 70 80 90 100 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM PRECIPITATION(MM) PROBABILITY(%) Rainfall Prediction 1/2/2014 Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 Precipitation
  • 64. Hourly Precipitation – Heavy rain 0 1 2 3 4 5 6 7 8 0 20 40 60 80 100 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM 9:00 PM 10:00 PM 11:00 PM 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 8:00 PM Precipitation(mm) Probability(%) Rainfall Prediction 1/11/2014 Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 Precipitation
  • 65. Hourly Precipitation – Snow Fall 0 0.5 1 1.5 2 2.5 3 0 10 20 30 40 50 60 70 80 90 100 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM 9:00 PM 10:00 PM 11:00 PM PRECIPITATION(MM) PROBABILITY(%) Rainfall Prediction 2/22/2014 Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 Precipitation