VIBRATION OF A BAR
L/2 L/4L/2
Node Node
VIBRATION OF A BAR
Node Node
VIBRATION OF A BAR
Node Node
VIBRATION OF A BAR
Node Node
VIBRATION OF A BAR
Node Node
VIBRATION OF A BAR
Node Node
VIBRATION OF A BAR
Node Node
𝑭 =
𝟑. 𝟎𝟏𝟏 𝟐
𝝅
𝟖 𝟏𝟐
𝒀
𝝆
𝑻
𝑳 𝟐
This transverse vibration mode is the fundamental
The frequency F is Y is the young modulus = 69Gpa for Al
ρ is the bulk density = 2700kg/m3 for Al
T is the thickness = 0.00635m ¼”
L is the length of the bar = 0.355 for C4
VIBRATION OF A BAR
Node Node
All the transverse modes are expressed as:
𝑭 =
𝝅
8 12
𝒀
𝝆
𝑻
𝑳2
3.0112, 52 , 72, … , 2𝒏 + 1 2, …
VIBRATION OF A BAR
Node Node
The ratios for the harmonics are:
0 1 2 3 4 5 6 Harmonic#
1 2.758 5.405 8.934 13.346 18.641 24.816 Ratio
The ratios of harmonics are not whole or rational numbers. Therefore, a solid bar will not
produce a “harmonious” sound.
MARIMBA – COMPARISON BETWEEN THEORETICAL VALUES AND ACTUAL MEASUREMENTS
F0 (Hz)
Just Scale
F0 (Hz)
Measured
261.63 261.70
327.03 327.00
392.44 392.30
523.25 523.50
C4
C5
E4
G4
Experimental Xylophone. Study of transverse vibrations in a thin metal bar
Experimental Xylophone. Study of transverse vibrations in a thin metal bar
Experimental Xylophone. Study of transverse vibrations in a thin metal bar
Experimental Xylophone. Study of transverse vibrations in a thin metal bar
Experimental Xylophone. Study of transverse vibrations in a thin metal bar
Experimental Xylophone. Study of transverse vibrations in a thin metal bar

Experimental Xylophone. Study of transverse vibrations in a thin metal bar

  • 5.
    VIBRATION OF ABAR L/2 L/4L/2 Node Node
  • 6.
    VIBRATION OF ABAR Node Node
  • 7.
    VIBRATION OF ABAR Node Node
  • 8.
    VIBRATION OF ABAR Node Node
  • 9.
    VIBRATION OF ABAR Node Node
  • 10.
    VIBRATION OF ABAR Node Node
  • 11.
    VIBRATION OF ABAR Node Node 𝑭 = 𝟑. 𝟎𝟏𝟏 𝟐 𝝅 𝟖 𝟏𝟐 𝒀 𝝆 𝑻 𝑳 𝟐 This transverse vibration mode is the fundamental The frequency F is Y is the young modulus = 69Gpa for Al ρ is the bulk density = 2700kg/m3 for Al T is the thickness = 0.00635m ¼” L is the length of the bar = 0.355 for C4
  • 12.
    VIBRATION OF ABAR Node Node All the transverse modes are expressed as: 𝑭 = 𝝅 8 12 𝒀 𝝆 𝑻 𝑳2 3.0112, 52 , 72, … , 2𝒏 + 1 2, …
  • 13.
    VIBRATION OF ABAR Node Node The ratios for the harmonics are: 0 1 2 3 4 5 6 Harmonic# 1 2.758 5.405 8.934 13.346 18.641 24.816 Ratio The ratios of harmonics are not whole or rational numbers. Therefore, a solid bar will not produce a “harmonious” sound.
  • 16.
    MARIMBA – COMPARISONBETWEEN THEORETICAL VALUES AND ACTUAL MEASUREMENTS F0 (Hz) Just Scale F0 (Hz) Measured 261.63 261.70 327.03 327.00 392.44 392.30 523.25 523.50 C4 C5 E4 G4