This document provides an overview of machine learning basics including:
- A brief history of machine learning and definitions of machine learning and artificial intelligence.
- When machine learning is needed and its relationships to statistics, data mining, and other fields.
- The main types of learning problems - supervised, unsupervised, reinforcement learning.
- Common machine learning algorithms and examples of classification, regression, clustering, and dimensionality reduction.
- Popular programming languages for machine learning like Python and R.
- An introduction to simple linear regression and how it is implemented in scikit-learn.