This document describes the ATTA (Atom Trap Trace Analysis) experiment which aims to precisely measure trace amounts of krypton isotopes in liquid xenon. ATTA uses laser cooling and trapping techniques to isolate and count individual atoms. The document outlines the ATTA system, which involves exciting atoms to a metastable state using a plasma source, slowing and collimating atoms using optical molasses and Zeeman slowing, and finally trapping atoms using magneto-optical traps. Precisely measuring krypton contamination levels in xenon is important for the larger XENON dark matter detection experiment to understand background signals and increase sensitivity to detect weakly interacting massive particles (WIMPs).