SlideShare a Scribd company logo
1 of 14
Download to read offline
SETI
The Parkes Radio Telescope, NSW, Australia (photo: Frank Stootman)
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X
Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
Jill Tarter (photo: Seth Shostak)
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X
Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
Bioastronomy 2002: Life Amony the Stars
IAU Symposium, Vol. 213, 2004
R.P.Norris and F.H.Stootman (eds.)
Life, the Universe, and SETI in a Nutshell
Jill Tarter
SETI Institute, 2035 Landings Drive, Mountain View, CA 94043,
U.S.A.
Abstract. To date, no SETI observing program has succeeded in de-
tecting any unambiguous evidence of an extraterrestrial technology. Re-
grettably, this paper will therefore not dazzle you with the analysis of the
contents of any interstellar messages. However, as is appropriate for a
plenary presentation, this paper does provide an update on the state of
SETI programs worldwide. It discusses the various "flavors" of observa-
tional SETI projects currently on the air, plans for future instrumenta-
tion, recent attempts to proactively plan for success, and the prospects
for future public/private partnerships to fund these efforts. The paper
concludes with some tentative responses to the "What if everybody is
listening, and nobody is transmitting?" query.
1. Some Pragmatic Definitions
At previous Bioastronomy meetings and related Astrobiology meetings, a sig-
nificant effort has been expended in attempts to define such commonplace and
familiar terms as "life" and "intelligence". The trick is to be inclusive, and
yet not end up defining something like fire to be alive. As yet there are no
satisfactory definitions for these terms, though everyone attending this meeting
has probably had to adopt some working definitions to facilitate their on-going
research. In SETI, things are no different, except that the limited scope of 21st
century technology permits us to adopt purely pragmatic definitions without
apology. So for the record, in what follows, my definitions are:
• Life == the necessary precursor to any technology that modifies its en-
vironment in ways that can be sensed over interplanetary or interstellar
distances.
• Intelligence == the ability to construct and operate large transmitters.
• SETI == that branch of astrobiology which takes advantage of the deliberate
actions of the inhabitants, in order to detect habitable worlds.
These definitions are more than a tongue-in-cheek exercise. They encom-
pass, and specifically acknowledge, all the anthropomorphic biases with which
we are burdened, while admitting that there is nothing we can do about them
until such time as we discover an example of life (including perhaps, intelligent
life) as we don't yet know it. Use of the word "astrobiology" in the definition of
"SETI" is this author's, admittedly political, assertion that SETI legitimately
lies within the continuum of research activities encompassed by the emergent
field of astrobiology/bioastronomy, but the definition could stand without it.
397
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X
Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
398 Tarter
2. What Should We Be Looking For?
What constitutes a legitimate SETI detection? What kind of technologies are
we capable of detecting today, or in the near future? The answer to this sec-
ond question is easy: with our primitive technology, we will only detect those
technological civilizations that are far older than our own. We cannot detect
less primitive technologies than our own over interstellar distances. We will only
succeed in detecting another technology in the near future (with the limited tech-
nology we have at our disposal) if, on the average, technological civilizations are
long-lived.
Here longevity must be measured on cosmic, rather than human, timescales.
Technological civilizations cannot be temporally and spatially co-incident within
our 10 billion year old galaxy, unless technologies persist for a significant fraction
of the galaxy's age. This is just the degenerate form of the Drake Equation,
N ::; L (the number of civilizations with whom we can communicate in the Milky
Way is less than or equal to the average longevity of technological civilizations
measured in years)(Drake 1961). Thus statistically we can say with confidence
that any technologies within the grasp of our current detection schemes will be
far older than ours.
How might we detect them? An older, extraterrestrial technology could
be expected to engage in one or more of the following activities, and these
might manifest themselves in ways that are detectable over interstellar dis-
tances: large-scale astroengineering projects, generation/harnessing of power,
interstellar/interplanetary travel, wars, information exchange. Over the past 42
years, since Project Ozma (Drake 1961), about 100 attempts have been made
to search for examples of each of these activities (see historical review of SETI
observing projects at http://www.setLorg/science/searches-list.html), although
most of them have focused on the detection of communication signals. Such sig-
nals might be intended to attract the attention of other, emerging technologies
(beacons), or signals being broadcast for some internal purposes (leakage). Leak-
age radiation, as well as manifestations of the other hypothetical technologies
listed above, are best sought as the by-products of an aggressive observational
exploration of our cosmos.
SETI researchers should, and do, encourage current and future generations
of astronomers to behave like Joycelyn Bell Burnell, leaving no "bit of scruff"
in their data unexplored (Bell & Hewish 1967). When it comes to a search
for beacons, it is plausible to suggest that extraterrestrial engineers, intent on
generating a signal that will have a high probability of being discovered, might
transmit signals whose characteristics are a) almost astrophysical, or b) im-
possible to create by astrophysical emission mechanisms and thus obviously of
technological origin. Signals of type a) are also best sought in the process of a
vigorous astronomical observing program. Such signals will have been designed
to be captured routinely by the instrumentation developed as a young technol-
ogy explores its cosmic environment. Additional study would reveal behaviors
inconsistent with any astrophysical explanation (e.g., a pulsar that "glitches"
back and forth between two precise periods) and perhaps, eventually, the exis-
tence of some embedded information-encoding scheme. It is the beacon signals of
type b) that have been, and continue to be, the objects of most SETI observing
programs.
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X
Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
Life, the Universe, and SETI in a Nutshell 399
What sort of signal cannot be produced by astrophysical emission mecha-
nisms (as far as we know)? The large number of emitters (atoms, molecules, rad-
icals, etc.) required to generate an astrophysical signal with detectable amounts
of flux, guarantees that the time-bandwidth product of the signal will greatly
exceed unity (the minimum allowed by the uncertainty principle) i.e. Br» 1.
However, because it is economically rewarding to do so, terrestrial technologies
have developed a number of ways to generate signals with Br ~ 1; these are
long-duration narrowband pulses (going in the limit to continuous wave, narrow-
band signals), and short-duration, broadband pulses. Whatever its frequency,
a beacon signal must outshine its local background, or the fluctuations in that
background if integration techniques can be used by the receiver to improve the
signal to noise ratio. Figure 1 represents the average cosmic background radi-
ation from the longest radio waves to the shortest gamma-rays. Historically,
SETI programs have concentrated on the microwave portion of the spectrum
because of the naturally low background there. The average values in Fig. 1
can be radically altered if spatial, spectral, or temporal filters are applied by the
transmitter or receiver. As in the case of attempting to directly image a terres-
trial planet around a nearby star (Tinney 2004), a fainter beacon signal from
an optical transmitter orbiting a star could be detected if the bright starlight
could be spatially filtered out. It is also possible that application of a temporal
filter might permit a beacon to momentarily outshine its host star, without re-
quiring an unacceptable energy cost for the transmitter. In addition to the local
background, constructors of intentional beacons must consider the interstellar
medium through which the signal will propagate.
Local Radiation Field
EUV
T XRAY
9 10 11 12 13 14 15 16 17 18 19 20 21
logf, Hz
0
-1
-2
-3
-4
-5
-6
logfl, -7
w/m2 sr
-8
-9
·10
-11
·12
·13
-14
7 8
Figure 1. Average Astrophysical Background Radiation
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X
Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
400 Tarter
Multipath scattering in the interstellar medium smears out the time of ar-
rival of broadband microwave pulses, requiring additional analytic techniques
to reconstruct the pulses. This increased complexity for the receiver suggests
that at centimeter wavelengths, broad pulses may not be the best choice for
intentional beacons, and to date microwave searches have concentrated on nar-
rowband pulses and CW signals. At optical wavelengths, there is no problem
with interstellar dispersion, but absorption by dust does limit the range of such
signals to a few thousand light years. Today, SETI observing programs consist of
microwave searches for narrowband signals and optical searches for broadband,
micro-to-nano-second pulses as well as powerful, narrowband lasers. The optical
detection techniques have not moved into the infrared (where dust would be less
of a problem) because affordable, fast detectors do not yet exist.
3. "Who is Searching Now, and How are They Doing It?
Once the wavelength for a search has been chosen, it is then necessary to se-
lect an appropriate observing strategy. The observer must decide whether to
search the entire sky (or a large fraction thereof), spending little time at any
frequency and location, or to spend larger amounts of time targeting a limited
number of directions, with the ability to perform more complex pattern recog-
nition analyses, and search for fainter signals. These so-called sky surveys or
targeted searches can also utilize three different approaches for data collection.
A directed search occurs when the observer has control of the telescope (often as
the result of a successful observing proposal) and can specify the direction and
frequency of the observation. Larger amounts of telescope time are sometimes
available to researchers willing to conduct commensal or piggy-back searches,
where the direction, frequency, and mode of observing are dictated by some
other primary science driver. Finally, a researcher might decide to access the
enormous volumes of stored data, now available from completed observational
programs, and subject those data to different detection algorithms that are op-
timized for the discovery of technological, rather than astrophysical, signals.
All of these techniques have been and continue to be used. Since the "Cosmic
Haystack" being searched for the important needle-signal is nine-dimensional
(3-space, time, frequency, 2-polarizations, modulation, intensity) and vast, his-
torically many researchers have made hypotheses about "magic" frequencies,
places, or times in order to limit the search to something that is achievable in a
finite time, with available resources.
At present, there are a 13 search programs on various telescopes around the
globe. Short descriptions and references for these searches can be found in the
archive of searches previously mentioned (http:/ j www.seti.orgjscience/ searches-
list.html). They are categorized by search strategy and frequency in the list
below (Table 1), and a URL for the associated web site is included.
The line drawn through the BETA search in Table 1 indicates that it is not
yet back on the air following a wind storm that lifted the dish off its mount,
bending some of the panels on landing. Repairs are under way. SETI@home is
listed under SERENDIP IV rather than as a separate search because it obtains
its raw data by splitting off2.5% of the digitized IF data stream from SERENDIP
IV, as well as using all of the pointing information provided by the telescope
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X
Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
Life, the Universe, and SETI in a Nutshell
Table 1. Searches on Telescopes Today
TARGETED SEARCHES
Type Microwave
D SETI Institute Project Phoenix
(http://www.seti.org)
Type Optical
D Berkeley Optical SETI
(http://sag-www.ssl.berkeley.edu/opticalseti)
C Harvard Optical SETI
(http://mc.harvard.edu/oseti/index.html)
D Lick Optical SETI
(http://setLucolick.org/optical)
D & C Princeton Optical SETI
(http://observatory.Princeton.EDU/oseti/)
D Australian Optical SETI
(http://www.atnf.csiro/pasa/17_2/bhathal/paper.pdf)
A Exoplanet Archive Optical SETI
(http://www.physics.sfsu.edu/ areines/seti/htrnl]
SKY SURVEYS
Type Microwave
C SERENDIP IV
(http://setLssl.berkeley.edu/serendip/ serendip.html)
also SETI@home
(http://setiathome.ssl.berkeley.edu)
D ~
(http://nic.harvard.edu/seti/beta.html)
D META II
(http://www.planetary.org/html
/UPDATES/ seti/META2/ default.html)
C Southern SERENDIP
(http://setLuws.edu.au)
D SETI League Project Argus
(http:www.setileague.org)
C SETI Italia
(http://boas5.bo.astro.it/ iiniverso
/webuniverso/montebugnoli/monte4.html)
Legend D is a directed search
C is acommensal search
A is an archival search
401
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X
Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
402 Tarter
interface from that search. Although they have been included in Table 1, the
Australian Optical SETI project, Southern SERENDIP, and SETI Italia have
not yet published results from anyon-going observational programs, and require
additional maturity in their software analyses. Clearly the United States is host
to the greatest number of searches, but the rest of the world is beginning to
find the resources to join this enterprise. All of the searches listed have been
financed from private sources. There has been no federal/national funding for
SETI searches since the US Congress terminated the funds for NASA's High
Resolution Microwave Survey in 1993.
4. "What Should We Try Next?
It is immediately obvious from Table 1 that there have been no sky surveys
at optical wavelengths. That should change by the end of 2002. A dedicated
optical SETI sky survey observatory is being constructed at the Oak Ridge
Observatory in Harvard, Massachusetts alongside BETA, and the commensal
Harvard Optical SETI targeted search (Howard, Horowitz, & Coldwell 2000).
Prof. Paul Horowitz and his students have managed to keep the cost of this
observatory very low by using a roll-off roof observing building, forming the 1.8
meter primary mirror by fusing glass onto a spherical mold (imaging-quality
optics are not required), restricting the mount to rotation about a single axis to
accommodate drift scans, and cleverly splitting and folding the light beams to
focus them onto a single signal processing board containing two linear arrays,
each with 512 photomultiplier tubes (see Fig. 2). Funding for this project is
being provided by The Planetary Society and the Bosack/Kruger Charitable
Foundation. A sky survey from -200
< fJ < +600
along strips that are 1.60
x 0.20
will be possible in about 200 clear nights for observing.
The large number of entries in Table 1 is misleading; it appears that the
sky is being exhaustively examined for signals of extraterrestrial intelligent origin
within two frequency regimes. Yet, in truth, even after more than four decades of
SETI observing programs, we have hardly begun to explore the nine-dimensional
space within which signals might be detected. Part of the problem lies in the fact
that SETI observations must compete for time, or share the time, on telescopes
that were constructed for other purposes. Access to the sky is limited, and the
observational tools are not optimal. The dedicated optical sky survey telescope
being constructed by Harvard will improve the situation for laser signals, but a
better SETI telescope is also required at microwave frequencies, and of course,
in this era of private funding for SETI, it needs to be affordable.
As a result of workshops held by the SETI Institute in 1997-99, and pub-
lished in SETI 2020 (Ekers et al. 2002) the SETI Institute entered into a part-
nership with UC Berkeley Radio Astronomy Lab to design and build a dedicated
facility for microwave SETI having at least 104
m2
(one hectare) of collecting
area. The Paul G. Allen Foundation has funded the technology development
for this Allen Telescope Array (ATA) that will consist of 350 offset Gregorian
dishes, each 6.1 m in diameter (see www.seti.org/science/ata.htrnl). The part-
nership has been very successful in identifying ways to use commercial telcom
components and manufacturing processes to minimize costs, while developing in-
novative feeds, receivers, and miniature coolers to achieve extremely broadband
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X
Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
Life, the Universe, and SETI in a Nutshell
Figure 2. Harvard Dedicated Optical Sky Survey. a. Schematic of
the observatory building, b. snapshot during construction, c. the op-
tical beams, and d. the observing pattern on the sky.
403
instantaneous frequency coverage from 0.5-11 GHz. Assuming timely decisions
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X
Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
404 Tarter
on construction funding and land-use permits, the ATA should be completed in
2005. Figure 3 illustrates the irregular configuration for the antennas, extending
over 800 m in the Hat Creek Valley north of Mount Lassen in northern Califor-
nia, and optimized for uniform UV coverage and low sidelobes. The large field of
view that is inherent in an array of small dishes will permit SETI and traditional
radio astronomy to be conducted simultaneously on the ATA. An imaging cor-
relator will be used by radio astronomers at the same time that multiple pencil
beams will be placed on individual SETI target stars within the field of view.
This is a win-win arrangement that will speed up SETI targeted searching by a
factor of 100 over Project Phoenix. Having 350 antennas in the array means that
there are 700 degrees of freedom in the ways that signals are combined, and this
will greatly enhance the ability to null out arbitrary sources of interference, such
as satellites. Discriminating our own technology from possible extraterrestrial
sources is the biggest challenge for SETI searches today.
Figure 3. The Allen Telescope Array consists of 350 antennas, each
6.1 m in diameter, equivalent to a single 113 m dish.
5. "What Should We Try After That?
In addition to recommending a dedicated microwave SETI observatory and op-
tical SETI searches, SETI 2020 also recommended a transient signal detector
called the Omni-directional SETI System (aSS). The idea is to construct a "ra-
dio fly's-eye" capable of looking in all directions above the horizon at once. The
ass would be sensitive to strong, brief signals such as might arise if the Earth
were being periodically illuminated by a beacon sequentially targeting a number
of different planetary systems. This system uses small, low-gain elements whose
field of view is f"V 211" steradians. Spatial discrimination is done by beamforming
and a large number of elements are needed to achieve even a modest amount
of collecting area. The cost of such a system is dominated by computing. The
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X
Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
Life, the Universe, and SETI in a Nutshell 405
OSS is not affordable today, but prototypes are being developed by the SETI
Institute and Ohio State University (Ellingson 2002), with the expectation that
Moore's Law improvements in the cost of computation will enable such a system
10 to 15 years in the future.
Arrays of separate dishes are not the only way of synthesizing larger fields
of view on the sky; focal plane arrays on single dishes can also be used. The DC
Berkeley SETI group is now planning to take advantage of a 7-beam focal plane
array being built for the Arecibo Observatory. SERENDIP V will piggy-back on
all seven beams, and use coincident detections to discriminate against interfer-
ence. They will also move the SETI@home system to the southern hemisphere
where it will use data collected by the 64 m antenna at the Parkes Observatory.
Optical SETI is currently being conducted on 1 m class telescopes, in the
future the sensitivity of the searches can be improved if detections systems can
be coupled with larger antennas. Since imaging quality is not required, it may
be possible to find a way to commensally observe with some of the large optical
light buckets that are being built to detect Cherenkov radiation from air showers
caused by very high-energy gamma rays. If a fast trigger can be devised to pick
up coincident, single-pixel events from photodiode arrays on multiple telescopes,
optical SETI may find an inexpensive way to graduate to 10 m class telescopes.
Bigger is also better for microwave SETI. The international radio astronomy
community is working to design and build the Square Kilometer Array (SKA),
with 100 times the collecting area of the ATA operating from 300 MHz to 20 GHz
Design criteria for the SKA include a large field of view and a large number of
pencil beams. By sharing these beams with other astronomy projects, SETI
will be able to extend its exploration ten times further out into the Milky Way
Galaxy.
If aggressive and concerted efforts at interference mitigation fail to keep
ahead of the growth in the number of orbital and overflying transmitters, the
lunar farside may become the site of future SETI and radio astronomy observato-
ries. In 1979, the lTD Radio Regulations defined the Shielded Zone of the Moon
and mandated protection from radio frequency interference there. It remains
to be seen how well this pristine electromagnetic environment can be conserved
in the face of growing plans to place observatories and servicing platforms at
the Earth-Moon L2 Lagrange point and the Earth-Sun L1 and L2 points. With
more forethought than characterized the development of the spectrum on Earth,
it should be possible for both active and passive services to have access to the
entire spectrum some of the time.
6. Planning for Success: Who Will Speak for Earth?
Within the International Academy of Astronautics, there has been a standing
SETI Committee for over four decades. Recently that committee has estab-
lished the Rio Scale for SETI, in analogy to the Torino Scale for Earth-crossing
asteroids (see http://www.setileague.org/iaaseti/rioscale.htm). In the event of
the announcement of a SETI detection, this group would compute a Rio Scale
value that would help the public and media interpret the credibility and im-
port of the claimed detection. Most of the SETI researchers listed in Table 1
have subscribed to a voluntary post-detection protocol previously developed by
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X
Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
406 Tarter
the International Academy of Astronautics and the International Institute of
Space Law (see www.iaanet.org/p_papers/seti.html).This document reminds
observers to carefully confirm their results before making a public announce-
ment, and recommends that no reply to a detected signal be transmitted until
an international consensus has been achieved. Just how such a consensus might
be reached is the subject of a second document now under discussion by the
same bodies. Lacking any global governance, it is suggested that the United
Nations Committee on the Peaceful Uses of Outer Space might be the appro-
priate body to attempt to decide whether a reply is made, and if so, who shall
make it, and what it shall say. In practice, it is extremely unlikely that this body
will find time to address this issue at any foreseeable date. If a detection were
made tomorrow, every individual or group with access to a transmitter would
probably decide to transmit their own particular message, without consultation
or coordination. In fact, that cacophony might be the most accurate descriptor
of humanity and 21st century Earth.
7. To Transmit, or Not to Transmit?
If everybody is listening, and nobody is transmitting, SETI will not succeed.
As an altruistic gesture, should we begin deliberate transmissions from Earth?
SETI 2020 suggests that it is important to recognize our asymmetric position
with respect to any other technologies in the galaxy; if they exist, they are older.
Therefore, the energetically and culturally more difficult task of transmitting
should be their responsibility. Emerging technologies should listen first. At
the moment, our own use of the broadcast spectrum is quite wasteful, and in
our youthful technological exuberance, we are leaking radiation copiously. As
our transmissions become more efficient, and therefore more like pure noise, it
will be reasonable to consider deliberate transmissions. But mindful of the fact
that transmission must be long-term (on a cosmic timescale) if it is to have
any probability of being detected, and that the difficult questions of who will
speak for Earth and what will be said must be answered prior to the start
of transmission, such activity still lies in our future, when, and if, we become
mature enough as a species to step up to the task.
8. Concluding Remarks
In spite of the lack of any current governmental funding for SETI research,
innovative projects are operating on a number of telescopes around the world,
and ambitious plans are being made to expand these activities. Even though
potentially multi- generational searches are better suited to private endowments
than to annual federal funding cycles, it will be important to look for avenues
to forge public-private partnerships to continue and improve SETI exploration.
This activity is intrinsically international, and given the size of the Cosmic
Haystack, success may require resources from, and agreements among, many
nations.
Acknowledgments. The author wishes to acknowledge support from the
SETI Institute and its many generous donors.
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X
Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
References
Life, the Universe, and SETI in a Nutshell 407
Bell, J., & Hewish, A. 1967, Nature, 213, 12
Drake, F. D. 1961, Physics Today, 14, 40
Ekers, R. D., Cullers, D. K., Billingham, J., & Scheffer, L. K. (eds.) 2002, SETI
2020: A Roadmap for the Search for Extraterrestrial Intelligence, (Mtn. View,
CA: SETI Press)
Ellingson, S. W. 2002, http://esl.eng.ohio-state.edu/rfse/argus/rfse-argus.html
Howard A., Horowitz P., & Coldwell, C. 2000, An All-Sky Optical Survey, Paper
No. IAC-00-IAA.9.1.08 presented at 51st International Astronautical Congress,
Oct 2-6 Rio de Janeiro, http://setLharvard.edu/oseti/allsky.pdf
Tinney, C. 2004, this proceeding
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X
Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
408 Tarter
Seth Shostak (photo: Seth Shostak)
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X
Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at

More Related Content

Similar to Life, the Universe, andSETI in a Nutshell

Astronomy Research Via The Internet
Astronomy Research Via The InternetAstronomy Research Via The Internet
Astronomy Research Via The InternetBrandi Gonzales
 
The Quest for Extraterrestrial Intelligence
The Quest for Extraterrestrial IntelligenceThe Quest for Extraterrestrial Intelligence
The Quest for Extraterrestrial IntelligenceBETA-UFO Indonesia
 
Imaging the Milky Way with Millihertz Gravitational Waves
Imaging the Milky Way with Millihertz Gravitational WavesImaging the Milky Way with Millihertz Gravitational Waves
Imaging the Milky Way with Millihertz Gravitational WavesSérgio Sacani
 
The Large Interferometer For Exoplanets (LIFE): the science of characterising...
The Large Interferometer For Exoplanets (LIFE): the science of characterising...The Large Interferometer For Exoplanets (LIFE): the science of characterising...
The Large Interferometer For Exoplanets (LIFE): the science of characterising...Advanced-Concepts-Team
 
The vvv survey_reveals_classical_cepheids_tracing_a_young_and_thin_stellar_di...
The vvv survey_reveals_classical_cepheids_tracing_a_young_and_thin_stellar_di...The vvv survey_reveals_classical_cepheids_tracing_a_young_and_thin_stellar_di...
The vvv survey_reveals_classical_cepheids_tracing_a_young_and_thin_stellar_di...Sérgio Sacani
 
Strong Field Gravitational Tests
Strong Field Gravitational TestsStrong Field Gravitational Tests
Strong Field Gravitational TestsNicolae Sfetcu
 
Suborbital Opportunities for Students
Suborbital Opportunities for StudentsSuborbital Opportunities for Students
Suborbital Opportunities for StudentsKimberly Ennico Smith
 
First light of VLT/HiRISE: High-resolution spectroscopy of young giant exopla...
First light of VLT/HiRISE: High-resolution spectroscopy of young giant exopla...First light of VLT/HiRISE: High-resolution spectroscopy of young giant exopla...
First light of VLT/HiRISE: High-resolution spectroscopy of young giant exopla...Sérgio Sacani
 
N9 Anselmo - "security in space"
N9 Anselmo - "security in space"N9 Anselmo - "security in space"
N9 Anselmo - "security in space"IAPS
 
A giant thin stellar stream in the Coma Galaxy Cluster
A giant thin stellar stream in the Coma Galaxy ClusterA giant thin stellar stream in the Coma Galaxy Cluster
A giant thin stellar stream in the Coma Galaxy ClusterSérgio Sacani
 
artificial inteliigence in spacecraft power application
artificial inteliigence in spacecraft  power applicationartificial inteliigence in spacecraft  power application
artificial inteliigence in spacecraft power applicationarjuna adiga
 
Orbital Decay in M82 X-2
Orbital Decay in M82 X-2Orbital Decay in M82 X-2
Orbital Decay in M82 X-2Sérgio Sacani
 
CFHT proposed Maunakea Spectroscopic Explorer
CFHT proposed Maunakea Spectroscopic ExplorerCFHT proposed Maunakea Spectroscopic Explorer
CFHT proposed Maunakea Spectroscopic ExplorerILOAHawaii
 

Similar to Life, the Universe, andSETI in a Nutshell (20)

Astronomy Research Via The Internet
Astronomy Research Via The InternetAstronomy Research Via The Internet
Astronomy Research Via The Internet
 
The Quest for Extraterrestrial Intelligence
The Quest for Extraterrestrial IntelligenceThe Quest for Extraterrestrial Intelligence
The Quest for Extraterrestrial Intelligence
 
Imaging the Milky Way with Millihertz Gravitational Waves
Imaging the Milky Way with Millihertz Gravitational WavesImaging the Milky Way with Millihertz Gravitational Waves
Imaging the Milky Way with Millihertz Gravitational Waves
 
C C Net 2002 A P R18
C C Net 2002 A P R18C C Net 2002 A P R18
C C Net 2002 A P R18
 
The Large Interferometer For Exoplanets (LIFE): the science of characterising...
The Large Interferometer For Exoplanets (LIFE): the science of characterising...The Large Interferometer For Exoplanets (LIFE): the science of characterising...
The Large Interferometer For Exoplanets (LIFE): the science of characterising...
 
AST_s309_ss11_19.ppt
AST_s309_ss11_19.pptAST_s309_ss11_19.ppt
AST_s309_ss11_19.ppt
 
The vvv survey_reveals_classical_cepheids_tracing_a_young_and_thin_stellar_di...
The vvv survey_reveals_classical_cepheids_tracing_a_young_and_thin_stellar_di...The vvv survey_reveals_classical_cepheids_tracing_a_young_and_thin_stellar_di...
The vvv survey_reveals_classical_cepheids_tracing_a_young_and_thin_stellar_di...
 
1701.06227
1701.062271701.06227
1701.06227
 
Strong Field Gravitational Tests
Strong Field Gravitational TestsStrong Field Gravitational Tests
Strong Field Gravitational Tests
 
Suborbital Opportunities for Students
Suborbital Opportunities for StudentsSuborbital Opportunities for Students
Suborbital Opportunities for Students
 
First light of VLT/HiRISE: High-resolution spectroscopy of young giant exopla...
First light of VLT/HiRISE: High-resolution spectroscopy of young giant exopla...First light of VLT/HiRISE: High-resolution spectroscopy of young giant exopla...
First light of VLT/HiRISE: High-resolution spectroscopy of young giant exopla...
 
N9 Anselmo - "security in space"
N9 Anselmo - "security in space"N9 Anselmo - "security in space"
N9 Anselmo - "security in space"
 
A giant thin stellar stream in the Coma Galaxy Cluster
A giant thin stellar stream in the Coma Galaxy ClusterA giant thin stellar stream in the Coma Galaxy Cluster
A giant thin stellar stream in the Coma Galaxy Cluster
 
1 (2)
1 (2)1 (2)
1 (2)
 
21275
2127521275
21275
 
artificial inteliigence in spacecraft power application
artificial inteliigence in spacecraft  power applicationartificial inteliigence in spacecraft  power application
artificial inteliigence in spacecraft power application
 
Quantum teleportation
Quantum teleportationQuantum teleportation
Quantum teleportation
 
Orbital Decay in M82 X-2
Orbital Decay in M82 X-2Orbital Decay in M82 X-2
Orbital Decay in M82 X-2
 
CFHT proposed Maunakea Spectroscopic Explorer
CFHT proposed Maunakea Spectroscopic ExplorerCFHT proposed Maunakea Spectroscopic Explorer
CFHT proposed Maunakea Spectroscopic Explorer
 
AGanguly_ALuo
AGanguly_ALuoAGanguly_ALuo
AGanguly_ALuo
 

More from Sérgio Sacani

Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...Sérgio Sacani
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Sérgio Sacani
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRSérgio Sacani
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...Sérgio Sacani
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNSérgio Sacani
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldSérgio Sacani
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillatingSérgio Sacani
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsSérgio Sacani
 
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Sérgio Sacani
 
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...Sérgio Sacani
 
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky WayShiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky WaySérgio Sacani
 
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...Sérgio Sacani
 
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...Sérgio Sacani
 
Revelando Marte - Livro Sobre a Exploração do Planeta Vermelho
Revelando Marte - Livro Sobre a Exploração do Planeta VermelhoRevelando Marte - Livro Sobre a Exploração do Planeta Vermelho
Revelando Marte - Livro Sobre a Exploração do Planeta VermelhoSérgio Sacani
 
Weak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma clusterWeak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma clusterSérgio Sacani
 
Quasar and Microquasar Series - Microquasars in our Galaxy
Quasar and Microquasar Series - Microquasars in our GalaxyQuasar and Microquasar Series - Microquasars in our Galaxy
Quasar and Microquasar Series - Microquasars in our GalaxySérgio Sacani
 
A galactic microquasar mimicking winged radio galaxies
A galactic microquasar mimicking winged radio galaxiesA galactic microquasar mimicking winged radio galaxies
A galactic microquasar mimicking winged radio galaxiesSérgio Sacani
 
The Search Of Nine Planet, Pluto (Artigo Histórico)
The Search Of Nine Planet, Pluto (Artigo Histórico)The Search Of Nine Planet, Pluto (Artigo Histórico)
The Search Of Nine Planet, Pluto (Artigo Histórico)Sérgio Sacani
 

More from Sérgio Sacani (20)

Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious World
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillating
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jets
 
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
 
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
 
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky WayShiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
 
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
 
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
 
Revelando Marte - Livro Sobre a Exploração do Planeta Vermelho
Revelando Marte - Livro Sobre a Exploração do Planeta VermelhoRevelando Marte - Livro Sobre a Exploração do Planeta Vermelho
Revelando Marte - Livro Sobre a Exploração do Planeta Vermelho
 
Weak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma clusterWeak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma cluster
 
Quasar and Microquasar Series - Microquasars in our Galaxy
Quasar and Microquasar Series - Microquasars in our GalaxyQuasar and Microquasar Series - Microquasars in our Galaxy
Quasar and Microquasar Series - Microquasars in our Galaxy
 
A galactic microquasar mimicking winged radio galaxies
A galactic microquasar mimicking winged radio galaxiesA galactic microquasar mimicking winged radio galaxies
A galactic microquasar mimicking winged radio galaxies
 
The Search Of Nine Planet, Pluto (Artigo Histórico)
The Search Of Nine Planet, Pluto (Artigo Histórico)The Search Of Nine Planet, Pluto (Artigo Histórico)
The Search Of Nine Planet, Pluto (Artigo Histórico)
 

Recently uploaded

The Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionThe Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionJadeNovelo1
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGiovaniTrinidad
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxfarhanvvdk
 
Pests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPirithiRaju
 
Advances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerAdvances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerLuis Miguel Chong Chong
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfGABYFIORELAMALPARTID1
 
Interpreting SDSS extragalactic data in the era of JWST
Interpreting SDSS extragalactic data in the era of JWSTInterpreting SDSS extragalactic data in the era of JWST
Interpreting SDSS extragalactic data in the era of JWSTAlexander F. Mayer
 
Harry Coumnas Thinks That Human Teleportation May Ensure Humanity's Survival
Harry Coumnas Thinks That Human Teleportation May Ensure Humanity's SurvivalHarry Coumnas Thinks That Human Teleportation May Ensure Humanity's Survival
Harry Coumnas Thinks That Human Teleportation May Ensure Humanity's Survivalkevin8smith
 
Science (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsScience (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsDobusch Leonhard
 
Role of Gibberellins, mode of action and external applications.pptx
Role of Gibberellins, mode of action and external applications.pptxRole of Gibberellins, mode of action and external applications.pptx
Role of Gibberellins, mode of action and external applications.pptxjana861314
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests GlycosidesNandakishor Bhaurao Deshmukh
 
HEMATOPOIESIS - formation of blood cells
HEMATOPOIESIS - formation of blood cellsHEMATOPOIESIS - formation of blood cells
HEMATOPOIESIS - formation of blood cellsSachinSuresh44
 
Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...
Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...
Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...Chiheb Ben Hammouda
 
bonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlsbonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlshansessene
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learningvschiavoni
 
3.-Acknowledgment-Dedication-Abstract.docx
3.-Acknowledgment-Dedication-Abstract.docx3.-Acknowledgment-Dedication-Abstract.docx
3.-Acknowledgment-Dedication-Abstract.docxUlahVanessaBasa
 
FBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxFBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxPayal Shrivastava
 
Production technology of Brinjal -Solanum melongena
Production technology of Brinjal -Solanum melongenaProduction technology of Brinjal -Solanum melongena
Production technology of Brinjal -Solanum melongenajana861314
 
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...Speed Breeding in Vegetable Crops- innovative approach for present era of cro...
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...jana861314
 
DETECTION OF MUTATION BY CLB METHOD.pptx
DETECTION OF MUTATION BY CLB METHOD.pptxDETECTION OF MUTATION BY CLB METHOD.pptx
DETECTION OF MUTATION BY CLB METHOD.pptx201bo007
 

Recently uploaded (20)

The Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionThe Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and Function
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptx
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptx
 
Pests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPR
 
Advances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerAdvances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of Cancer
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
 
Interpreting SDSS extragalactic data in the era of JWST
Interpreting SDSS extragalactic data in the era of JWSTInterpreting SDSS extragalactic data in the era of JWST
Interpreting SDSS extragalactic data in the era of JWST
 
Harry Coumnas Thinks That Human Teleportation May Ensure Humanity's Survival
Harry Coumnas Thinks That Human Teleportation May Ensure Humanity's SurvivalHarry Coumnas Thinks That Human Teleportation May Ensure Humanity's Survival
Harry Coumnas Thinks That Human Teleportation May Ensure Humanity's Survival
 
Science (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsScience (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and Pitfalls
 
Role of Gibberellins, mode of action and external applications.pptx
Role of Gibberellins, mode of action and external applications.pptxRole of Gibberellins, mode of action and external applications.pptx
Role of Gibberellins, mode of action and external applications.pptx
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
 
HEMATOPOIESIS - formation of blood cells
HEMATOPOIESIS - formation of blood cellsHEMATOPOIESIS - formation of blood cells
HEMATOPOIESIS - formation of blood cells
 
Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...
Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...
Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...
 
bonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlsbonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girls
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
 
3.-Acknowledgment-Dedication-Abstract.docx
3.-Acknowledgment-Dedication-Abstract.docx3.-Acknowledgment-Dedication-Abstract.docx
3.-Acknowledgment-Dedication-Abstract.docx
 
FBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxFBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptx
 
Production technology of Brinjal -Solanum melongena
Production technology of Brinjal -Solanum melongenaProduction technology of Brinjal -Solanum melongena
Production technology of Brinjal -Solanum melongena
 
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...Speed Breeding in Vegetable Crops- innovative approach for present era of cro...
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...
 
DETECTION OF MUTATION BY CLB METHOD.pptx
DETECTION OF MUTATION BY CLB METHOD.pptxDETECTION OF MUTATION BY CLB METHOD.pptx
DETECTION OF MUTATION BY CLB METHOD.pptx
 

Life, the Universe, andSETI in a Nutshell

  • 1. SETI The Parkes Radio Telescope, NSW, Australia (photo: Frank Stootman) https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
  • 2. Jill Tarter (photo: Seth Shostak) https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
  • 3. Bioastronomy 2002: Life Amony the Stars IAU Symposium, Vol. 213, 2004 R.P.Norris and F.H.Stootman (eds.) Life, the Universe, and SETI in a Nutshell Jill Tarter SETI Institute, 2035 Landings Drive, Mountain View, CA 94043, U.S.A. Abstract. To date, no SETI observing program has succeeded in de- tecting any unambiguous evidence of an extraterrestrial technology. Re- grettably, this paper will therefore not dazzle you with the analysis of the contents of any interstellar messages. However, as is appropriate for a plenary presentation, this paper does provide an update on the state of SETI programs worldwide. It discusses the various "flavors" of observa- tional SETI projects currently on the air, plans for future instrumenta- tion, recent attempts to proactively plan for success, and the prospects for future public/private partnerships to fund these efforts. The paper concludes with some tentative responses to the "What if everybody is listening, and nobody is transmitting?" query. 1. Some Pragmatic Definitions At previous Bioastronomy meetings and related Astrobiology meetings, a sig- nificant effort has been expended in attempts to define such commonplace and familiar terms as "life" and "intelligence". The trick is to be inclusive, and yet not end up defining something like fire to be alive. As yet there are no satisfactory definitions for these terms, though everyone attending this meeting has probably had to adopt some working definitions to facilitate their on-going research. In SETI, things are no different, except that the limited scope of 21st century technology permits us to adopt purely pragmatic definitions without apology. So for the record, in what follows, my definitions are: • Life == the necessary precursor to any technology that modifies its en- vironment in ways that can be sensed over interplanetary or interstellar distances. • Intelligence == the ability to construct and operate large transmitters. • SETI == that branch of astrobiology which takes advantage of the deliberate actions of the inhabitants, in order to detect habitable worlds. These definitions are more than a tongue-in-cheek exercise. They encom- pass, and specifically acknowledge, all the anthropomorphic biases with which we are burdened, while admitting that there is nothing we can do about them until such time as we discover an example of life (including perhaps, intelligent life) as we don't yet know it. Use of the word "astrobiology" in the definition of "SETI" is this author's, admittedly political, assertion that SETI legitimately lies within the continuum of research activities encompassed by the emergent field of astrobiology/bioastronomy, but the definition could stand without it. 397 https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
  • 4. 398 Tarter 2. What Should We Be Looking For? What constitutes a legitimate SETI detection? What kind of technologies are we capable of detecting today, or in the near future? The answer to this sec- ond question is easy: with our primitive technology, we will only detect those technological civilizations that are far older than our own. We cannot detect less primitive technologies than our own over interstellar distances. We will only succeed in detecting another technology in the near future (with the limited tech- nology we have at our disposal) if, on the average, technological civilizations are long-lived. Here longevity must be measured on cosmic, rather than human, timescales. Technological civilizations cannot be temporally and spatially co-incident within our 10 billion year old galaxy, unless technologies persist for a significant fraction of the galaxy's age. This is just the degenerate form of the Drake Equation, N ::; L (the number of civilizations with whom we can communicate in the Milky Way is less than or equal to the average longevity of technological civilizations measured in years)(Drake 1961). Thus statistically we can say with confidence that any technologies within the grasp of our current detection schemes will be far older than ours. How might we detect them? An older, extraterrestrial technology could be expected to engage in one or more of the following activities, and these might manifest themselves in ways that are detectable over interstellar dis- tances: large-scale astroengineering projects, generation/harnessing of power, interstellar/interplanetary travel, wars, information exchange. Over the past 42 years, since Project Ozma (Drake 1961), about 100 attempts have been made to search for examples of each of these activities (see historical review of SETI observing projects at http://www.setLorg/science/searches-list.html), although most of them have focused on the detection of communication signals. Such sig- nals might be intended to attract the attention of other, emerging technologies (beacons), or signals being broadcast for some internal purposes (leakage). Leak- age radiation, as well as manifestations of the other hypothetical technologies listed above, are best sought as the by-products of an aggressive observational exploration of our cosmos. SETI researchers should, and do, encourage current and future generations of astronomers to behave like Joycelyn Bell Burnell, leaving no "bit of scruff" in their data unexplored (Bell & Hewish 1967). When it comes to a search for beacons, it is plausible to suggest that extraterrestrial engineers, intent on generating a signal that will have a high probability of being discovered, might transmit signals whose characteristics are a) almost astrophysical, or b) im- possible to create by astrophysical emission mechanisms and thus obviously of technological origin. Signals of type a) are also best sought in the process of a vigorous astronomical observing program. Such signals will have been designed to be captured routinely by the instrumentation developed as a young technol- ogy explores its cosmic environment. Additional study would reveal behaviors inconsistent with any astrophysical explanation (e.g., a pulsar that "glitches" back and forth between two precise periods) and perhaps, eventually, the exis- tence of some embedded information-encoding scheme. It is the beacon signals of type b) that have been, and continue to be, the objects of most SETI observing programs. https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
  • 5. Life, the Universe, and SETI in a Nutshell 399 What sort of signal cannot be produced by astrophysical emission mecha- nisms (as far as we know)? The large number of emitters (atoms, molecules, rad- icals, etc.) required to generate an astrophysical signal with detectable amounts of flux, guarantees that the time-bandwidth product of the signal will greatly exceed unity (the minimum allowed by the uncertainty principle) i.e. Br» 1. However, because it is economically rewarding to do so, terrestrial technologies have developed a number of ways to generate signals with Br ~ 1; these are long-duration narrowband pulses (going in the limit to continuous wave, narrow- band signals), and short-duration, broadband pulses. Whatever its frequency, a beacon signal must outshine its local background, or the fluctuations in that background if integration techniques can be used by the receiver to improve the signal to noise ratio. Figure 1 represents the average cosmic background radi- ation from the longest radio waves to the shortest gamma-rays. Historically, SETI programs have concentrated on the microwave portion of the spectrum because of the naturally low background there. The average values in Fig. 1 can be radically altered if spatial, spectral, or temporal filters are applied by the transmitter or receiver. As in the case of attempting to directly image a terres- trial planet around a nearby star (Tinney 2004), a fainter beacon signal from an optical transmitter orbiting a star could be detected if the bright starlight could be spatially filtered out. It is also possible that application of a temporal filter might permit a beacon to momentarily outshine its host star, without re- quiring an unacceptable energy cost for the transmitter. In addition to the local background, constructors of intentional beacons must consider the interstellar medium through which the signal will propagate. Local Radiation Field EUV T XRAY 9 10 11 12 13 14 15 16 17 18 19 20 21 logf, Hz 0 -1 -2 -3 -4 -5 -6 logfl, -7 w/m2 sr -8 -9 ·10 -11 ·12 ·13 -14 7 8 Figure 1. Average Astrophysical Background Radiation https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
  • 6. 400 Tarter Multipath scattering in the interstellar medium smears out the time of ar- rival of broadband microwave pulses, requiring additional analytic techniques to reconstruct the pulses. This increased complexity for the receiver suggests that at centimeter wavelengths, broad pulses may not be the best choice for intentional beacons, and to date microwave searches have concentrated on nar- rowband pulses and CW signals. At optical wavelengths, there is no problem with interstellar dispersion, but absorption by dust does limit the range of such signals to a few thousand light years. Today, SETI observing programs consist of microwave searches for narrowband signals and optical searches for broadband, micro-to-nano-second pulses as well as powerful, narrowband lasers. The optical detection techniques have not moved into the infrared (where dust would be less of a problem) because affordable, fast detectors do not yet exist. 3. "Who is Searching Now, and How are They Doing It? Once the wavelength for a search has been chosen, it is then necessary to se- lect an appropriate observing strategy. The observer must decide whether to search the entire sky (or a large fraction thereof), spending little time at any frequency and location, or to spend larger amounts of time targeting a limited number of directions, with the ability to perform more complex pattern recog- nition analyses, and search for fainter signals. These so-called sky surveys or targeted searches can also utilize three different approaches for data collection. A directed search occurs when the observer has control of the telescope (often as the result of a successful observing proposal) and can specify the direction and frequency of the observation. Larger amounts of telescope time are sometimes available to researchers willing to conduct commensal or piggy-back searches, where the direction, frequency, and mode of observing are dictated by some other primary science driver. Finally, a researcher might decide to access the enormous volumes of stored data, now available from completed observational programs, and subject those data to different detection algorithms that are op- timized for the discovery of technological, rather than astrophysical, signals. All of these techniques have been and continue to be used. Since the "Cosmic Haystack" being searched for the important needle-signal is nine-dimensional (3-space, time, frequency, 2-polarizations, modulation, intensity) and vast, his- torically many researchers have made hypotheses about "magic" frequencies, places, or times in order to limit the search to something that is achievable in a finite time, with available resources. At present, there are a 13 search programs on various telescopes around the globe. Short descriptions and references for these searches can be found in the archive of searches previously mentioned (http:/ j www.seti.orgjscience/ searches- list.html). They are categorized by search strategy and frequency in the list below (Table 1), and a URL for the associated web site is included. The line drawn through the BETA search in Table 1 indicates that it is not yet back on the air following a wind storm that lifted the dish off its mount, bending some of the panels on landing. Repairs are under way. SETI@home is listed under SERENDIP IV rather than as a separate search because it obtains its raw data by splitting off2.5% of the digitized IF data stream from SERENDIP IV, as well as using all of the pointing information provided by the telescope https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
  • 7. Life, the Universe, and SETI in a Nutshell Table 1. Searches on Telescopes Today TARGETED SEARCHES Type Microwave D SETI Institute Project Phoenix (http://www.seti.org) Type Optical D Berkeley Optical SETI (http://sag-www.ssl.berkeley.edu/opticalseti) C Harvard Optical SETI (http://mc.harvard.edu/oseti/index.html) D Lick Optical SETI (http://setLucolick.org/optical) D & C Princeton Optical SETI (http://observatory.Princeton.EDU/oseti/) D Australian Optical SETI (http://www.atnf.csiro/pasa/17_2/bhathal/paper.pdf) A Exoplanet Archive Optical SETI (http://www.physics.sfsu.edu/ areines/seti/htrnl] SKY SURVEYS Type Microwave C SERENDIP IV (http://setLssl.berkeley.edu/serendip/ serendip.html) also SETI@home (http://setiathome.ssl.berkeley.edu) D ~ (http://nic.harvard.edu/seti/beta.html) D META II (http://www.planetary.org/html /UPDATES/ seti/META2/ default.html) C Southern SERENDIP (http://setLuws.edu.au) D SETI League Project Argus (http:www.setileague.org) C SETI Italia (http://boas5.bo.astro.it/ iiniverso /webuniverso/montebugnoli/monte4.html) Legend D is a directed search C is acommensal search A is an archival search 401 https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
  • 8. 402 Tarter interface from that search. Although they have been included in Table 1, the Australian Optical SETI project, Southern SERENDIP, and SETI Italia have not yet published results from anyon-going observational programs, and require additional maturity in their software analyses. Clearly the United States is host to the greatest number of searches, but the rest of the world is beginning to find the resources to join this enterprise. All of the searches listed have been financed from private sources. There has been no federal/national funding for SETI searches since the US Congress terminated the funds for NASA's High Resolution Microwave Survey in 1993. 4. "What Should We Try Next? It is immediately obvious from Table 1 that there have been no sky surveys at optical wavelengths. That should change by the end of 2002. A dedicated optical SETI sky survey observatory is being constructed at the Oak Ridge Observatory in Harvard, Massachusetts alongside BETA, and the commensal Harvard Optical SETI targeted search (Howard, Horowitz, & Coldwell 2000). Prof. Paul Horowitz and his students have managed to keep the cost of this observatory very low by using a roll-off roof observing building, forming the 1.8 meter primary mirror by fusing glass onto a spherical mold (imaging-quality optics are not required), restricting the mount to rotation about a single axis to accommodate drift scans, and cleverly splitting and folding the light beams to focus them onto a single signal processing board containing two linear arrays, each with 512 photomultiplier tubes (see Fig. 2). Funding for this project is being provided by The Planetary Society and the Bosack/Kruger Charitable Foundation. A sky survey from -200 < fJ < +600 along strips that are 1.60 x 0.20 will be possible in about 200 clear nights for observing. The large number of entries in Table 1 is misleading; it appears that the sky is being exhaustively examined for signals of extraterrestrial intelligent origin within two frequency regimes. Yet, in truth, even after more than four decades of SETI observing programs, we have hardly begun to explore the nine-dimensional space within which signals might be detected. Part of the problem lies in the fact that SETI observations must compete for time, or share the time, on telescopes that were constructed for other purposes. Access to the sky is limited, and the observational tools are not optimal. The dedicated optical sky survey telescope being constructed by Harvard will improve the situation for laser signals, but a better SETI telescope is also required at microwave frequencies, and of course, in this era of private funding for SETI, it needs to be affordable. As a result of workshops held by the SETI Institute in 1997-99, and pub- lished in SETI 2020 (Ekers et al. 2002) the SETI Institute entered into a part- nership with UC Berkeley Radio Astronomy Lab to design and build a dedicated facility for microwave SETI having at least 104 m2 (one hectare) of collecting area. The Paul G. Allen Foundation has funded the technology development for this Allen Telescope Array (ATA) that will consist of 350 offset Gregorian dishes, each 6.1 m in diameter (see www.seti.org/science/ata.htrnl). The part- nership has been very successful in identifying ways to use commercial telcom components and manufacturing processes to minimize costs, while developing in- novative feeds, receivers, and miniature coolers to achieve extremely broadband https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
  • 9. Life, the Universe, and SETI in a Nutshell Figure 2. Harvard Dedicated Optical Sky Survey. a. Schematic of the observatory building, b. snapshot during construction, c. the op- tical beams, and d. the observing pattern on the sky. 403 instantaneous frequency coverage from 0.5-11 GHz. Assuming timely decisions https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
  • 10. 404 Tarter on construction funding and land-use permits, the ATA should be completed in 2005. Figure 3 illustrates the irregular configuration for the antennas, extending over 800 m in the Hat Creek Valley north of Mount Lassen in northern Califor- nia, and optimized for uniform UV coverage and low sidelobes. The large field of view that is inherent in an array of small dishes will permit SETI and traditional radio astronomy to be conducted simultaneously on the ATA. An imaging cor- relator will be used by radio astronomers at the same time that multiple pencil beams will be placed on individual SETI target stars within the field of view. This is a win-win arrangement that will speed up SETI targeted searching by a factor of 100 over Project Phoenix. Having 350 antennas in the array means that there are 700 degrees of freedom in the ways that signals are combined, and this will greatly enhance the ability to null out arbitrary sources of interference, such as satellites. Discriminating our own technology from possible extraterrestrial sources is the biggest challenge for SETI searches today. Figure 3. The Allen Telescope Array consists of 350 antennas, each 6.1 m in diameter, equivalent to a single 113 m dish. 5. "What Should We Try After That? In addition to recommending a dedicated microwave SETI observatory and op- tical SETI searches, SETI 2020 also recommended a transient signal detector called the Omni-directional SETI System (aSS). The idea is to construct a "ra- dio fly's-eye" capable of looking in all directions above the horizon at once. The ass would be sensitive to strong, brief signals such as might arise if the Earth were being periodically illuminated by a beacon sequentially targeting a number of different planetary systems. This system uses small, low-gain elements whose field of view is f"V 211" steradians. Spatial discrimination is done by beamforming and a large number of elements are needed to achieve even a modest amount of collecting area. The cost of such a system is dominated by computing. The https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
  • 11. Life, the Universe, and SETI in a Nutshell 405 OSS is not affordable today, but prototypes are being developed by the SETI Institute and Ohio State University (Ellingson 2002), with the expectation that Moore's Law improvements in the cost of computation will enable such a system 10 to 15 years in the future. Arrays of separate dishes are not the only way of synthesizing larger fields of view on the sky; focal plane arrays on single dishes can also be used. The DC Berkeley SETI group is now planning to take advantage of a 7-beam focal plane array being built for the Arecibo Observatory. SERENDIP V will piggy-back on all seven beams, and use coincident detections to discriminate against interfer- ence. They will also move the SETI@home system to the southern hemisphere where it will use data collected by the 64 m antenna at the Parkes Observatory. Optical SETI is currently being conducted on 1 m class telescopes, in the future the sensitivity of the searches can be improved if detections systems can be coupled with larger antennas. Since imaging quality is not required, it may be possible to find a way to commensally observe with some of the large optical light buckets that are being built to detect Cherenkov radiation from air showers caused by very high-energy gamma rays. If a fast trigger can be devised to pick up coincident, single-pixel events from photodiode arrays on multiple telescopes, optical SETI may find an inexpensive way to graduate to 10 m class telescopes. Bigger is also better for microwave SETI. The international radio astronomy community is working to design and build the Square Kilometer Array (SKA), with 100 times the collecting area of the ATA operating from 300 MHz to 20 GHz Design criteria for the SKA include a large field of view and a large number of pencil beams. By sharing these beams with other astronomy projects, SETI will be able to extend its exploration ten times further out into the Milky Way Galaxy. If aggressive and concerted efforts at interference mitigation fail to keep ahead of the growth in the number of orbital and overflying transmitters, the lunar farside may become the site of future SETI and radio astronomy observato- ries. In 1979, the lTD Radio Regulations defined the Shielded Zone of the Moon and mandated protection from radio frequency interference there. It remains to be seen how well this pristine electromagnetic environment can be conserved in the face of growing plans to place observatories and servicing platforms at the Earth-Moon L2 Lagrange point and the Earth-Sun L1 and L2 points. With more forethought than characterized the development of the spectrum on Earth, it should be possible for both active and passive services to have access to the entire spectrum some of the time. 6. Planning for Success: Who Will Speak for Earth? Within the International Academy of Astronautics, there has been a standing SETI Committee for over four decades. Recently that committee has estab- lished the Rio Scale for SETI, in analogy to the Torino Scale for Earth-crossing asteroids (see http://www.setileague.org/iaaseti/rioscale.htm). In the event of the announcement of a SETI detection, this group would compute a Rio Scale value that would help the public and media interpret the credibility and im- port of the claimed detection. Most of the SETI researchers listed in Table 1 have subscribed to a voluntary post-detection protocol previously developed by https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
  • 12. 406 Tarter the International Academy of Astronautics and the International Institute of Space Law (see www.iaanet.org/p_papers/seti.html).This document reminds observers to carefully confirm their results before making a public announce- ment, and recommends that no reply to a detected signal be transmitted until an international consensus has been achieved. Just how such a consensus might be reached is the subject of a second document now under discussion by the same bodies. Lacking any global governance, it is suggested that the United Nations Committee on the Peaceful Uses of Outer Space might be the appro- priate body to attempt to decide whether a reply is made, and if so, who shall make it, and what it shall say. In practice, it is extremely unlikely that this body will find time to address this issue at any foreseeable date. If a detection were made tomorrow, every individual or group with access to a transmitter would probably decide to transmit their own particular message, without consultation or coordination. In fact, that cacophony might be the most accurate descriptor of humanity and 21st century Earth. 7. To Transmit, or Not to Transmit? If everybody is listening, and nobody is transmitting, SETI will not succeed. As an altruistic gesture, should we begin deliberate transmissions from Earth? SETI 2020 suggests that it is important to recognize our asymmetric position with respect to any other technologies in the galaxy; if they exist, they are older. Therefore, the energetically and culturally more difficult task of transmitting should be their responsibility. Emerging technologies should listen first. At the moment, our own use of the broadcast spectrum is quite wasteful, and in our youthful technological exuberance, we are leaking radiation copiously. As our transmissions become more efficient, and therefore more like pure noise, it will be reasonable to consider deliberate transmissions. But mindful of the fact that transmission must be long-term (on a cosmic timescale) if it is to have any probability of being detected, and that the difficult questions of who will speak for Earth and what will be said must be answered prior to the start of transmission, such activity still lies in our future, when, and if, we become mature enough as a species to step up to the task. 8. Concluding Remarks In spite of the lack of any current governmental funding for SETI research, innovative projects are operating on a number of telescopes around the world, and ambitious plans are being made to expand these activities. Even though potentially multi- generational searches are better suited to private endowments than to annual federal funding cycles, it will be important to look for avenues to forge public-private partnerships to continue and improve SETI exploration. This activity is intrinsically international, and given the size of the Cosmic Haystack, success may require resources from, and agreements among, many nations. Acknowledgments. The author wishes to acknowledge support from the SETI Institute and its many generous donors. https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
  • 13. References Life, the Universe, and SETI in a Nutshell 407 Bell, J., & Hewish, A. 1967, Nature, 213, 12 Drake, F. D. 1961, Physics Today, 14, 40 Ekers, R. D., Cullers, D. K., Billingham, J., & Scheffer, L. K. (eds.) 2002, SETI 2020: A Roadmap for the Search for Extraterrestrial Intelligence, (Mtn. View, CA: SETI Press) Ellingson, S. W. 2002, http://esl.eng.ohio-state.edu/rfse/argus/rfse-argus.html Howard A., Horowitz P., & Coldwell, C. 2000, An All-Sky Optical Survey, Paper No. IAC-00-IAA.9.1.08 presented at 51st International Astronautical Congress, Oct 2-6 Rio de Janeiro, http://setLharvard.edu/oseti/allsky.pdf Tinney, C. 2004, this proceeding https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at
  • 14. 408 Tarter Seth Shostak (photo: Seth Shostak) https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090019360X Downloaded from https://www.cambridge.org/core. Wyeth, on 14 Jun 2019 at 01:40:28, subject to the Cambridge Core terms of use, available at