Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this presentation? Why not share!

- Lesson 19: The Mean Value Theorem by Matthew Leingang 2449 views
- Lesson 23: Antiderivatives by Matthew Leingang 933 views
- Lesson 28: Integration by Subsitution by Matthew Leingang 1237 views
- Lesson18 -maximum_and_minimum_valu... by Matthew Leingang 701 views
- Lesson 20: Derivatives and the shap... by Matthew Leingang 1208 views
- Introduction by Matthew Leingang 957 views

1,194 views

Published on

No Downloads

Total views

1,194

On SlideShare

0

From Embeds

0

Number of Embeds

10

Shares

0

Downloads

56

Comments

0

Likes

1

No embeds

No notes for slide

- 1. Section 3.7 Indeterminate Forms and L’Hˆpital’s o Rule V63.0121.002.2010Su, Calculus I New York University June 7, 2010 Announcements
- 2. Announcements V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 2 / 26
- 3. Objectives Know when a limit is of indeterminate form: indeterminate quotients: 0/0, ∞/∞ indeterminate products: 0×∞ indeterminate diﬀerences: ∞−∞ indeterminate powers: 00 , ∞0 , and 1∞ V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 3 / 26
- 4. Experiments with funny limits sin2 x lim x→0 x V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 4 / 26
- 5. Experiments with funny limits sin2 x lim =0 x→0 x V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 4 / 26
- 6. Experiments with funny limits sin2 x lim =0 x→0 x x lim x→0 sin2 x V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 4 / 26
- 7. Experiments with funny limits sin2 x lim =0 x→0 x x lim does not exist x→0 sin2 x V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 4 / 26
- 8. Experiments with funny limits sin2 x lim =0 x→0 x x lim does not exist x→0 sin2 x sin2 x lim x→0 sin(x 2 ) V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 4 / 26
- 9. Experiments with funny limits sin2 x lim =0 x→0 x x lim does not exist x→0 sin2 x sin2 x lim =1 x→0 sin(x 2 ) V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 4 / 26
- 10. Experiments with funny limits sin2 x lim =0 x→0 x x lim does not exist x→0 sin2 x sin2 x lim =1 x→0 sin(x 2 ) sin 3x lim x→0 sin x V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 4 / 26
- 11. Experiments with funny limits sin2 x lim =0 x→0 x x lim does not exist x→0 sin2 x sin2 x lim =1 x→0 sin(x 2 ) sin 3x lim =3 x→0 sin x V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 4 / 26
- 12. Experiments with funny limits sin2 x lim =0 x→0 x x lim does not exist x→0 sin2 x sin2 x lim =1 x→0 sin(x 2 ) sin 3x lim =3 x→0 sin x 0 All of these are of the form , and since we can get diﬀerent answers in 0 diﬀerent cases, we say this form is indeterminate. V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 4 / 26
- 13. Recall Recall the limit laws from Chapter 2. Limit of a sum is the sum of the limits V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 5 / 26
- 14. Recall Recall the limit laws from Chapter 2. Limit of a sum is the sum of the limits Limit of a diﬀerence is the diﬀerence of the limits V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 5 / 26
- 15. Recall Recall the limit laws from Chapter 2. Limit of a sum is the sum of the limits Limit of a diﬀerence is the diﬀerence of the limits Limit of a product is the product of the limits V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 5 / 26
- 16. Recall Recall the limit laws from Chapter 2. Limit of a sum is the sum of the limits Limit of a diﬀerence is the diﬀerence of the limits Limit of a product is the product of the limits Limit of a quotient is the quotient of the limits ... whoops! This is true as long as you don’t try to divide by zero. V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 5 / 26
- 17. More about dividing limits We know dividing by zero is bad. Most of the time, if an expression’s numerator approaches a ﬁnite number and denominator approaches zero, the quotient approaches some kind of inﬁnity. For example: 1 cos x lim+ = +∞ lim = −∞ x→0 x x→0− x3 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 6 / 26
- 18. More about dividing limits We know dividing by zero is bad. Most of the time, if an expression’s numerator approaches a ﬁnite number and denominator approaches zero, the quotient approaches some kind of inﬁnity. For example: 1 cos x lim+ = +∞ lim = −∞ x→0 x x→0− x3 An exception would be something like 1 lim = lim x csc x. x→∞ 1 sin x x→∞ x which doesn’t exist. V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 6 / 26
- 19. More about dividing limits We know dividing by zero is bad. Most of the time, if an expression’s numerator approaches a ﬁnite number and denominator approaches zero, the quotient approaches some kind of inﬁnity. For example: 1 cos x lim+ = +∞ lim = −∞ x→0 x x→0− x3 An exception would be something like 1 lim = lim x csc x. x→∞ 1 sin x x→∞ x which doesn’t exist. Even less predictable: numerator and denominator both go to zero. V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 6 / 26
- 20. Language Note It depends on what the meaning of the word “is” is Be careful with the language here. We are not saying that the limit in each case “is” 0 , and therefore nonexistent 0 because this expression is undeﬁned. 0 The limit is of the form , 0 which means we cannot evaluate it with our limit laws. V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 7 / 26
- 21. Indeterminate forms are like Tug Of War Which side wins depends on which side is stronger. V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 8 / 26
- 22. Outline L’Hˆpital’s Rule o Other Indeterminate Limits Indeterminate Products Indeterminate Diﬀerences Indeterminate Powers Summary V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 9 / 26
- 23. The Linear Case Question If f and g are lines and f (a) = g (a) = 0, what is f (x) lim ? x→a g (x) V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 10 / 26
- 24. The Linear Case Question If f and g are lines and f (a) = g (a) = 0, what is f (x) lim ? x→a g (x) Solution The functions f and g can be written in the form f (x) = m1 (x − a) g (x) = m2 (x − a) So f (x) m1 = g (x) m2 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 10 / 26
- 25. The Linear Case, Illustrated y y = g (x) y = f (x) g (x) a f (x) x x f (x) f (x) − f (a) (f (x) − f (a))/(x − a) m1 = = = g (x) g (x) − g (a) (g (x) − g (a))/(x − a) m2 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 11 / 26
- 26. What then? But what if the functions aren’t linear? V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 12 / 26
- 27. What then? But what if the functions aren’t linear? Can we approximate a function near a point with a linear function? V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 12 / 26
- 28. What then? But what if the functions aren’t linear? Can we approximate a function near a point with a linear function? What would be the slope of that linear function? V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 12 / 26
- 29. What then? But what if the functions aren’t linear? Can we approximate a function near a point with a linear function? What would be the slope of that linear function? The derivative! V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 12 / 26
- 30. Theorem of the Day Theorem (L’Hopital’s Rule) Suppose f and g are diﬀerentiable functions and g (x) = 0 near a (except possibly at a). Suppose that lim f (x) = 0 and lim g (x) = 0 x→a x→a or lim f (x) = ±∞ and lim g (x) = ±∞ x→a x→a Then f (x) f (x) lim = lim , x→a g (x) x→a g (x) if the limit on the right-hand side is ﬁnite, ∞, or −∞. V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 13 / 26
- 31. Meet the Mathematician: L’Hˆpital o wanted to be a military man, but poor eyesight forced him into math did some math on his own (solved the “brachistocrone problem”) paid a stipend to Johann Bernoulli, who proved this theorem and named it after him! Guillaume Fran¸ois Antoine, c Marquis de L’Hˆpital o (French, 1661–1704) V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 14 / 26
- 32. Revisiting the previous examples Example sin2 x lim x→0 x V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 15 / 26
- 33. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim x→0 x x→0 1 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 15 / 26
- 34. Revisiting the previous examples Example sin x → 0 sin2 x H 2 sin x cos x lim = lim x→0 x x→0 1 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 15 / 26
- 35. Revisiting the previous examples Example sin x → 0 sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 15 / 26
- 36. Revisiting the previous examples Example sin x → 0 sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example sin2 x lim x→0 sin x 2 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 15 / 26
- 37. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example numerator → 0 sin2 x lim x→0 sin x 2 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 15 / 26
- 38. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example numerator → 0 sin2 x lim x→0 sin x 2 denominator → 0 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 15 / 26
- 39. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example numerator → 0 sin2 x H 2 sin x cos x ¡ lim 2 = lim x→0 sin x x→0 (cos x 2 ) (2x ) ¡ denominator → 0 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 15 / 26
- 40. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example numerator → 0 sin2 x H 2 sin x cos x ¡ lim 2 = lim x→0 sin x x→0 (cos x 2 ) (2x ) ¡ V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 15 / 26
- 41. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example numerator → 0 sin2 x H 2 sin x cos x ¡ lim 2 = lim x→0 sin x x→0 (cos x 2 ) (2x ) ¡ denominator → 0 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 15 / 26
- 42. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example numerator → 0 sin2 x H 2 sin x cos x H ¡ cos2 x − sin2 x lim = lim = lim x→0 sin x 2 x→0 (cos x 2 ) (2x ) ¡ x→0 cos x 2 − 2x 2 sin(x 2 ) denominator → 0 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 15 / 26
- 43. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example numerator → 1 sin2 x H 2 sin x cos x H ¡ cos2 x − sin2 x lim = lim = lim x→0 sin x 2 x→0 (cos x 2 ) (2x ) ¡ x→0 cos x 2 − 2x 2 sin(x 2 ) V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 15 / 26
- 44. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example numerator → 1 sin2 x H 2 sin x cos x H ¡ cos2 x − sin2 x lim = lim = lim x→0 sin x 2 x→0 (cos x 2 ) (2x ) ¡ x→0 cos x 2 − 2x 2 sin(x 2 ) denominator → 1 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 15 / 26
- 45. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example sin2 x H 2 sin x cos x H ¡ cos2 x − sin2 x lim = lim = lim =1 x→0 sin x 2 x→0 (cos x 2 ) (2x ) ¡ x→0 cos x 2 − 2x 2 sin(x 2 ) V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 15 / 26
- 46. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example sin2 x H 2 sin x cos x H ¡ cos2 x − sin2 x lim = lim = lim =1 x→0 sin x 2 x→0 (cos x 2 ) (2x ) ¡ x→0 cos x 2 − 2x 2 sin(x 2 ) Example sin 3x H 3 cos 3x lim = lim = 3. x→0 sin x x→0 cos x V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 15 / 26
- 47. Another Example Example Find x lim x→0 cos x V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 16 / 26
- 48. Beware of Red Herrings Example Find x lim x→0 cos x Solution The limit of the denominator is 1, not 0, so L’Hˆpital’s rule does not o apply. The limit is 0. V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 16 / 26
- 49. Outline L’Hˆpital’s Rule o Other Indeterminate Limits Indeterminate Products Indeterminate Diﬀerences Indeterminate Powers Summary V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 17 / 26
- 50. Indeterminate products Example Find √ lim+ x ln x x→0 This limit is of the form 0 · (−∞). V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 18 / 26
- 51. Indeterminate products Example Find √ lim+ x ln x x→0 This limit is of the form 0 · (−∞). Solution Jury-rig the expression to make an indeterminate quotient. Then apply L’Hˆpital’s Rule: o √ lim x ln x x→0+ V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 18 / 26
- 52. Indeterminate products Example Find √ lim+ x ln x x→0 This limit is of the form 0 · (−∞). Solution Jury-rig the expression to make an indeterminate quotient. Then apply L’Hˆpital’s Rule: o √ ln x lim x ln x = lim+ 1/√x x→0+ x→0 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 18 / 26
- 53. Indeterminate products Example Find √ lim+ x ln x x→0 This limit is of the form 0 · (−∞). Solution Jury-rig the expression to make an indeterminate quotient. Then apply L’Hˆpital’s Rule: o √ ln x H x −1 lim x ln x = lim+ √ = lim+ x→0+ x→0 1/ x x→0 − 1 x −3/2 2 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 18 / 26
- 54. Indeterminate products Example Find √ lim+ x ln x x→0 This limit is of the form 0 · (−∞). Solution Jury-rig the expression to make an indeterminate quotient. Then apply L’Hˆpital’s Rule: o √ ln x H x −1 lim x ln x = lim+ √ = lim+ x→0+ x→0 1/ x x→0 − 1 x −3/2 2 √ = lim+ −2 x x→0 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 18 / 26
- 55. Indeterminate products Example Find √ lim+ x ln x x→0 This limit is of the form 0 · (−∞). Solution Jury-rig the expression to make an indeterminate quotient. Then apply L’Hˆpital’s Rule: o √ ln x H x −1 lim x ln x = lim+ √ = lim+ x→0+ x→0 1/ x x→0 − 1 x −3/2 2 √ = lim+ −2 x = 0 x→0 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 18 / 26
- 56. Indeterminate diﬀerences Example 1 lim+ − cot 2x x→0 x This limit is of the form ∞ − ∞. V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 19 / 26
- 57. Indeterminate diﬀerences Example 1 lim+ − cot 2x x→0 x This limit is of the form ∞ − ∞. Solution Again, rig it to make an indeterminate quotient. sin(2x) − x cos(2x) lim x→0+ x sin(2x) V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 19 / 26
- 58. Indeterminate diﬀerences Example 1 lim+ − cot 2x x→0 x This limit is of the form ∞ − ∞. Solution Again, rig it to make an indeterminate quotient. sin(2x) − x cos(2x) H cos(2x) + 2x sin(2x) lim = lim+ x→0+ x sin(2x) x→0 2x cos(2x) + sin(2x) V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 19 / 26
- 59. Indeterminate diﬀerences Example 1 lim+ − cot 2x x→0 x This limit is of the form ∞ − ∞. Solution Again, rig it to make an indeterminate quotient. sin(2x) − x cos(2x) H cos(2x) + 2x sin(2x) lim = lim+ x→0+ x sin(2x) x→0 2x cos(2x) + sin(2x) =∞ V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 19 / 26
- 60. Indeterminate diﬀerences Example 1 lim+ − cot 2x x→0 x This limit is of the form ∞ − ∞. Solution Again, rig it to make an indeterminate quotient. sin(2x) − x cos(2x) H cos(2x) + 2x sin(2x) lim = lim+ x→0+ x sin(2x) x→0 2x cos(2x) + sin(2x) =∞ The limit is +∞ becuase the numerator tends to 1 while the denominator tends to zero but remains positive. V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 19 / 26
- 61. Checking your work tan 2x lim = 1, so for small x, x→0 2x 1 tan 2x ≈ 2x. So cot 2x ≈ and 2x 1 1 1 1 − cot 2x ≈ − = →∞ x x 2x 2x as x → 0+ . V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 20 / 26
- 62. Indeterminate powers Example Find lim+ (1 − 2x)1/x x→0 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 21 / 26
- 63. Indeterminate powers Example Find lim+ (1 − 2x)1/x x→0 Take the logarithm: ln(1 − 2x) ln lim+ (1 − 2x)1/x = lim+ ln (1 − 2x)1/x = lim+ x→0 x→0 x→0 x V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 21 / 26
- 64. Indeterminate powers Example Find lim+ (1 − 2x)1/x x→0 Take the logarithm: ln(1 − 2x) ln lim+ (1 − 2x)1/x = lim+ ln (1 − 2x)1/x = lim+ x→0 x→0 x→0 x 0 This limit is of the form , so we can use L’Hˆpital: o 0 −2 ln(1 − 2x) H 1−2x lim+ = lim+ = −2 x→0 x x→0 1 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 21 / 26
- 65. Indeterminate powers Example Find lim+ (1 − 2x)1/x x→0 Take the logarithm: ln(1 − 2x) ln lim+ (1 − 2x)1/x = lim+ ln (1 − 2x)1/x = lim+ x→0 x→0 x→0 x 0 This limit is of the form , so we can use L’Hˆpital: o 0 −2 ln(1 − 2x) H 1−2x lim+ = lim+ = −2 x→0 x x→0 1 This is not the answer, it’s the log of the answer! So the answer we want is e −2 . V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 21 / 26
- 66. Another indeterminate power limit Example lim (3x)4x x→0 V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 22 / 26
- 67. Another indeterminate power limit Example lim (3x)4x x→0 Solution ln lim+ (3x)4x = lim+ ln(3x)4x = lim+ 4x ln(3x) x→0 x→0 x→0 ln(3x) H 3/3x = lim+ 1/4x = lim+ −1/4x 2 x→0 x→0 = lim+ (−4x) = 0 x→0 So the answer is e 0 = 1. V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 22 / 26
- 68. Summary Form Method 0 0 L’Hˆpital’s rule directly o ∞ ∞ L’Hˆpital’s rule directly o 0 ∞ 0·∞ jiggle to make 0 or ∞. ∞−∞ factor to make an indeterminate product 00 take ln to make an indeterminate product ∞0 ditto 1∞ ditto V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 23 / 26
- 69. Final Thoughts L’Hˆpital’s Rule only works on indeterminate quotients o Luckily, most indeterminate limits can be transformed into indeterminate quotients L’Hˆpital’s Rule gives wrong answers for non-indeterminate limits! o V63.0121.002.2010Su, Calculus I (NYU) L’Hˆpital’s Rule o June 7, 2010 24 / 26

No public clipboards found for this slide

×
### Save the most important slides with Clipping

Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.

Be the first to comment