1/24/2014 PHY 712 Spring 2014 -- Lecture 6 1
PHY 712 Electrodynamics
10-10:50 AM MWF Olin 107
Plan for Lecture 6:
Continue reading Chapter 2
1. Methods of images -- planes,
spheres
2. Solution of Poisson equation in
for other geometries -- cylindrical
1/24/2014 PHY 712 Spring 2014 -- Lecture 6 2
1/24/2014 PHY 712 Spring 2014 -- Lecture 6 3
Survey of mathematical techniques for analyzing
electrostatics – the Poisson equation
0
2 )
(
)
(

 r
r 



1. Direct integration of differential equation
2. Green’s function techniques
3. Orthogonal function expansions
4. Method of images
1/24/2014 PHY 712 Spring 2014 -- Lecture 6 4
Method of images
Clever trick for specialized geometries:
 Flat plane (surface)
 Sphere
Planar case:
Consider a grounded
metal sheet, a distance d
from a point charge q.
d
q
1/24/2014 PHY 712 Spring 2014 -- Lecture 6 5
A grounded metal sheet, a distance d from a point charge q.
d
q
Mobile charges from the
“ground” respond to the
force from the charge q.
0
)
,
,
0
( 

 z
y
x
x
z
y
1/24/2014 PHY 712 Spring 2014 -- Lecture 6 6
A grounded metal sheet, a distance d from a point charge q.
 
  0
,
,
0
ˆ
3
0
2








z
y
x
d
q
x
r


 
   
  






























2
/
3
2
2
2
0
0
0
2
4
,
,
0
,
,
0
:
density
charge
Surface
ˆ
ˆ
4
1
,
,
0
:
0
for
Trick
z
y
d
d
q
dx
z
y
d
z
y
E
σ(y,z)
d
q
d
q
z
y
x
x



 x
r
x
r
1/24/2014 PHY 712 Spring 2014 -- Lecture 6 7
A grounded metal sheet, a distance d from a point charge q.
 
 
q
u
d
udu
d
q
σ(y,z)
dydz
z
y
d
d
q
σ(y,z)




















0
2
/
3
2
2
2
/
3
2
2
2
2
4
2
:
Note
2
4
:
density
charge
Surface



d
q
σ(y,z)
1/24/2014 PHY 712 Spring 2014 -- Lecture 6 8
A grounded metal sheet, a distance d from a point charge q.
d
q  
 2
0
2
2
/
3
2
2
2
2
4
ˆ
:
sheet
and
charge
between
Force
2
4
:
density
charge
Surface
d
q
z
y
d
d
q
σ(y,z)


x
F














 
x
q
x
V
x
4
4
)
(
:
distance
at
sheet
and
charge
between
potential
Image
0
2



1/24/2014 PHY 712 Spring 2014 -- Lecture 6 9
A grounded metal sphere of radius a, in the presence of a
point charge q at a distance d from its center.
r
d
q
a
  














2
2
0
4
1
:
for
Trick
d
a
a
d
q
q
a
r
a
r
d
r
d
r

1/24/2014 PHY 712 Spring 2014 -- Lecture 6 10
A grounded metal sphere of radius a, in the presence of a
point charge q at a distance d from its center.
r
d
q
a
 
 
  2
/
3
0
ˆ
ˆ
2
1
1
4
ˆ
:
density
charge
Surface
2
2
2
2
d
r
r











 d
a
d
a
d
a
a
r d
a
q
r 


1/24/2014 PHY 712 Spring 2014 -- Lecture 6 11
A grounded metal sphere of radius a, in the presence of a
point charge q at a distance d from its center.
r
d
q
a
 
 
  2
/
3
0
ˆ
ˆ
2
1
1
4
ˆ
:
density
charge
Surface
2
2
2
2
d
r
r











 d
a
d
a
d
a
a
r d
a
q
r 


 2
2
2
0
2
4
:
q
and
sphere
between
Force
a
d
ad
q



F
1/24/2014 PHY 712 Spring 2014 -- Lecture 6 12
Use of image charge formalism to construct Green’s function
   
   
 
'
1
'
1
'
,
:
For
'
4
'
,
0
:
radius
of
sphere
a
on
problem
alue
boundary v
Dirichlet
a
have
we
Suppose
:
Example
2
2
'
'
3
2
0
2
r
r
r
r
r
r
r
r
r
r
r
r
a
a
r
G
a
r,r'
G
a
r
Φ
a



















1/24/2014 PHY 712 Spring 2014 -- Lecture 6 13
Solution of the Poisson/Laplace equation in various
geometries -- cylindrical geometry with no z-dependence
(infinitely long wire, for example):

f
   
      )
sin(
ln
B
A
,
:
s
coordinate
in these
equation
Laplace
the
of
solution
General
2
,
,
0
1
1
0
:
equation
Laplace
of
solution
from
functions
orthogonal
ing
Correspond
1
0
0
2
2
2
2




































m
m
m
m
m
m m
B
A
m

f



f


f

f

f





1/24/2014 PHY 712 Spring 2014 -- Lecture 6 14
Solution of the Poisson/Laplace equation in various
geometries -- cylindrical geometry with no z-dependence
(infinitely long wire, for example):

f
   
   
 
'
cos
1
2
ln
)
'
,
,
'
,
'
'
4
)
'
,
,
'
,
1
1
:
and
0
at
conditions
boundary
ith
geometry w
for this
e
appropriat
function
s
Green'
1
2
2
2
2
f
f



f
f


f
f






f
f


f



















































 

 m
m
G(
G(
m
m
1/24/2014 PHY 712 Spring 2014 -- Lecture 6 15
Solution of the Poisson/Laplace equation in various
geometries -- cylindrical geometry with z-dependence

f
   
       
z
Z
Q
R
z
z
m
z
z
f

f


f

f

f




































,
,
,
2
,
,
,
0
1
1
0
:
equation
Laplace
of
solution
from
functions
orthogonal
ing
Correspond
2
2
2
2
2
2
z
1/24/2014 PHY 712 Spring 2014 -- Lecture 6 16
Cylindrical geometry continued:
   
kρ
N
kρ
J
R
m
k
d
dR
d
R
d
e
Q
Q
m
d
Q
d
e
kz
kz
z
Z
Z
k
dz
Z
d
m
m
im
kz
,
0
1
)
(
0
),
cosh(
),
sinh(
)
(
0
2
2
2
2
2
2
2
2
2
2
2



























f
f
f
1/24/2014 PHY 712 Spring 2014 -- Lecture 6 17
Cylindrical geometry example:
 
 







m
n
mn
mn
mn
m
mn m
z
k
k
J
A
z
z
V
L
z
,
sin
)
sinh(
)
(
)
,
,
(
boundaries
other
all
on
0
)
,
,
(
)
,
(
)
,
,
(

f

f

f

f

f

1/24/2014 PHY 712 Spring 2014 -- Lecture 6 18
Cylindrical geometry example:
 
 



















m
n
mn
m
mn m
L
z
n
L
n
I
A
z
z
z
V
z
a
,
sin
sin
)
,
,
(
boundaries
other
all
on
0
)
,
,
(
)
,
(
)
,
,
(

f


f

f

f
f

1/24/2014 PHY 712 Spring 2014 -- Lecture 6 19
Comments on cylindrical Bessel functions
)
(
),
(
)
(
)
(
)
(
)
(
),
(
),
(
)
(
0
)
(
1
1
2
2
2
2
u
K
u
I
u
F
u
N
u
J
u
H
u
N
u
J
u
F
u
F
u
m
du
d
u
du
d
m
m
m
m
m
m
m
m
m
m




























m=0
J0
K0 I0/50
N0
1/24/2014 PHY 712 Spring 2014 -- Lecture 6 20
m=1
J1
N1
K1
I1/50

Lecture6.pptx

  • 1.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 1 PHY 712 Electrodynamics 10-10:50 AM MWF Olin 107 Plan for Lecture 6: Continue reading Chapter 2 1. Methods of images -- planes, spheres 2. Solution of Poisson equation in for other geometries -- cylindrical
  • 2.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 2
  • 3.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 3 Survey of mathematical techniques for analyzing electrostatics – the Poisson equation 0 2 ) ( ) (   r r     1. Direct integration of differential equation 2. Green’s function techniques 3. Orthogonal function expansions 4. Method of images
  • 4.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 4 Method of images Clever trick for specialized geometries:  Flat plane (surface)  Sphere Planar case: Consider a grounded metal sheet, a distance d from a point charge q. d q
  • 5.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 5 A grounded metal sheet, a distance d from a point charge q. d q Mobile charges from the “ground” respond to the force from the charge q. 0 ) , , 0 (    z y x x z y
  • 6.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 6 A grounded metal sheet, a distance d from a point charge q.     0 , , 0 ˆ 3 0 2         z y x d q x r                                          2 / 3 2 2 2 0 0 0 2 4 , , 0 , , 0 : density charge Surface ˆ ˆ 4 1 , , 0 : 0 for Trick z y d d q dx z y d z y E σ(y,z) d q d q z y x x     x r x r
  • 7.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 7 A grounded metal sheet, a distance d from a point charge q.     q u d udu d q σ(y,z) dydz z y d d q σ(y,z)                     0 2 / 3 2 2 2 / 3 2 2 2 2 4 2 : Note 2 4 : density charge Surface    d q σ(y,z)
  • 8.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 8 A grounded metal sheet, a distance d from a point charge q. d q    2 0 2 2 / 3 2 2 2 2 4 ˆ : sheet and charge between Force 2 4 : density charge Surface d q z y d d q σ(y,z)   x F                 x q x V x 4 4 ) ( : distance at sheet and charge between potential Image 0 2   
  • 9.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 9 A grounded metal sphere of radius a, in the presence of a point charge q at a distance d from its center. r d q a                  2 2 0 4 1 : for Trick d a a d q q a r a r d r d r 
  • 10.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 10 A grounded metal sphere of radius a, in the presence of a point charge q at a distance d from its center. r d q a       2 / 3 0 ˆ ˆ 2 1 1 4 ˆ : density charge Surface 2 2 2 2 d r r             d a d a d a a r d a q r   
  • 11.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 11 A grounded metal sphere of radius a, in the presence of a point charge q at a distance d from its center. r d q a       2 / 3 0 ˆ ˆ 2 1 1 4 ˆ : density charge Surface 2 2 2 2 d r r             d a d a d a a r d a q r     2 2 2 0 2 4 : q and sphere between Force a d ad q    F
  • 12.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 12 Use of image charge formalism to construct Green’s function           ' 1 ' 1 ' , : For ' 4 ' , 0 : radius of sphere a on problem alue boundary v Dirichlet a have we Suppose : Example 2 2 ' ' 3 2 0 2 r r r r r r r r r r r r a a r G a r,r' G a r Φ a                   
  • 13.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 13 Solution of the Poisson/Laplace equation in various geometries -- cylindrical geometry with no z-dependence (infinitely long wire, for example):  f           ) sin( ln B A , : s coordinate in these equation Laplace the of solution General 2 , , 0 1 1 0 : equation Laplace of solution from functions orthogonal ing Correspond 1 0 0 2 2 2 2                                     m m m m m m m B A m  f    f   f  f  f     
  • 14.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 14 Solution of the Poisson/Laplace equation in various geometries -- cylindrical geometry with no z-dependence (infinitely long wire, for example):  f           ' cos 1 2 ln ) ' , , ' , ' ' 4 ) ' , , ' , 1 1 : and 0 at conditions boundary ith geometry w for this e appropriat function s Green' 1 2 2 2 2 f f    f f   f f       f f   f                                                        m m G( G( m m
  • 15.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 15 Solution of the Poisson/Laplace equation in various geometries -- cylindrical geometry with z-dependence  f             z Z Q R z z m z z f  f   f  f  f                                     , , , 2 , , , 0 1 1 0 : equation Laplace of solution from functions orthogonal ing Correspond 2 2 2 2 2 2 z
  • 16.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 16 Cylindrical geometry continued:     kρ N kρ J R m k d dR d R d e Q Q m d Q d e kz kz z Z Z k dz Z d m m im kz , 0 1 ) ( 0 ), cosh( ), sinh( ) ( 0 2 2 2 2 2 2 2 2 2 2 2                            f f f
  • 17.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 17 Cylindrical geometry example:            m n mn mn mn m mn m z k k J A z z V L z , sin ) sinh( ) ( ) , , ( boundaries other all on 0 ) , , ( ) , ( ) , , (  f  f  f  f  f 
  • 18.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 18 Cylindrical geometry example:                        m n mn m mn m L z n L n I A z z z V z a , sin sin ) , , ( boundaries other all on 0 ) , , ( ) , ( ) , , (  f   f  f  f f 
  • 19.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 19 Comments on cylindrical Bessel functions ) ( ), ( ) ( ) ( ) ( ) ( ), ( ), ( ) ( 0 ) ( 1 1 2 2 2 2 u K u I u F u N u J u H u N u J u F u F u m du d u du d m m m m m m m m m m                             m=0 J0 K0 I0/50 N0
  • 20.
    1/24/2014 PHY 712Spring 2014 -- Lecture 6 20 m=1 J1 N1 K1 I1/50