SlideShare a Scribd company logo
A presentation of eSyst.org
An Electronic System
Power Supply Example
Louis E. Frenzel
A presentation of eSyst.org
Summary
• Course use: DC circuits and/or AC circuits.
Semiconductor devices or solid state courses. In-class
presentation.
• Objective: To provide an example of a full system in early
courses to show the relevance of the theory and circuits to
real equipment.
• Content: Every piece of electronic equipment has a power
supply and that power supply is a key sub-system in every
other product or system. Typical examples are given in
block diagram form. All major components and circuits are
identified and explained.
A presentation of eSyst.org
Prerequisites
• To understand this presentation, you should have
the following prior knowledge:
– Draw the structure of an atom, including electrons,
protons, and neutrons.
– Define resistance and conductance.
– Label an electronic schematic, indicating current flow.
– Define Ohm’s and Kirchhoff’s laws.
– Describe the characteristics of DC and AC (sine wave)
voltages.
A presentation of eSyst.org
Student Learning Outcomes
• Upon completion of viewing this presentation, you
should be able to:
– Define power supply.
– Name the main components in a common linear
AC to DC power supply and explain the purpose
and function of each.
– Define rectifier and name two common types.
– Name the component that transforms pulsating
DC into constant DC.
– Define ripple and identify its origins.
A presentation of eSyst.org
Power Supply
• All electronic circuits need a power source to
work.
• For electronic circuits made up of transistors
and/or ICs, this power source must be a DC
voltage of a specific value.
• A battery is a common DC voltage source for
some types of electronic equipment especially
portables like cell phones and iPods.
• Most non-portable equipment uses power
supplies that operate from the AC power line
but produce one or more DC outputs.
A presentation of eSyst.org
Power Supply Characteristics
• The input is the 120 volt 60 Hz
AC power line. Alternately, the
input may be 240 volt AC.
• The power supply converts the
AC into DC and provides one or
more DC output voltages.
• Some modern electronic circuits
need two or more different
voltages.
• Common voltages are 48, 24,
15, 12, 9, 5, 3.3, 2.5, 1.8, 1.5,
1.2 and 1 volts.
• A good example of a modern
power supply is the one inside a
PC that furnishes 12, 5, 3.3 and
1.2 volts.
A presentation of eSyst.org
Components of a Power Supply
• Main circuits in most power supplies.
A presentation of eSyst.org
Power Supply
• The AC line is first passed
through a low pass filter of
the form.
• This eliminates noise on
the AC line from bothering
the power supply circuits
and prevents unwanted
signals from the power
supply from being
transferred back into the
AC line where they might
interfere with other
equipment.
A presentation of eSyst.org
Transformer
• A transformer is commonly used to step the input AC
voltage level down or up. Most electronic circuits
operate from voltages lower than the AC line voltage so
the transformer normally steps the voltage down by its
turns ratio to a desired lower level.
• For example, a transformer with a turns ratio of 10 to 1
would convert the 120 volt 60 Hz input sine wave into a
10 volt sine wave.
A presentation of eSyst.org
Rectifier
• The rectifier converts the AC sine wave into
a pulsating DC wave.
• There are several forms of rectifiers used
but all are made up of diodes.
• Rectifier types and operation will be covered
later.
A presentation of eSyst.org
Filter
• The rectifier produces a DC output but it is
pulsating rather than a constant steady
value over time like that from a battery.
• A filter is used to remove the pulsations and
create a constant output.
• The most common filter is a large capacitor.
A presentation of eSyst.org
Regulator
• The regulator is a circuit that helps maintain a
fixed or constant output voltage.
• Changes in the load or the AC line voltage will
cause the output voltage to vary.
• Most electronic circuits cannot withstand the
variations since they are designed to work
properly with a fixed voltage.
• The regulator fixes the output voltage to the
desired level then maintains that value despite
any output or input variations.
A presentation of eSyst.org
DC-DC Converter
• Most modern power supplies also contain
one or more DC-DC converters
• Modern electronics often demand different
voltages to function.
• A DC-DC converter changes one DC
voltage to another, higher or lower DC
voltage.
• A DC-DC converter is used with a power
supply to prevent the need for a second AC-
DC supply.
A presentation of eSyst.org
How Rectifiers Work
• The simplest form of rectifier is
the half wave rectifier shown.
• Only the transformer, rectifier
diode, and load (RL) are shown
without the filter and other
components.
• The half wave rectifier produces
one sine pulse for each cycle of
the input sine wave.
• When the sine wave goes
positive, the anode of the diode
goes positive causing the diode
to be forward biased. The diode
conducts and acts like a closed
switch letting the positive pulse
of the sine wave to appear
across the load resistor.
A presentation of eSyst.org
How Rectifiers Work (continued)
• When the sine wave goes
negative, the diode anode will
be negative so the diode will be
reverse biased and no current
will flow.
• No negative voltage will appear
across the load. The load
voltage will be zero during the
time of the negative half cycle.
• See the waveforms that show
the positive pulses across the
load. These pulses need to be
converted to a constant DC.
A presentation of eSyst.org
Bridge Rectifier
• Another widely used rectifier is the
bridge rectifier. It uses four diodes.
• This is called a full wave rectifier as
it produces an output pulse for each
half cycle of the input sine wave.
• On the positive half cycle of the
input sine wave, diodes D1 and D2
are forward biased so act as closed
switches appearing in series with
the load.
• On the negative half cycle, diode
D1 and D2 are reverse biased and
diodes D3 and D4 are forward
biased so current flows through the
load in the same direction.
A presentation of eSyst.org
How the Filter Works
• A large capacitor is connected
across the load resistor. This
capacitor filters the pulses into a
more constant DC.
• When the diode conducts, the
capacitor charges up to the
peak of the sine wave.
• Then when the sine voltage
drops, the charge on the
capacitor remains. Since the
capacitor is large it forms a long
time constant with the load
resistor. The capacitor slowly
discharges into the load
maintaining a more constant
output.
• The next positive pulse comes
along recharging the capacitor
and the process continues.
A presentation of eSyst.org
Ripple
• The capacitor does a good job of smoothing the
pulses from the rectifier into a more constant DC.
• A small variation occurs in the DC because the
capacitor discharges a small amount between the
positive and negative pulses. Then it recharges.
This variation is called ripple.
• The ripple can be reduced further by making the
capacitor larger.
• The ripple appears to be a sawtooth shaped AC
variation riding on the DC output.
• A small amount of ripple can be tolerated in some
circuits but the lower the better overall.
A presentation of eSyst.org
The Regulator
• Most regulators are ICs .
• These are feedback control circuits that
actually monitor the output voltage to detect
variations.
• If the output varies, for whatever reason, the
regulator circuit automatically adjusts the
output back to the set value.
• Regulators hold the output to the desired value.
• Since ripple represents changes in the output,
the regulator also compensates for these
variations producing a near constant DC
output.
A presentation of eSyst.org
In Summary
• All electronic circuits and equipment need a power supply,
usually one that supplies are very specific DC voltage.
• A battery is a near perfect DC supply but it is used mainly
in portable applications.
• Most equipment uses an AC to DC power supply.
• In most AC to DC supplies, the 120 volt AC line is first
filtered then stepped up or down to the desired voltage
level then rectified into pulsating DC, then filtered to a
constant DC. A regulator holds the output to a desired
level. A DC-DC converter may also be used to generate
another DC voltage.
• The two most common rectifiers are the single diode half
wave rectifier and the four diode full wave bridge rectifier.

More Related Content

Similar to Introduction_Power_Supply-6-9-10.ppt

1 linearpowersupply-120916082113-phpapp02
1 linearpowersupply-120916082113-phpapp021 linearpowersupply-120916082113-phpapp02
1 linearpowersupply-120916082113-phpapp02
Pawar Chander
 
Ac dc converter
Ac  dc converterAc  dc converter
Ac dc converter
Tuvshinsanaa Baasanjav
 
ppt on power supplies by prince kumar kusshwaha(RJIT)
ppt on power supplies by prince kumar kusshwaha(RJIT)ppt on power supplies by prince kumar kusshwaha(RJIT)
ppt on power supplies by prince kumar kusshwaha(RJIT)
Rustamji Institute of Technology
 
Elec581 chapter 2 - fundamental elements of power eletronics
Elec581   chapter 2 - fundamental elements of power eletronicsElec581   chapter 2 - fundamental elements of power eletronics
Elec581 chapter 2 - fundamental elements of power eletronics
Tarek Schehadeih
 
regulated power supply
regulated power supplyregulated power supply
regulated power supply
HalaKamal9
 
Bridge Rectifier Circuit with Working Operation and Their Types
Bridge Rectifier Circuit with Working Operation and Their TypesBridge Rectifier Circuit with Working Operation and Their Types
Bridge Rectifier Circuit with Working Operation and Their Types
elprocus
 
Electrical circuitsand methods of network analysis
Electrical circuitsand methods of network analysisElectrical circuitsand methods of network analysis
Electrical circuitsand methods of network analysis
University of Potsdam
 
Power supply
Power supplyPower supply
Power Electronics
Power ElectronicsPower Electronics
Power Electronics
Isuru Thiwanka
 
Pre Final Year project/ mini project for Electronics and communication engine...
Pre Final Year project/ mini project for Electronics and communication engine...Pre Final Year project/ mini project for Electronics and communication engine...
Pre Final Year project/ mini project for Electronics and communication engine...
Shirshendu Das
 
Chapter 1.
Chapter 1.Chapter 1.
Chapter 1.
Neelesh Biradar
 
Power supplies
Power suppliesPower supplies
Power supplies
Edmund Merren
 
ELECTRONICS DEVICES AND CIRCUITS
ELECTRONICS DEVICES AND CIRCUITSELECTRONICS DEVICES AND CIRCUITS
ELECTRONICS DEVICES AND CIRCUITS
Innovative Electronics Ideas
 
AC-and-DC.pptx
AC-and-DC.pptxAC-and-DC.pptx
AC-and-DC.pptx
JPPaner
 
Shivam k11915
Shivam k11915Shivam k11915
Shivam k11915
Shivam Kumar
 
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
priyakunduq
 
ELECTRONICS DEVICES AND CIRCUITS
ELECTRONICS DEVICES AND CIRCUITSELECTRONICS DEVICES AND CIRCUITS
ELECTRONICS DEVICES AND CIRCUITS
Innovative Electronics Ideas
 
EE375 Electronics 1: lab 1
EE375   Electronics 1: lab 1EE375   Electronics 1: lab 1
EE375 Electronics 1: lab 1
Loren Schwappach
 
REGULATED_POWER_SUPPLY-1[1].pptx
REGULATED_POWER_SUPPLY-1[1].pptxREGULATED_POWER_SUPPLY-1[1].pptx
REGULATED_POWER_SUPPLY-1[1].pptx
PratikJoshi123
 
Defination of dc to dc conv
Defination of dc to dc convDefination of dc to dc conv
Defination of dc to dc conv
ravikant_019
 

Similar to Introduction_Power_Supply-6-9-10.ppt (20)

1 linearpowersupply-120916082113-phpapp02
1 linearpowersupply-120916082113-phpapp021 linearpowersupply-120916082113-phpapp02
1 linearpowersupply-120916082113-phpapp02
 
Ac dc converter
Ac  dc converterAc  dc converter
Ac dc converter
 
ppt on power supplies by prince kumar kusshwaha(RJIT)
ppt on power supplies by prince kumar kusshwaha(RJIT)ppt on power supplies by prince kumar kusshwaha(RJIT)
ppt on power supplies by prince kumar kusshwaha(RJIT)
 
Elec581 chapter 2 - fundamental elements of power eletronics
Elec581   chapter 2 - fundamental elements of power eletronicsElec581   chapter 2 - fundamental elements of power eletronics
Elec581 chapter 2 - fundamental elements of power eletronics
 
regulated power supply
regulated power supplyregulated power supply
regulated power supply
 
Bridge Rectifier Circuit with Working Operation and Their Types
Bridge Rectifier Circuit with Working Operation and Their TypesBridge Rectifier Circuit with Working Operation and Their Types
Bridge Rectifier Circuit with Working Operation and Their Types
 
Electrical circuitsand methods of network analysis
Electrical circuitsand methods of network analysisElectrical circuitsand methods of network analysis
Electrical circuitsand methods of network analysis
 
Power supply
Power supplyPower supply
Power supply
 
Power Electronics
Power ElectronicsPower Electronics
Power Electronics
 
Pre Final Year project/ mini project for Electronics and communication engine...
Pre Final Year project/ mini project for Electronics and communication engine...Pre Final Year project/ mini project for Electronics and communication engine...
Pre Final Year project/ mini project for Electronics and communication engine...
 
Chapter 1.
Chapter 1.Chapter 1.
Chapter 1.
 
Power supplies
Power suppliesPower supplies
Power supplies
 
ELECTRONICS DEVICES AND CIRCUITS
ELECTRONICS DEVICES AND CIRCUITSELECTRONICS DEVICES AND CIRCUITS
ELECTRONICS DEVICES AND CIRCUITS
 
AC-and-DC.pptx
AC-and-DC.pptxAC-and-DC.pptx
AC-and-DC.pptx
 
Shivam k11915
Shivam k11915Shivam k11915
Shivam k11915
 
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
 
ELECTRONICS DEVICES AND CIRCUITS
ELECTRONICS DEVICES AND CIRCUITSELECTRONICS DEVICES AND CIRCUITS
ELECTRONICS DEVICES AND CIRCUITS
 
EE375 Electronics 1: lab 1
EE375   Electronics 1: lab 1EE375   Electronics 1: lab 1
EE375 Electronics 1: lab 1
 
REGULATED_POWER_SUPPLY-1[1].pptx
REGULATED_POWER_SUPPLY-1[1].pptxREGULATED_POWER_SUPPLY-1[1].pptx
REGULATED_POWER_SUPPLY-1[1].pptx
 
Defination of dc to dc conv
Defination of dc to dc convDefination of dc to dc conv
Defination of dc to dc conv
 

Recently uploaded

Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
IJECEIAES
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
sachin chaurasia
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
co23btech11018
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
IJNSA Journal
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball playEric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
enizeyimana36
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
rpskprasana
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
mamamaam477
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
IJECEIAES
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
RadiNasr
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
SUTEJAS
 

Recently uploaded (20)

Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball playEric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
 

Introduction_Power_Supply-6-9-10.ppt

  • 1. A presentation of eSyst.org An Electronic System Power Supply Example Louis E. Frenzel
  • 2. A presentation of eSyst.org Summary • Course use: DC circuits and/or AC circuits. Semiconductor devices or solid state courses. In-class presentation. • Objective: To provide an example of a full system in early courses to show the relevance of the theory and circuits to real equipment. • Content: Every piece of electronic equipment has a power supply and that power supply is a key sub-system in every other product or system. Typical examples are given in block diagram form. All major components and circuits are identified and explained.
  • 3. A presentation of eSyst.org Prerequisites • To understand this presentation, you should have the following prior knowledge: – Draw the structure of an atom, including electrons, protons, and neutrons. – Define resistance and conductance. – Label an electronic schematic, indicating current flow. – Define Ohm’s and Kirchhoff’s laws. – Describe the characteristics of DC and AC (sine wave) voltages.
  • 4. A presentation of eSyst.org Student Learning Outcomes • Upon completion of viewing this presentation, you should be able to: – Define power supply. – Name the main components in a common linear AC to DC power supply and explain the purpose and function of each. – Define rectifier and name two common types. – Name the component that transforms pulsating DC into constant DC. – Define ripple and identify its origins.
  • 5. A presentation of eSyst.org Power Supply • All electronic circuits need a power source to work. • For electronic circuits made up of transistors and/or ICs, this power source must be a DC voltage of a specific value. • A battery is a common DC voltage source for some types of electronic equipment especially portables like cell phones and iPods. • Most non-portable equipment uses power supplies that operate from the AC power line but produce one or more DC outputs.
  • 6. A presentation of eSyst.org Power Supply Characteristics • The input is the 120 volt 60 Hz AC power line. Alternately, the input may be 240 volt AC. • The power supply converts the AC into DC and provides one or more DC output voltages. • Some modern electronic circuits need two or more different voltages. • Common voltages are 48, 24, 15, 12, 9, 5, 3.3, 2.5, 1.8, 1.5, 1.2 and 1 volts. • A good example of a modern power supply is the one inside a PC that furnishes 12, 5, 3.3 and 1.2 volts.
  • 7. A presentation of eSyst.org Components of a Power Supply • Main circuits in most power supplies.
  • 8. A presentation of eSyst.org Power Supply • The AC line is first passed through a low pass filter of the form. • This eliminates noise on the AC line from bothering the power supply circuits and prevents unwanted signals from the power supply from being transferred back into the AC line where they might interfere with other equipment.
  • 9. A presentation of eSyst.org Transformer • A transformer is commonly used to step the input AC voltage level down or up. Most electronic circuits operate from voltages lower than the AC line voltage so the transformer normally steps the voltage down by its turns ratio to a desired lower level. • For example, a transformer with a turns ratio of 10 to 1 would convert the 120 volt 60 Hz input sine wave into a 10 volt sine wave.
  • 10. A presentation of eSyst.org Rectifier • The rectifier converts the AC sine wave into a pulsating DC wave. • There are several forms of rectifiers used but all are made up of diodes. • Rectifier types and operation will be covered later.
  • 11. A presentation of eSyst.org Filter • The rectifier produces a DC output but it is pulsating rather than a constant steady value over time like that from a battery. • A filter is used to remove the pulsations and create a constant output. • The most common filter is a large capacitor.
  • 12. A presentation of eSyst.org Regulator • The regulator is a circuit that helps maintain a fixed or constant output voltage. • Changes in the load or the AC line voltage will cause the output voltage to vary. • Most electronic circuits cannot withstand the variations since they are designed to work properly with a fixed voltage. • The regulator fixes the output voltage to the desired level then maintains that value despite any output or input variations.
  • 13. A presentation of eSyst.org DC-DC Converter • Most modern power supplies also contain one or more DC-DC converters • Modern electronics often demand different voltages to function. • A DC-DC converter changes one DC voltage to another, higher or lower DC voltage. • A DC-DC converter is used with a power supply to prevent the need for a second AC- DC supply.
  • 14. A presentation of eSyst.org How Rectifiers Work • The simplest form of rectifier is the half wave rectifier shown. • Only the transformer, rectifier diode, and load (RL) are shown without the filter and other components. • The half wave rectifier produces one sine pulse for each cycle of the input sine wave. • When the sine wave goes positive, the anode of the diode goes positive causing the diode to be forward biased. The diode conducts and acts like a closed switch letting the positive pulse of the sine wave to appear across the load resistor.
  • 15. A presentation of eSyst.org How Rectifiers Work (continued) • When the sine wave goes negative, the diode anode will be negative so the diode will be reverse biased and no current will flow. • No negative voltage will appear across the load. The load voltage will be zero during the time of the negative half cycle. • See the waveforms that show the positive pulses across the load. These pulses need to be converted to a constant DC.
  • 16. A presentation of eSyst.org Bridge Rectifier • Another widely used rectifier is the bridge rectifier. It uses four diodes. • This is called a full wave rectifier as it produces an output pulse for each half cycle of the input sine wave. • On the positive half cycle of the input sine wave, diodes D1 and D2 are forward biased so act as closed switches appearing in series with the load. • On the negative half cycle, diode D1 and D2 are reverse biased and diodes D3 and D4 are forward biased so current flows through the load in the same direction.
  • 17. A presentation of eSyst.org How the Filter Works • A large capacitor is connected across the load resistor. This capacitor filters the pulses into a more constant DC. • When the diode conducts, the capacitor charges up to the peak of the sine wave. • Then when the sine voltage drops, the charge on the capacitor remains. Since the capacitor is large it forms a long time constant with the load resistor. The capacitor slowly discharges into the load maintaining a more constant output. • The next positive pulse comes along recharging the capacitor and the process continues.
  • 18. A presentation of eSyst.org Ripple • The capacitor does a good job of smoothing the pulses from the rectifier into a more constant DC. • A small variation occurs in the DC because the capacitor discharges a small amount between the positive and negative pulses. Then it recharges. This variation is called ripple. • The ripple can be reduced further by making the capacitor larger. • The ripple appears to be a sawtooth shaped AC variation riding on the DC output. • A small amount of ripple can be tolerated in some circuits but the lower the better overall.
  • 19. A presentation of eSyst.org The Regulator • Most regulators are ICs . • These are feedback control circuits that actually monitor the output voltage to detect variations. • If the output varies, for whatever reason, the regulator circuit automatically adjusts the output back to the set value. • Regulators hold the output to the desired value. • Since ripple represents changes in the output, the regulator also compensates for these variations producing a near constant DC output.
  • 20. A presentation of eSyst.org In Summary • All electronic circuits and equipment need a power supply, usually one that supplies are very specific DC voltage. • A battery is a near perfect DC supply but it is used mainly in portable applications. • Most equipment uses an AC to DC power supply. • In most AC to DC supplies, the 120 volt AC line is first filtered then stepped up or down to the desired voltage level then rectified into pulsating DC, then filtered to a constant DC. A regulator holds the output to a desired level. A DC-DC converter may also be used to generate another DC voltage. • The two most common rectifiers are the single diode half wave rectifier and the four diode full wave bridge rectifier.