SlideShare a Scribd company logo
ENHANCING MATRIX FACTORIZATION
THROUGH INITIALIZATION FOR
IMPLICIT FEEDBACK DATABASES


                  Balázs Hidasi
                 Domonkos Tikk

                    Gravity R&D Ltd.
     Budapest University of Technology and Economics

    CARR WORKSHOP, 14TH FEBRUARY 2012, LISBON
OUTLINE
 Matrix factoriztion
 Initialization concept

 Methods
     Naive
     SimFactor

 Results
 Discussion




                           2/19
MATRIX FACTORIZATION
 Collaborative Filtering
 One of the most common approaches

 Approximates the rating matrix as product of low-
  rank matrices
                Items


                                           Q
        Users




                R        ≈     P




                                                      3/19
MATRIX FACTORIZATION
 Initialize P and Q with small random numbers
 Teach P and Q
     Alternating Least Squares
     Gradient Descent
     Etc.

   Transforms the data to a feature space
     Separately for users and items
     Noise reduction
     Compression
     Generalization

                                                 4/19
IMPLICIT FEEDBACK
 No ratings
 User-item interactions (events)

 Much noisier
     Presence of an event  might not be positive feedback
     Absence of an event  does not mean negative
      feedback
     No negative feedback is available!

 More common problem
 MF for implicit feedback
       Less accurate results due to noise
       Mostly ALS is used                                    5/19
       Scalability problems (rating matrix is dense)
CONCEPT
   Good MF model
     The feature vectors of similar entities are similar
     If data is too noisy  similar entities won’t be similar by
      their features
   Start MF from a „good” point
       Feature vector similarities are OK
   Data is more than just events
       Metadata
           Info about items/users
       Contextual data
           In what context did the event occured
       Can we incorporate those to help implicit MF?               6/19
NAIVE APPROACH
   Describe items using any data we have (detailed
    later)
       Long, sparse vectors for item description
   Compress these vectors to dense feature vectors
     PCA, MLP, MF, …
     Length of desired vectors = Number of features in MF

   Use these features as starting points




                                                             7/19
NAIVE APPROACH
 Compression and also noise reduction
 Does not really care about similarities

 But often feature similarities are not that bad

 If MF is used
           Half of the results is thrown out


                   Descriptors
                                         features   Descriptor features
                                    ≈
    Items




                                           Item


             Description of items

                                                                          8/19
SIMFACTOR ALGORITHM
 Try to preserve similarities better
 Starting from an MF of item description
                  Descriptors

                                                        Descriptors features




                                             features
            Description of items
                                        ≈
    Items




                                               Item
                    (D)


    Similarities of items: DD’




                                                                      Description of items
           Some metrics require transformation on D




                                                                              (D’)
                            Item
                                            Description of items
                         similarities
                             (S)
                                        =           (D)                                      9/19
SIMFACTOR ALGORITHM




                                                         Descriptors features
                   features
   Item                           Descriptors features                            Item
               ≈     Item

                      (X)
similarities                              (Y’)                                  features
    (S)                                                                            (X’)




                                                                 (Y)
   Similarity approximation

                                       features

                      Item                                    Item
                                         Item



                                   ≈
                                          (X)

                   similarities                   Y’Y       features
                       (S)                                     (X’)


   Y’Y  KxK symmetric                                                                    10/19
       Eigendecomposition
SIMFACTOR ALGORITHM

Y’Y     =      U          λ        U’

   λ diagonal  λ = SQRT(λ) * SQRT(λ)
                   features


   Item                                                      Item
               ≈
                     Item



                                        SQRT   SQRT
                      (X)


similarities                  U          (λ)    (λ)   U’   features
    (S)                                                       (X’)

 X*U*SQRT(λ) = (SQRT(λ)*U’*X’)’=F
 F is MxK matrix

 S F * F’  F used for initialization

   Item
similarities   ≈                  F’                                  11/19
                     F




    (S)
CREATING THE DESCRIPTION MATRIX
   „Any” data about the entity
       Vector-space reprezentation
   For Items:
     Metadata vector (title, category, description, etc)
     Event vector (who bought the item)
     Context-state vector (in which context state was it
      bought)
     Context-event (in which context state who bought it)

   For Users:
       All above except metadata
 Currently: Choose one source for D matrix
                                                             12/19
 Context used: seasonality
EXPERIMENTS: SIMILARITY PRESERVATION
   Real life dataset: online grocery shopping events
            SimFactor RMSE improvement over naive in similarity
                             approximation

     52.36%
                                                                                             48.70%




                                                          26.22%


                                          16.86%
                                                                           13.39%                              12.38%
                       10.81%




Item context state User context state   Item context-   User context-   Item event data   User event data   Item metadata
                                            event          event
                                                                                                                            13/19
   SimFactor approximates similarities better
EXPERIMENTS: INITIALIZATION
 Using different description matrices
 And both naive and SimFactor initialization

 Baseline: random init

 Evaluation metric: recall@50




                                                14/19
EXPERIMENTS: GROCERY DB
 Up to 6% improvement
 Best methods use SimFactor and user context data

                              Top5 methods on Grocery DB
         5.71%


                              4.88%

                                                   4.30%
                                                                       4.12%              4.04%




                                                                                                          15/19
    User context state   User context state   User context event   User event data   User context event
      (SimFactor)             (Naive)            (SimFactor)        (SimFactor)           (Naive)
EXPERIMENTS: „IMPLICITIZED” MOVIELENS
 Keeping 5 star ratings  implicit events
 Up to 10% improvement

 Best methods use SimFactor and item context data
                            Top5 methods on MovieLens DB

          10%




                              9.17%                9.17%                9.17%                9.17%




                                                                                                             16/19
    Item context state   User context state   Item context event   Item context event   Item context state
       (SimFactor)         (SimFactor)           (SimFactor)             (Naive)             (Naive)
DISCUSSION OF RESULTS
 SimFactor yields better results than naive
 Context information yields better results than other
  descriptions
 Context information separates well between entities
       Grocery: User context
         People’s routines
         Different types of shoppings in different times

       MovieLens: Item context
           Different types of movies watched on different hours
   Context-based similarity

                                                                   17/19
WHY CONTEXT?
   Grocery example
       Correlation between context states by users low
                   ITEM                                        USER
        Mon Tue Wed Thu Fri Sat Sun                 Mon Tue Wed Thu Fri Sat Sun
Mon      1,00 0,79 0,79 0,78 0,76 0,70 0,74   Mon    1,00 0,36 0,34 0,34 0,35 0,29 0,19
Tue      0,79 1,00 0,79 0,78 0,76 0,69 0,73   Tue    0,36 1,00 0,34 0,34 0,33 0,29 0,19
Wed      0,79 0,79 1,00 0,79 0,76 0,70 0,74   Wed    0,34 0,34 1,00 0,36 0,35 0,27 0,17
Thu      0,78 0,78 0,79 1,00 0,76 0,71 0,74   Thu    0,34 0,34 0,36 1,00 0,39 0,30 0,16
Fri      0,76 0,76 0,76 0,76 1,00 0,71 0,72   Fri    0,35 0,33 0,35 0,39 1,00 0,32 0,16
Sat      0,70 0,69 0,70 0,71 0,71 1,00 0,71   Sat    0,29 0,29 0,27 0,30 0,32 1,00 0,33
Sun      0,74 0,73 0,74 0,74 0,72 0,71 1,00   Sun    0,19 0,19 0,17 0,16 0,16 0,33 1,00
   Why can context aware algorithms be efficient?
     Different recommendations in different context states
                                                                                     18/19
     Context differentiates well between entities
            Easier subtasks
CONCLUSION & FUTURE WORK
 SimFactor  Similarity preserving compression
 Similarity based MF initialization:
     Description matrix from any data
     Apply SimFactor
     Use output as initial features for MF

 Context differentitates between entities well
 Future work:
     Mixed description matrix (multiple data sources)
     Multiple description matrix
     Using different context information
     Using different similarity metrics                 19/19
THANKS FOR YOUR ATTENTION!




For more of my recommender systems related research visit my website:
http://www.hidasi.eu

More Related Content

More from Balázs Hidasi

Egyedi termék kreatívok tömeges gyártása generatív AI segítségével
Egyedi termék kreatívok tömeges gyártása generatív AI segítségévelEgyedi termék kreatívok tömeges gyártása generatív AI segítségével
Egyedi termék kreatívok tömeges gyártása generatív AI segítségével
Balázs Hidasi
 
The Effect of Third Party Implementations on Reproducibility
The Effect of Third Party Implementations on ReproducibilityThe Effect of Third Party Implementations on Reproducibility
The Effect of Third Party Implementations on Reproducibility
Balázs Hidasi
 
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...
Balázs Hidasi
 
Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017
Balázs Hidasi
 
Deep learning: the future of recommendations
Deep learning: the future of recommendationsDeep learning: the future of recommendations
Deep learning: the future of recommendations
Balázs Hidasi
 
Context-aware preference modeling with factorization
Context-aware preference modeling with factorizationContext-aware preference modeling with factorization
Context-aware preference modeling with factorization
Balázs Hidasi
 
Approximate modeling of continuous context in factorization algorithms (CaRR1...
Approximate modeling of continuous context in factorization algorithms (CaRR1...Approximate modeling of continuous context in factorization algorithms (CaRR1...
Approximate modeling of continuous context in factorization algorithms (CaRR1...
Balázs Hidasi
 
Utilizing additional information in factorization methods (research overview,...
Utilizing additional information in factorization methods (research overview,...Utilizing additional information in factorization methods (research overview,...
Utilizing additional information in factorization methods (research overview,...
Balázs Hidasi
 
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Balázs Hidasi
 
Context-aware similarities within the factorization framework (CaRR 2013 pres...
Context-aware similarities within the factorization framework (CaRR 2013 pres...Context-aware similarities within the factorization framework (CaRR 2013 pres...
Context-aware similarities within the factorization framework (CaRR 2013 pres...
Balázs Hidasi
 
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
Balázs Hidasi
 
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
Balázs Hidasi
 
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
Balázs Hidasi
 
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
Balázs Hidasi
 

More from Balázs Hidasi (14)

Egyedi termék kreatívok tömeges gyártása generatív AI segítségével
Egyedi termék kreatívok tömeges gyártása generatív AI segítségévelEgyedi termék kreatívok tömeges gyártása generatív AI segítségével
Egyedi termék kreatívok tömeges gyártása generatív AI segítségével
 
The Effect of Third Party Implementations on Reproducibility
The Effect of Third Party Implementations on ReproducibilityThe Effect of Third Party Implementations on Reproducibility
The Effect of Third Party Implementations on Reproducibility
 
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...
 
Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017
 
Deep learning: the future of recommendations
Deep learning: the future of recommendationsDeep learning: the future of recommendations
Deep learning: the future of recommendations
 
Context-aware preference modeling with factorization
Context-aware preference modeling with factorizationContext-aware preference modeling with factorization
Context-aware preference modeling with factorization
 
Approximate modeling of continuous context in factorization algorithms (CaRR1...
Approximate modeling of continuous context in factorization algorithms (CaRR1...Approximate modeling of continuous context in factorization algorithms (CaRR1...
Approximate modeling of continuous context in factorization algorithms (CaRR1...
 
Utilizing additional information in factorization methods (research overview,...
Utilizing additional information in factorization methods (research overview,...Utilizing additional information in factorization methods (research overview,...
Utilizing additional information in factorization methods (research overview,...
 
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
 
Context-aware similarities within the factorization framework (CaRR 2013 pres...
Context-aware similarities within the factorization framework (CaRR 2013 pres...Context-aware similarities within the factorization framework (CaRR 2013 pres...
Context-aware similarities within the factorization framework (CaRR 2013 pres...
 
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
 
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
 
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
 
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
 

Recently uploaded

Introduction of Cybersecurity with OSS at Code Europe 2024
Introduction of Cybersecurity with OSS  at Code Europe 2024Introduction of Cybersecurity with OSS  at Code Europe 2024
Introduction of Cybersecurity with OSS at Code Europe 2024
Hiroshi SHIBATA
 
Building Production Ready Search Pipelines with Spark and Milvus
Building Production Ready Search Pipelines with Spark and MilvusBuilding Production Ready Search Pipelines with Spark and Milvus
Building Production Ready Search Pipelines with Spark and Milvus
Zilliz
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
panagenda
 
5th LF Energy Power Grid Model Meet-up Slides
5th LF Energy Power Grid Model Meet-up Slides5th LF Energy Power Grid Model Meet-up Slides
5th LF Energy Power Grid Model Meet-up Slides
DanBrown980551
 
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
saastr
 
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge GraphGraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
Neo4j
 
The Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptxThe Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptx
operationspcvita
 
GraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracyGraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracy
Tomaz Bratanic
 
Fueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte WebinarFueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte Webinar
Zilliz
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
Chart Kalyan
 
WeTestAthens: Postman's AI & Automation Techniques
WeTestAthens: Postman's AI & Automation TechniquesWeTestAthens: Postman's AI & Automation Techniques
WeTestAthens: Postman's AI & Automation Techniques
Postman
 
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-EfficiencyFreshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
ScyllaDB
 
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
Jason Yip
 
What is an RPA CoE? Session 1 – CoE Vision
What is an RPA CoE?  Session 1 – CoE VisionWhat is an RPA CoE?  Session 1 – CoE Vision
What is an RPA CoE? Session 1 – CoE Vision
DianaGray10
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
Jason Packer
 
Best 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERPBest 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERP
Pixlogix Infotech
 
Leveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and StandardsLeveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and Standards
Neo4j
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
Jakub Marek
 
Apps Break Data
Apps Break DataApps Break Data
Apps Break Data
Ivo Velitchkov
 
Taking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdfTaking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdf
ssuserfac0301
 

Recently uploaded (20)

Introduction of Cybersecurity with OSS at Code Europe 2024
Introduction of Cybersecurity with OSS  at Code Europe 2024Introduction of Cybersecurity with OSS  at Code Europe 2024
Introduction of Cybersecurity with OSS at Code Europe 2024
 
Building Production Ready Search Pipelines with Spark and Milvus
Building Production Ready Search Pipelines with Spark and MilvusBuilding Production Ready Search Pipelines with Spark and Milvus
Building Production Ready Search Pipelines with Spark and Milvus
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
 
5th LF Energy Power Grid Model Meet-up Slides
5th LF Energy Power Grid Model Meet-up Slides5th LF Energy Power Grid Model Meet-up Slides
5th LF Energy Power Grid Model Meet-up Slides
 
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
 
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge GraphGraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
 
The Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptxThe Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptx
 
GraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracyGraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracy
 
Fueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte WebinarFueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte Webinar
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
 
WeTestAthens: Postman's AI & Automation Techniques
WeTestAthens: Postman's AI & Automation TechniquesWeTestAthens: Postman's AI & Automation Techniques
WeTestAthens: Postman's AI & Automation Techniques
 
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-EfficiencyFreshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
 
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
 
What is an RPA CoE? Session 1 – CoE Vision
What is an RPA CoE?  Session 1 – CoE VisionWhat is an RPA CoE?  Session 1 – CoE Vision
What is an RPA CoE? Session 1 – CoE Vision
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
 
Best 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERPBest 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERP
 
Leveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and StandardsLeveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and Standards
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
 
Apps Break Data
Apps Break DataApps Break Data
Apps Break Data
 
Taking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdfTaking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdf
 

Initialization of matrix factorization (CaRR 2012 presentation)

  • 1. ENHANCING MATRIX FACTORIZATION THROUGH INITIALIZATION FOR IMPLICIT FEEDBACK DATABASES Balázs Hidasi Domonkos Tikk Gravity R&D Ltd. Budapest University of Technology and Economics CARR WORKSHOP, 14TH FEBRUARY 2012, LISBON
  • 2. OUTLINE  Matrix factoriztion  Initialization concept  Methods  Naive  SimFactor  Results  Discussion 2/19
  • 3. MATRIX FACTORIZATION  Collaborative Filtering  One of the most common approaches  Approximates the rating matrix as product of low- rank matrices Items Q Users R ≈ P 3/19
  • 4. MATRIX FACTORIZATION  Initialize P and Q with small random numbers  Teach P and Q  Alternating Least Squares  Gradient Descent  Etc.  Transforms the data to a feature space  Separately for users and items  Noise reduction  Compression  Generalization 4/19
  • 5. IMPLICIT FEEDBACK  No ratings  User-item interactions (events)  Much noisier  Presence of an event  might not be positive feedback  Absence of an event  does not mean negative feedback  No negative feedback is available!  More common problem  MF for implicit feedback  Less accurate results due to noise  Mostly ALS is used 5/19  Scalability problems (rating matrix is dense)
  • 6. CONCEPT  Good MF model  The feature vectors of similar entities are similar  If data is too noisy  similar entities won’t be similar by their features  Start MF from a „good” point  Feature vector similarities are OK  Data is more than just events  Metadata  Info about items/users  Contextual data  In what context did the event occured  Can we incorporate those to help implicit MF? 6/19
  • 7. NAIVE APPROACH  Describe items using any data we have (detailed later)  Long, sparse vectors for item description  Compress these vectors to dense feature vectors  PCA, MLP, MF, …  Length of desired vectors = Number of features in MF  Use these features as starting points 7/19
  • 8. NAIVE APPROACH  Compression and also noise reduction  Does not really care about similarities  But often feature similarities are not that bad  If MF is used  Half of the results is thrown out Descriptors features Descriptor features ≈ Items Item Description of items 8/19
  • 9. SIMFACTOR ALGORITHM  Try to preserve similarities better  Starting from an MF of item description Descriptors Descriptors features features Description of items ≈ Items Item (D)  Similarities of items: DD’ Description of items  Some metrics require transformation on D (D’) Item Description of items similarities (S) = (D) 9/19
  • 10. SIMFACTOR ALGORITHM Descriptors features features Item Descriptors features Item ≈ Item (X) similarities (Y’) features (S) (X’) (Y)  Similarity approximation features Item Item Item ≈ (X) similarities Y’Y features (S) (X’)  Y’Y  KxK symmetric 10/19  Eigendecomposition
  • 11. SIMFACTOR ALGORITHM Y’Y = U λ U’  λ diagonal  λ = SQRT(λ) * SQRT(λ) features Item Item ≈ Item SQRT SQRT (X) similarities U (λ) (λ) U’ features (S) (X’)  X*U*SQRT(λ) = (SQRT(λ)*U’*X’)’=F  F is MxK matrix  S F * F’  F used for initialization Item similarities ≈ F’ 11/19 F (S)
  • 12. CREATING THE DESCRIPTION MATRIX  „Any” data about the entity  Vector-space reprezentation  For Items:  Metadata vector (title, category, description, etc)  Event vector (who bought the item)  Context-state vector (in which context state was it bought)  Context-event (in which context state who bought it)  For Users:  All above except metadata  Currently: Choose one source for D matrix 12/19  Context used: seasonality
  • 13. EXPERIMENTS: SIMILARITY PRESERVATION  Real life dataset: online grocery shopping events SimFactor RMSE improvement over naive in similarity approximation 52.36% 48.70% 26.22% 16.86% 13.39% 12.38% 10.81% Item context state User context state Item context- User context- Item event data User event data Item metadata event event 13/19  SimFactor approximates similarities better
  • 14. EXPERIMENTS: INITIALIZATION  Using different description matrices  And both naive and SimFactor initialization  Baseline: random init  Evaluation metric: recall@50 14/19
  • 15. EXPERIMENTS: GROCERY DB  Up to 6% improvement  Best methods use SimFactor and user context data Top5 methods on Grocery DB 5.71% 4.88% 4.30% 4.12% 4.04% 15/19 User context state User context state User context event User event data User context event (SimFactor) (Naive) (SimFactor) (SimFactor) (Naive)
  • 16. EXPERIMENTS: „IMPLICITIZED” MOVIELENS  Keeping 5 star ratings  implicit events  Up to 10% improvement  Best methods use SimFactor and item context data Top5 methods on MovieLens DB 10% 9.17% 9.17% 9.17% 9.17% 16/19 Item context state User context state Item context event Item context event Item context state (SimFactor) (SimFactor) (SimFactor) (Naive) (Naive)
  • 17. DISCUSSION OF RESULTS  SimFactor yields better results than naive  Context information yields better results than other descriptions  Context information separates well between entities  Grocery: User context  People’s routines  Different types of shoppings in different times  MovieLens: Item context  Different types of movies watched on different hours  Context-based similarity 17/19
  • 18. WHY CONTEXT?  Grocery example  Correlation between context states by users low ITEM USER Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon 1,00 0,79 0,79 0,78 0,76 0,70 0,74 Mon 1,00 0,36 0,34 0,34 0,35 0,29 0,19 Tue 0,79 1,00 0,79 0,78 0,76 0,69 0,73 Tue 0,36 1,00 0,34 0,34 0,33 0,29 0,19 Wed 0,79 0,79 1,00 0,79 0,76 0,70 0,74 Wed 0,34 0,34 1,00 0,36 0,35 0,27 0,17 Thu 0,78 0,78 0,79 1,00 0,76 0,71 0,74 Thu 0,34 0,34 0,36 1,00 0,39 0,30 0,16 Fri 0,76 0,76 0,76 0,76 1,00 0,71 0,72 Fri 0,35 0,33 0,35 0,39 1,00 0,32 0,16 Sat 0,70 0,69 0,70 0,71 0,71 1,00 0,71 Sat 0,29 0,29 0,27 0,30 0,32 1,00 0,33 Sun 0,74 0,73 0,74 0,74 0,72 0,71 1,00 Sun 0,19 0,19 0,17 0,16 0,16 0,33 1,00  Why can context aware algorithms be efficient?  Different recommendations in different context states 18/19  Context differentiates well between entities  Easier subtasks
  • 19. CONCLUSION & FUTURE WORK  SimFactor  Similarity preserving compression  Similarity based MF initialization:  Description matrix from any data  Apply SimFactor  Use output as initial features for MF  Context differentitates between entities well  Future work:  Mixed description matrix (multiple data sources)  Multiple description matrix  Using different context information  Using different similarity metrics 19/19
  • 20. THANKS FOR YOUR ATTENTION! For more of my recommender systems related research visit my website: http://www.hidasi.eu