intro
theory
result
Information Thermodynamics of Turing Patterns
~Gianmaria Falasco, Riccardo Rao, and Massimiliano Esposito
(Complex Systems and Statistical Mechanics, University of Luxembourg)
DOI: 10.1103/PhysRevLett.121.108301
I. INTRODUCTION
II. MOTIVATION
III. THEORY
IV. TURING
PATTERN
V. CONCLUSIONS
CONTENTS
 Nonlinear feedback effects destabilized by
diffusion Reaction-diffusion systems
searching for general
extremum principles
Research focus :
 Continual influx of chemicals and energy
for dissipative structures
 complete framework is still lacking-
necessary for technological applications
Work
needed to
manipulate
a Turing
pattern
Efficiency of
exchanging
information
through
traveling
waves
Turing patterns
as
thermodynamic
nonequilibrium
phase
transitionsBy PREMASHIS KUMAR
intro
𝒖
𝒗
=
𝒂 𝟏𝟏 𝒂 𝟏𝟐
𝒂 𝟐𝟏 𝒂 𝟐𝟐
𝒖
𝒗
𝝀 𝟐
− 𝐓𝐫 𝛌 + 𝒅𝒆𝒕 = 𝟎
Tr=𝝀 𝟏 + 𝝀 𝟐 < 𝟎
𝒅𝒆𝒕 = 𝝀 𝟏 𝝀 𝟐>0
theor
y
resul
t
𝜕𝑍 𝜎
𝜕t
=-⩢.𝐽 𝜎 + ρ 𝑆𝜌
𝜎
jρ + 𝐼 𝜎
Reaction-Diffusion equation:
−𝑫 𝝈 ⩢ 𝒁 𝝈
Fick’s diffusion
current :
Stoichiometry
Matrix
'Canonical'Gibbs free energy
𝑮 = 𝑽
𝒅𝒓 𝝈(𝝁 𝝈 𝒁 𝝈 − 𝒁 𝝈)
𝑮 = 𝑮 𝒆𝒒 + ℒ(𝒁 𝝈||𝒁 𝝈
𝒆𝒒
)
ℒ(𝒁 𝝈||𝒁 𝝈
𝒆𝒒
)= 𝑽
𝒅𝒓 𝝈(𝒁 𝝈 𝒍𝒏
𝒁 𝝈
𝒁 𝝈
𝒆𝒒 − (𝒁 𝝈 − 𝒁 𝝈
𝒆𝒒
)
Conservative laws : 𝒙 𝒍 𝒙
𝝀 𝑺 𝝆
𝒙 = 𝟎
𝒙 𝒍 𝒙
𝝀 𝒖
𝑺 𝝆
𝒙 = 𝟎, 𝒙 𝒍 𝒙
𝝀 𝒃
𝑺 𝝆
𝒙 ≠ 𝟎 (For open system)
𝓛 = 𝑮= 𝒅 − 𝒓=− ≤ 𝟎
EPR
𝒙 𝒔, 𝒚 𝒔
Jacobian
𝕁 𝑫 =
𝒂 𝟏𝟏− 𝑫 𝟏𝟏 𝑲 𝟐 𝒂 𝟏𝟐
𝒂 𝟐𝟏 𝒂 𝟐𝟐 − 𝑫 𝟐𝟐 𝑲 𝟐
intro
theor
y
Det
resul
t
D
𝑲 𝟐
𝑫 𝑲 = 𝟎;
𝒅𝑫
𝒅𝑲 𝟐 = 𝟎;
𝐷 = 𝐷11 𝐷22 𝐾4
− 𝐷22 𝑎11 − 𝐷11 𝑎22 𝐾2
+ 𝑑𝑒𝑡
Conclusion:
 Reveal the existence of nonequilibrium
phase transition.
 Framework to quantify the energy cost
of pattern manipulations

Information thermodynamics of turing pattern

  • 1.
    intro theory result Information Thermodynamics ofTuring Patterns ~Gianmaria Falasco, Riccardo Rao, and Massimiliano Esposito (Complex Systems and Statistical Mechanics, University of Luxembourg) DOI: 10.1103/PhysRevLett.121.108301 I. INTRODUCTION II. MOTIVATION III. THEORY IV. TURING PATTERN V. CONCLUSIONS CONTENTS  Nonlinear feedback effects destabilized by diffusion Reaction-diffusion systems searching for general extremum principles Research focus :  Continual influx of chemicals and energy for dissipative structures  complete framework is still lacking- necessary for technological applications Work needed to manipulate a Turing pattern Efficiency of exchanging information through traveling waves Turing patterns as thermodynamic nonequilibrium phase transitionsBy PREMASHIS KUMAR
  • 2.
    intro 𝒖 𝒗 = 𝒂 𝟏𝟏 𝒂𝟏𝟐 𝒂 𝟐𝟏 𝒂 𝟐𝟐 𝒖 𝒗 𝝀 𝟐 − 𝐓𝐫 𝛌 + 𝒅𝒆𝒕 = 𝟎 Tr=𝝀 𝟏 + 𝝀 𝟐 < 𝟎 𝒅𝒆𝒕 = 𝝀 𝟏 𝝀 𝟐>0 theor y resul t 𝜕𝑍 𝜎 𝜕t =-⩢.𝐽 𝜎 + ρ 𝑆𝜌 𝜎 jρ + 𝐼 𝜎 Reaction-Diffusion equation: −𝑫 𝝈 ⩢ 𝒁 𝝈 Fick’s diffusion current : Stoichiometry Matrix 'Canonical'Gibbs free energy 𝑮 = 𝑽 𝒅𝒓 𝝈(𝝁 𝝈 𝒁 𝝈 − 𝒁 𝝈) 𝑮 = 𝑮 𝒆𝒒 + ℒ(𝒁 𝝈||𝒁 𝝈 𝒆𝒒 ) ℒ(𝒁 𝝈||𝒁 𝝈 𝒆𝒒 )= 𝑽 𝒅𝒓 𝝈(𝒁 𝝈 𝒍𝒏 𝒁 𝝈 𝒁 𝝈 𝒆𝒒 − (𝒁 𝝈 − 𝒁 𝝈 𝒆𝒒 ) Conservative laws : 𝒙 𝒍 𝒙 𝝀 𝑺 𝝆 𝒙 = 𝟎 𝒙 𝒍 𝒙 𝝀 𝒖 𝑺 𝝆 𝒙 = 𝟎, 𝒙 𝒍 𝒙 𝝀 𝒃 𝑺 𝝆 𝒙 ≠ 𝟎 (For open system) 𝓛 = 𝑮= 𝒅 − 𝒓=− ≤ 𝟎 EPR 𝒙 𝒔, 𝒚 𝒔 Jacobian 𝕁 𝑫 = 𝒂 𝟏𝟏− 𝑫 𝟏𝟏 𝑲 𝟐 𝒂 𝟏𝟐 𝒂 𝟐𝟏 𝒂 𝟐𝟐 − 𝑫 𝟐𝟐 𝑲 𝟐
  • 3.
    intro theor y Det resul t D 𝑲 𝟐 𝑫 𝑲= 𝟎; 𝒅𝑫 𝒅𝑲 𝟐 = 𝟎; 𝐷 = 𝐷11 𝐷22 𝐾4 − 𝐷22 𝑎11 − 𝐷11 𝑎22 𝐾2 + 𝑑𝑒𝑡 Conclusion:  Reveal the existence of nonequilibrium phase transition.  Framework to quantify the energy cost of pattern manipulations