Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
Submit search
EN
MS
Uploaded by
Mr Shadath
55,209 views
HSC & Admission Physics All Formula PDF
উচ্চ মাধ্যমিক (HSC) ও বিশ্ববিদ্যালয় ভর্তি পরীক্ষায় পদার্থবিজ্ঞানের প্রয়োজনীয় সকল সূত্রাবলি একত্রে।
Education
◦
Read more
24
Save
Share
Embed
Embed presentation
Download
Downloaded 89 times
1
/ 13
2
/ 13
Most read
3
/ 13
Most read
4
/ 13
Most read
5
/ 13
6
/ 13
7
/ 13
8
/ 13
9
/ 13
10
/ 13
11
/ 13
12
/ 13
13
/ 13
More Related Content
PDF
Important Physics Chemistry Math formula collection for HSC exam in Bangla
by
Abu Bakar
PDF
Intermediate physics 1st paper
by
tanbircox UJS App
PDF
BOOLEAN ALGEBRA ALL PDF
by
Adamjee Cantonment College
PDF
উচ্চ মাধ্যমিক আইসিটি জ্ঞানমূলক প্রশ্নোত্তর
by
AbdulAhadChowdhury1
PDF
Quantum mechanics 1st edition mc intyre solutions manual
by
Selina333
PDF
Complete solutions-mathematical-methods-in-the-physical-sciences-3rd-edition
by
Aba Dula
PDF
HSC ICT: Chapter 2: Communication System & Networking
by
Adamjee Cantonment College
PDF
3rd chapter (1st part)
by
Adamjee Cantonment College
Important Physics Chemistry Math formula collection for HSC exam in Bangla
by
Abu Bakar
Intermediate physics 1st paper
by
tanbircox UJS App
BOOLEAN ALGEBRA ALL PDF
by
Adamjee Cantonment College
উচ্চ মাধ্যমিক আইসিটি জ্ঞানমূলক প্রশ্নোত্তর
by
AbdulAhadChowdhury1
Quantum mechanics 1st edition mc intyre solutions manual
by
Selina333
Complete solutions-mathematical-methods-in-the-physical-sciences-3rd-edition
by
Aba Dula
HSC ICT: Chapter 2: Communication System & Networking
by
Adamjee Cantonment College
3rd chapter (1st part)
by
Adamjee Cantonment College
What's hot
PDF
HSC ICT: Chapter 5 Board MCQ Solution
by
Adamjee Cantonment College
PDF
3 rd chapter(2nd part): Digital Device Board Mcq Solution
by
Adamjee Cantonment College
PDF
ICT-Number system.সংখ্যা পদ্ধতি(৩য় অধ্যায়-১ম অংশ)
by
United International University
PDF
Economics 2nd paper chapter CHAPTER 7 MCQ
by
Tajul Islam Apurbo
PDF
HSC ICT: Chapter 4 Board MCQ Solutio
by
Adamjee Cantonment College
PDF
Chapter 1 : Board MCQ Solution
by
Adamjee Cantonment College
PDF
Computer chamak
by
tanbircox UJS App
PDF
Html5 bangla-e-book
by
Sujit Halder
PDF
Economics 2nd paper chapter 7,8,9
by
Tajul Islam Apurbo
PDF
HSC ICT c program question answer/program solve
by
Amirul Islam
PDF
HSC 2023 Bangla 2nd paper suggestion by Pro with swadhin
by
Tajul Islam Apurbo
PDF
5.beams
by
Chhay Teng
PDF
Physics 2nd paper hsc & honours (short technique & formulas)
by
tanbircox UJS App
PDF
Ms excel bangla guide complete tutorial with picture by tanbircox
by
tanbircox UJS App
PDF
economics 2nd paper all mcq 2023
by
Tajul Islam Apurbo
PDF
HSC English Appropriate Preposition suggestion.pdf
by
Tajul Islam Apurbo
PDF
Lecturer 1 data communication system
by
Adamjee Cantonment College
PDF
Programming Language (chapter 5 for class 11 and 12)
by
Jessore University of Science & Technology, Jessore.
PDF
economics 1st Paper chapter 9 MCQ
by
Tajul Islam Apurbo
PDF
Economics 2nd paper chapter CHAPTER 3 MCQ
by
Tajul Islam Apurbo
HSC ICT: Chapter 5 Board MCQ Solution
by
Adamjee Cantonment College
3 rd chapter(2nd part): Digital Device Board Mcq Solution
by
Adamjee Cantonment College
ICT-Number system.সংখ্যা পদ্ধতি(৩য় অধ্যায়-১ম অংশ)
by
United International University
Economics 2nd paper chapter CHAPTER 7 MCQ
by
Tajul Islam Apurbo
HSC ICT: Chapter 4 Board MCQ Solutio
by
Adamjee Cantonment College
Chapter 1 : Board MCQ Solution
by
Adamjee Cantonment College
Computer chamak
by
tanbircox UJS App
Html5 bangla-e-book
by
Sujit Halder
Economics 2nd paper chapter 7,8,9
by
Tajul Islam Apurbo
HSC ICT c program question answer/program solve
by
Amirul Islam
HSC 2023 Bangla 2nd paper suggestion by Pro with swadhin
by
Tajul Islam Apurbo
5.beams
by
Chhay Teng
Physics 2nd paper hsc & honours (short technique & formulas)
by
tanbircox UJS App
Ms excel bangla guide complete tutorial with picture by tanbircox
by
tanbircox UJS App
economics 2nd paper all mcq 2023
by
Tajul Islam Apurbo
HSC English Appropriate Preposition suggestion.pdf
by
Tajul Islam Apurbo
Lecturer 1 data communication system
by
Adamjee Cantonment College
Programming Language (chapter 5 for class 11 and 12)
by
Jessore University of Science & Technology, Jessore.
economics 1st Paper chapter 9 MCQ
by
Tajul Islam Apurbo
Economics 2nd paper chapter CHAPTER 3 MCQ
by
Tajul Islam Apurbo
HSC & Admission Physics All Formula PDF
1.
01725-176911 SHADATH'S SPECIAL PHYSICS CARE GBP.Gm.wmGKv‡WwgK,BwÄwbqvwisIfvwm©wUGWwgkbc`v_©weÁv‡bi†mive¨vP c`v_©weÁvb'im~Îvewj BUET&VARSITYMISSION'iwmwbqiwk¶KbvRgymmv`vZfvBqv'i Lyjbv'i
e¨vPt wcwUAvB †gvo,Lyjbv wet`ªt evmvq MÖ“c K‡i covi mxwgZ my‡hvM Av‡Q|
2.
†fŠZRMr I cwigvc হলে শতকরা
ত্রুটি এখালে, যেল াে পূর্ণসংখযা বা ভগ্াংশ যেল াে পূর্ণসংখযা বা ভগ্াংশ Q P R + = †f±‡ii †hvM, we‡qvM Ges gvb wbY©q • ( ) ( ) ( )k̂ z B z A j ˆ y B y A î x B x A B A + + = → → • k̂ A ĵ A î A R Z y x + + = GKwU †f±i ivwk n‡j, Gi gvb, 2 z 2 y 2 x A A A R + + = GKK †f±i wbY©q • R Gi w`‡K GKK †f±i, | R | R r̂ = • → A I B → Gi j¤^w`‡K GKK †f±i, = A B A B → → → → †f±i ¸Yb • B . A = AB cos = AxBx + AyBy + AzBz • B A = AB sin = z y x z y x B B B A A A k̂ ĵ î 1 k̂ . k̂ ĵ . ĵ î . î = = = Ges 0 k̂ k̂ ĵ ĵ î î = = = k̂ ĵ î = , ĵ î k̂ = , î k̂ ĵ = , k̂ î ĵ − = †f±i ¸b‡bi cÖ‡qvM • A I B †f±iØq j¤^ n‡j AxBx + AyBy + AzBz = 0 • A I B ‡f±iØq mgvšÍivj n‡j z z y y x x B A B A B A = = †f±‡ii ga¨eZ©x †KvY wbY©q • cos = AB B . A • cos = AB B A B A B A z z y y x x + + A‡¶i mv‡_ Drcbœ †Kv‡Yi †¶Î, x = cos–1 + + 2 Z 2 y 2 x A A A Ges y = cos–1 + + 2 Z 2 y 2 x A A A z = cos–1 + + 2 z 2 y 2 x A A A Awf‡¶cwbY©q • A eivei B Gi Awf‡¶c = A B . A mvgvšÍwi‡Ki m~Î • jwä, R = + + cos PQ 2 Q P 2 2 jwäi †KvY, = tan–1 + cos Q P sin Q • → A I → B †Kvb mvgvšÍwiK A_ev i¤^‡mi mwbœwnZ evû n‡j Z‡e mvgvšÍwiK ev i¤^‡mi †¶Îdj = → → B A • → A I → B †Kvb mvgvšÍwiK A_ev i¤^‡mi KY© n‡j Z‡e mvgvšÍwiK ev i¤^‡mi †¶Îdj = → → B A 2 1 Need To Know: 1. = 0n‡j, R = P + Q, hv jwäi m‡e©v”P gvb| 2. = 180n‡j, R = P Q hv jwäi ¶z`ªZg gvb| 3. = 90n‡j, R = 2 2 Q P + 4. R2 max + R2 min = 2R2 90 5. wZbwU ej †Kv‡bv we›`y‡Z fvimvg¨ m„wó Ki‡j G‡`i †h‡Kvb `yBwUi jwä AciwU n‡e| 6. P = Q n‡j Ges ej؇qi jwä †h †Kvb e‡ji mgvb n‡j = 120 7. P = Q n‡j Ges ej؇qi jwä †h †Kvb e‡ji wظY n‡j = 0 8. P = Q n‡j Ges ej؇qi jwä †h †Kvb e‡ji A‡a©K n‡j = 151 9. P = Q n‡j R = 2Pcos 2 Dcvs‡k wefvRb • j¤^fv‡e wefvR‡bi †¶‡Î, • Avbyf~wgK Dcvsk, X = R cos • Dj¤^ Dcvsk, Y = R sin MwZwe`¨v(DYNAMICS) s = ut v2 = u2 + 2 a s v = u at s = V0 + V 2 t a = t u ~ v V = 2 v u + t Zg †m‡K‡Û AwZµvšÍ `~iZ¡, Sth = u + ( ) 1 2 2 1 − t a a = t t m n m n S S t t − − , S(t+1)Zg = StZg + a †eM, v = dt ds Z¡iY, a = dt dv = 2 2 dt s d x `~iZ¡ †f` Kivi ci Gi †eM n 1 Ask nviv‡j, ¸wjwU AviI s `~iZ¡ †f` Ki‡j s = x n2 – 1 x `~iZ¡ cÖ‡e‡k‡i ci †eM A‡a©K n‡j, `~iZ¡ hv‡e, s = 3 x x `~iZ¡ cÖ‡e‡k‡i ci †eM GK-Z…Zxqvsk n‡j, `~iZ¡ hv‡e, s = 8 x GKwU ivB‡d‡ji ¸wj GKwU Z³v‡K †f` Ki‡Z cv‡i| ¸wji †eM v ¸Y Kiv n‡j Z³vi msL¨v n‡e, n = v2 Ges ¸wjwU n msL¨K Z³v †f` Ki‡j †eM n‡e v = n ¸Y| P A Q B C Q P R + = O A B X Y R C î -Gi mnM ŷ -Gi mnM ẑ -Gi mnM AwZµvšÍ `~iZ¡ mgxKiY msµvšÍ mgm¨v Z³vi mgm¨v cošÍ e¯‘i MwZi mgxKiY MwZi mgxKiY msµvšÍ mgm¨v
3.
2 gt 2 1 ut h = 2 gt 2 1 h
= [Avbyf~wgK w`‡K gvi‡j] 2 gt 2 1 ut h + − = [h D”PZv n‡Z Dj¤^ eivei gvi‡j] hth = 2 1 g(2t-1) h D”PZv †_‡K GKwU e¯‘‡K wb‡P †d‡j w`‡j Ges GKB mg‡q GKwU e¯‘‡K u †e‡M Dc‡i wb‡¶c Ki‡j, wgwjZ nevi mgq, t = u h Ges wgwjZ nevi ¯’vb, h 2 ) u h ( g 2 1 h − = v2 = u2 2gh hth= u 2 1 g(2t-1) H = ut 2 1 gt2 V = u gt m‡e©v”P D”PZv †_‡K bvg‡Z mgq g u t = m‡ev©”P D”PZvq DV‡Z mgq g u t = wePiYKvj g u 2 T = m‡e©v”P D”PZv g 2 u H 2 = f~wgi mv‡_ †Kv‡b Ges Dj¤^ eivei gvi‡j (i) cvjøv, R = g 2 sin v o 2 o (ii) MwZ c‡_i mgxt y = bx-cx2 (iii) m‡e©v”Pcvjøv Rmax = g v2 o (iv) m‡e©v”P D”PZv, H = g 2 sin V o 2 2 o (v) wePiY Kvj, T = g sin v 2 o o g‡b ivL‡Z n‡e: = 45°n‡j R = Rmax = g u2 = 90°n‡j H = Hmax = g 2 u2 = 76°n‡j R = H n‡e| GKwU wbw¶ß e¯‘i †h †Kvb mg‡q Zvr¶wbK †e‡Mi AwfgyL ¯úk©K eivei| H max = 2 Rmax = 45°n‡j H = 4 R cÖ‡¶c‡KvY n‡j tan = R T 9 . 4 2 GKB Avw`‡e‡M `yywU e¯‘i Avbyf~wgK cvjøv mgvb n‡e hw` wb‡¶c †KvY Ges AciwU (90°- ) nq| f~wg n‡Z wbw¶ß cÖv‡mi †¶‡Î Avbyf~wgK eivei Z¡i‡Yi gvb k~Y¨| h D”PZv n‡Z Avbyf~wgK eivei gviv n‡j, Avbyf‚wgK fv‡e wbw¶ß e¯‘i MwZi mgxKi‡Yi †¶‡Î 2 y 2 x v v v + = x y v v tan = 2 gt 2 1 h = s = ut cÖw¶ß e¯‘i MwZi mgxKi‡Yi †¶‡Î †e‡Mi Dj¤^ AskK, vy = v0sin0 – gt. †e‡Mi Avbyf‚wgK AskK, vx = v0cos0 h= – usinot + 1 2 gt2 Vy = – u sin 0+ gt. †K›`ªgyLx Z¡i‡Yi †¶‡Î a = r r v 2 2 = = 2 T 2 = 2N t 2 †K›`ªgyLx ej, F = m2 r wbDUwbqvb ejwe`¨v NEWTONIAN MECHANICS ❑ ˆiwLK I †KŠwYK MwZi g‡a¨ mv`„k¨: ˆiwLK †KŠwYK S = 2πN V = t s / v = r = t = t N 2 a = r m I F = ma = I ˆiwLK †KŠwYK S = vt = t →mg‡KŠwYK S = vt 2 1 = 2 1 t →GKwU †eM k~Y¨ n‡j S = 2 2 1 at = 2 2 1 t P = Fv P = Ek = 2 2 1 mv Ek = 2 1 I2 fi‡e‡Mi wbZ¨Zvi m~Î, 2 2 1 1 v m v m = e›`y‡Ki cðvr †eM V, e›`y‡Ki fi M, ¸wji †eM v, ¸wji fi m n‡j, MV + mv = 0 wbw¶ß e¯‘i MwZi mgxKiY D”PZvi mgxKiY u h s u h= 2 gt 2 1 s=ut u1 u sin cÖvm RwbZ mgm¨v wbw¶ß e¯‘i MwZi mgxKiY cÖw¶ß e¯‘i MwZi mgxKiY †K›`ªgyLx Z¡iY RwbZ mgm¨v fi‡e‡Mi wbZ¨Zvi m~Î
4.
SHADATH’S PHYSICS CARE
Academic and Admission Physics Solution Contact: 01725176911 cðvr †eM V, †bŠKvi fi M, Av‡ivnxi †bŠKvi †eM v Ges Av‡ivnxi fi m n‡j, MV + mv = 0 fi‡eM P= Ft = m (v-u) = mv ej F = ma = m ( ) t u v − ( ) ( ) u v m t t F 1 2 − = − e‡ji NvZ J Ft mv mu = = − m1u1 + m2u2 = m1v1 + m2v2 (G‡Ki AwaK e¯‘i g‡a¨ msNl© nq Zvn‡jI G m~Î cÖ‡hvR¨) wgwjZ e¯‘i †eM, v = 2 1 2 2 1 1 m m u m u m + [GKB w`K †_‡K G‡m av°v †L‡j (+), wecixZ w`K n‡j (-)] (i) DaŸ©Mvgx wjd‡Ui †¶‡Î: R = m (g + f) (ii) wbgœMvgx wjd‡Ui †¶‡Î: R = m (g – f) MwZkw³ Ek = m 2 p mv 2 1 2 2 = → MwZkw³ n ¸b Ki‡Z n‡j eZ©gvb †eM v2 = v1 n w¯’Z Nl©Y ¸YvsK, s Fs R = s tan = k = tan-1 (k) i‡K‡Ui †¶‡Î, DaŸ©gyLx av°v ev ej, F = Vr . dt dm wb‡¶‡ci mgq i‡K‡Ui Dci cÖhy³ jwä ej = Vr g m dt dm 0 − GLv‡b mo = i‡K‡Ui †gvU fi| i‡K‡Ui Dci wµqvkxj jwäZ¡iY, g dt dm m v a r − = i‡K‡Ui Zvr¶wYK Z¡iY, g t m M r V a − = → AvbZ Zj eivei gv‡e©j ev †MvjK AvK…wZi e¯‘ Mwo‡q co‡j †gvU kw³ Ek = 2 10 7 mv n e¨vmv‡a©i myZvi mvnv‡h¨ m f‡ii cv_i‡K e„ËvKvi c‡_ Nyiv‡j myZvi Dci Uvb ev †K›`ª wegyLx ej, F = r mv2 = m2 r r ˆ`‡N©¨i myZvi mvnv‡h¨ evjwZ‡Z cvwb wb‡q KZ †e‡M Nyiv‡j evjwZ n‡Z cvwb co‡e bv, †m‡ÿ‡Î v = rg n‡e| †KŠwbK †eM, = t = 2N t ‰iwLK †eM, v = r m f‡ii cv_i‡K r ˆ`‡N©¨i myZvi mvnv‡h¨ Nyiv‡j, I = mr2 (evwl©K) m f‡ii I r e¨vmv‡a©i GKwU †MvjK‡K wbR A‡¶i mv‡c‡¶ Nyiv‡j I = 2 5 2 mr (AvwüK) c„w_exi AvwüK MwZi Rb¨ c„w_exi RoZvi åvgK I = 2 5 2 MR (R = c„w_exi e¨vmva©) evwl©K MwZi Rb¨ c„w_exi RoZvi åvgK, I = 2 Mr ( r = m~h© n‡Z c„w_exi `~iZ¡) r e¨vmv‡a©i wis‡K wbR A‡¶i mv‡c‡¶ Nyiv‡j, I = mr2 PvKwZ wbR A‡¶i mv‡c‡¶ Nyiv‡j, I = 2 2 1 mr wb‡iU wmwjÛvi‡K wbR A‡¶i mv‡c‡¶ Nyiv‡j, I = 2 2 1 mr m fi I l ˆ`‡N©¨i `Û‡K gvS eivei Dj¤^ A‡¶i mv‡c‡¶ Nyiv‡j = 2 12 1 ml Ges GKcÖv‡šÍi mv‡c‡¶ Nyiv‡j, I = 3 2 ml iv¯Ívi evuK, rg v tan 2 = KvR, kw³ I ÿgZv WORK, ENERGY & POWER MwZkw³, Ek = 1 2 mv2 w¯’wZkw³, Ep = mgh f‚wg n‡Z x D”PZvq MwZkw³, w¯’wZkw³i n ¸Y n‡j D”PZv, x = h n + 1 KvR W F S FS cos = = . = Pt mgh mv 2 1 2 = = ¶gZv, t W P = = t mgh = t mv 2 1 2 ¶gZv, Fv t S . F t W P = = = GKwU ivB‡d‡ji ¸wj wbw`©ó cyiæ‡Z¡i GKwU Z³v †f` Ki‡Z cv‡i| Giæc n wU Z³v †f` Ki‡Z n‡j ¸wji †eM n‡e n ¸Y| n msL¨K BU‡K hv‡`i cÖ‡Z¨‡Ki D”PZv h GKwUi Dci Av‡iKwU †i‡L ¯Í¤¢ ˆZwi Ki‡Z K…ZKvR, W = mgh n(n – 1) 2 nvZzwo Dj¤^fv‡e †c‡iK‡K AvNvZ Ki‡j, W=mg (h +x) NvZ ej RwbZ mgm¨v wgwjZ e¯‘i MwZ RwbZ mgm¨v wjd&U RwbZ mgm¨v MwZkw³ wbY©q Nl©Y ¸YvsK RwbZ mgm¨v i‡K‡Ui MwZ RwbZ mgm¨v †Mvj‡Ki †gvU MwZkw³ wbY©q †K›`ªgyLx ej msµvšÍ mgm¨v †KŠwYK †eM msµvšÍ ˆiwLK I †KŠwYK †e‡Mi m¤úK© RoZvi åvgK hvbevnb I iv¯Ívi evuK msµvšÍ mgm¨v MwZkw³ I w¯’wZkw³ wbY©q KvR I ¶gZv wbY©q K…ZKvR RwbZ mgm¨v
5.
SHADATH’S PHYSICS CARE
Academic and Admission Physics Solution Contact: 01725176911 nvZzwo Avbyf‚wgKfv‡e †c‡iK‡K AvNvZ Ki‡j, W= 1 2 mv2 cvwb c~Y© Kzqv Lvwj Ki‡Z W = mgh [Mo D”PZv 2 h ] Dc‡ii A‡a©K cvwb †Zvjv n‡j, 4 h h = A‡a©K c~Y© Kzqvi m¤ú~Y© cvwb †Zvjv n‡j, 4 h 3 h = `¶Zv me©`v p Gi mv‡_ ¸b nq| e›`y‡Ki ¸wji †¶‡Î, S . F mv 2 1 2 = MwZ kw³, EK = m 2 P2 KvR kw³ Dccv`¨, − = 2 2 mu 2 1 mv 2 1 W cvwb †g‡N cwiYZ n‡Z K…ZKvR, gh A gh v mgh W = = = l Dj¤^ eivei f~wg n‡Z x D”PZvq EpI Ek MwZkw³ wefe kw³i A‡a©K n‡j, x = 3 h 2 MwZ kw³ wefe kw³i wظb¸Y n‡j, x = 3 h gnvKl© I AwfKl© GRAVIATION & GRAVITY gnvKl© ej, F = 2 2 1 d m Gm AwfKl©ej, 2 R GMm mg F = = f‚-c„‡ô AwfKl©R Z¡iY, 2 R GM g = = G R 3 4 c„w_exi fi, M = gR G 2 c„w_exi NbZ¡, = 3 4 g GR h D”PZvq Z¡iY, 2 h h R R g g + = D”PZv, h = R 1 w w R 1 g g 1 1 − = − h MfxiZvq Z¡iY − = R h R g gd mylg Nb‡Z¡ `ywU MÖ‡ni Rb¨ → g R A_©vr , 2 1 2 1 R R g g = `ywU MÖ‡ni fi mgvb n‡j → g 2 R 1 A_©vr , 2 1 2 2 1 R R g g = p e 2 e p p e p e W W R R M M g g = = K…wÎg DcMÖ‡ni ˆiwLK †eM v = GM R + h = R = g R + h K…wÎg DcMÖ‡ni †eM I AveZ©b Kv‡ji g‡a¨ m¤úK© v = 2 T (R + h) f‚w¯’i DcMÖ‡ni AveZ©b Kvj, T = 2 r3/2 R g gyw³‡eM, v= gR 2 = R GM 2 gnvKl©xq wefe, V = R GM − gnvKl©xq cÖvej¨, 2 r GM E = †Kcjv‡ii Z…Zxq m~Î t 3 2 R 2 2 T 3 1 R 2 1 T = c`v‡_©i MvVwbK ag© STRUCTURAL PROPERTIES MATTER w¯’wZ¯’vcK ¸YvsK wbY©q ˆ`N©¨ weK…wZ = l L AvqZb weK…wZ = V v Amn cxob = Amn ej †¶Îdj = F A Bqs Gi w¯’wZ¯’vcK ¸YvsK, l l 2 r mgL A FL Y = = AvqZb ¸YvsK, K FV Av = = v PV [P = Pvc = A F ] w¯’wZkw³ MwZkw³ x h-x mgq h–x h x Ep = mgx Ek= mg (h- x) K‚c RwbZ mgm¨v MwZkw³ I K…ZKv‡Ri m¤úK© Dj¤^ eivei w¯’wZkw³ I MwZkw³ gnvKl© I AwfKl© ej wbY©q AwfKl©R Z¡iY, c„w_exi fi I NbZ¡ wbY©q c„w_exi wewfbœ ¯’v‡b AwfKl©R Z¡iY `ywU MÖ‡ni fi I NbZ¡ RwbZ mgm¨v K…wÎg DcMÖ‡ni †eM I AveZ©b Kvj gyw³‡eM, gnvKl©xq wefe I cªvej¨ wbY©q
6.
SHADATH’S PHYSICS CARE
Academic and Admission Physics Solution Contact: 01725176911 AvqZb ¸YvsK, K = PV cqm‡bi AbycvZ, = Ld D l Y Y i r r i = l l Y = 2n (1+) Y = 3k (1-2) û‡Ki m~Î: cxob weK…wZ = aªæe w¯’wZ¯’vcK w¯’wZkw³ ev †gvU kw³, W YA L = 1 2 2 l GKK AvqZ‡b w¯’wZkw³ E = 1 2 cxob weK…wZ = AL F 2 1 l cvwbi c„ôUvb, L F T = e¯‘i IRb, W= cøeZv (F1) + mv›`ªej (F2) c„ôUv‡bi Dci ZvcgvÎvq cÖfve, T = To (1– t) Zi‡ji c„ôUvb, ( ) + = cos 2 3 r h g r T = cos 2 g rh = 2 g rh cvwbi †j‡f‡ji cv_©K¨, − = 2 1 r 1 r 1 g T 2 h mv›`ªej: F A dv dx = [cÖ‡kœ †Zj D‡jø¨L _vK‡j] mv›`ªZvsK: = F A dx dv †÷vK‡mi m~Î: F = 6r M¨v‡mi †¶‡Î ZvcgvÎvi mv‡_ mv›`ªZvsK 2 1 2 1 T T = †Mvj‡Ki cÖvšÍ †eM, ( ) − = 9 g 2 r 2 V AwZwi³ Pvc, r T 4 P = †gvU w¯’wZkw³ t E = TA c„ôkw³ e„w×, E = AT = 4 (Nr2 -R2 ) T mvev‡bi ey`ey‡`i †¶‡Î, E = 24(Nr2 -R2 )T ch©ve„wËK MwZ PERIODIC MOTION T = g L 2 = 2 m k = 2 e g 1 2 2 1 g g T T = [hw` L AcwiewZ©Z _v‡K] 2 1 2 1 L L T T = [hw` g AcwiewZ©Z _v‡K] cwiewZ©Z †`vjbKvj wbY©q, 86400 86400 T T 1 2 = †eM V = 2 2 x A − Z¡iY a = –2 x m‡e©v”P †eM Vmax = A m‡e©v”P Z¡iY amax = 2 A miY; x = A sin(t + ) †`vjbKvj T = 2 †KŠwYK †eM = k m d2 x dt2 + 2 x = 0 w¯cÖs Gi mgm¨v: ej F = mg = kx → k wbY©q K…ZKvR W = ( ) 2 1 2 2 2 x x k 2 1 kx 2 1 − = †`vjbKvj = 2 T K M = g x 2 w¯cÖs Gi ej aªæeK x mg K = †gvU kw³ = 1 2 m2 A2 cvnv‡oi D”PZv wbY©q: R h R T T 1 2 + = †`vjK GKw`‡b †¯øv/dv÷ n‡j, R h R 86400 86400 + = Zi½ WAVE †hgb : cvwb‡Z m„ó †XD, Zvwor †PФ^K ˆ`N©¨ → wØgvwÎK Zi½P~ov n‡Z Zi½P~ovi `~iZ¡ → mg`kv m¤úbœ `ywU KYvi ga¨eZ©x `~iZ¡ → GKw`‡b slow ev fast mgq| †`vjbKvj m¤úK©xZ mgm¨v cwiewZ©Z †`vjbKvj wbY©q m‡e©v”P †eM I Z¡iY w¯cÖs RwbZ mgm¨v cvnv‡oi D”PZv wbY©q AbycÖ¯’ Zi½ w¯’wZ¯’vcK ¸YvsK I cqm‡bi Abycv‡Zi g‡a¨ m¤úK© w¯’wZkw³ wbY©q cvwbi c„ôUvb wbY©q †KŠwkK b‡j cvwbi Av‡ivnb wbY©q mv›`ªZvsK wbY©q cÖvšÍ‡eM I c„ôkw³ e„w× wbY©q
7.
SHADATH’S PHYSICS CARE
Academic and Admission Physics Solution Contact: 01725176911 wecixZ `kv m¤úbœ `ywU KYvi ga¨eZ©x `~iZ¡ → 2 AMÖMvgx Zi‡½i Zi½ mÂvjb Ges KYv¸‡jvi ¯ú›`‡bi ga¨eZ©x †KvY → 90 AMÖMvgx Zi‡½i `kv cv_©K¨, = x 2 `kv cv_©K¨ 2 Gi †ewk n‡Z cv‡i bv| 2 Gi †ewk n‡j 2 we‡qvM Ki‡Z n‡e| `kv cv_©K¨ 2 Gi ¸wYZK n‡j `kv cv_©K¨ k~Y¨ n‡e| y = A sin 2 (vt – x) D‡jÐL¨, x Gi mnM me mgq 1 Ki‡Z n‡e| k‡ãi †eM, v = f AwZµvšÍ `~iZ¡ , s = N GKB Zi½‰`N©¨ I K¤úvsK wewkó `ywU Zi‡½i wecixZ w`K n‡Z DcwicvZ‡bi m„wó nq| `ywU wb®ú›` we›`yi ga¨eZ©x `~iZ¡ = 2 GKwU wb¯ú›` I GKwU my¯ú›` we›`yi ga¨eZ©x `~iZ¡ = 4 wZbwU wb®ú›` we›`yi `~iZ¡ = `~i‡Z¡ `ywU m¯ú›` I `ywU wb¯ú›` we›`y nq| †Kvb gva¨‡g AwZµvšÍ `~iZ¡, s = N †hLv‡b, N = K¤úb msL¨v. = Zi½‰`N©¨ PvKwZ‡Z m„ó k‡ãi K¤úvsK f = N m f = 1 2l T m GLv‡b, T = Uvb A_ev ej = kg/m cÖ_g Dcmy‡ii †gŠwjK K¤úvsK, f = 1 l T m `ywU Uvbv Zvi HKZv‡b _vK‡j f1 = f2 nq| k‡ãi ZxeªZv †j‡fj, = 10 log 0 I I dB k‡ãi ZxeªZv †j‡f‡ji cv_©K¨ = 10 log 1 2 I I dB kã Drm n‡Z `~i‡Z¡i mv‡_ kÖæZ k‡ãi ZxeªZvi m¤úK© e‡M©i e¨v¯ÍvbycvwZK| Zi½‰`‡N©¨i cv_©K¨ †`Iqv _vK‡j, V2 – V1 = f K¤úvs‡Ki cv_©K¨ A_©vr weU msL¨v †`Iqv _vK‡j, f2 – f1 = N = V − 1 2 1 1 `ywU kã Zi‡½i DcwicvZ‡b cÖvq mgvb K¤úvs‡Ki `ywU Zi‡½i DcwicvZ‡b k‡ã ZxeªZvi n«vm e„wׇK exU e‡j| A_©vr GK †m‡K‡Û m„ó exU‡K exU msL¨v e‡j| exU msL¨v 10 Gi Dc‡i n‡Z cv‡i bv| f2 = f1 N GKB n‡j (–), wecixZ n‡j (+) Av`k© M¨vm I M¨v‡mi MwZZË¡ IDEAL GAS & KINETIC THEORY OF GASES P1V1 = P2V2 2 2 2 1 1 1 T V P T V P = 2 2 1 1 T P T P = 2 2 1 1 T V T V = 2 2 2 1 1 1 T P T P = PV = 1 3 mnc2 . PV = nRT = RT M g E = 2 3 nRT = 2 3 M g RT (†gvU MwZkw³) E = 2 3 KT (Mo MwZkw³i †¶‡Î) c = M RT 3 c = M KT 3 c = P 3 2 1 1 2 1 2 2 1 T T M M C C = = = MfxiZv h = (n – 1) 10.2 (n = AvqZ‡bi ¸Y) MfxiZv h = (n3 – 1) 10.2 (n = e¨vm ev e¨vmv‡a©i ¸Y) Mo gy³ c_, = n d 2 1 2 . d = AYyi e¨vm , n = GKK AvqZ‡b AYyi msL¨v Av‡cw¶K Av`ª©Zv % 100 F f R = c_ cv_©K¨ wb¯ú›` we›`y my¯ú›` we›`y AMÖMvgx Zi‡½i miY Zi‡½i †eM w¯’i Zi½ wQ`ª N~Y©b k‡ãi AwZµvšÍ `~iZ¡ k‡ãi m„wó Uvbv Zv‡i m„ó k‡ãi K¤úvsK k‡ãi ZxeªZv †j‡fj k‡ãi Zi½‰`N©¨ exU ARvbv kjvKvi K¤úvsK M¨v‡mi †gvU MwZkw³ eM©g~j Mo eM©‡eM wbY©q n«‡`i MfxiZv wbY©q Mogy³ c_ wbY©q Av‡cw¶K Av`ª©Zv wbY©q
8.
SHADATH’S PHYSICS CARE
Academic and Admission Physics Solution Contact: 01725176911 ZvcMwZwe`¨v THERMODYNAMICS 1. 9 492 R 5 273 K 9 32 F 5 C − = − = − = 2.1C = F 5 9 3. 5C = 9F = 5K = 9R T = K X X 16 . 273 r Formula: = ice stream ice x x x x − − 100 (C) cÖK…Z cvV ; x = µwUc~Y© _v‡g©vwgUv‡ii cvV Zvcxq ZworPvjK kw³, E = a + b2 → Drµg ZvcgvÎv, C = – b a → kxZj ms‡hvM¯’‡ji ZvcgvÎv, 0 = OC → wbi‡c¶ ZvcgvÎv, n = 0 + c 2 D”PZv h †`Iqv _vK‡j, = 428 h e¯‘i †eM v †`Iqv _vK‡j = s 2 v 2 P1 V1 = P2V2 → m‡gvò cÖwµqvi †¶‡Î P1V1 = P2V2 T1V1 –1 = T2V2 –1 (i) CP – CV = R (ii) = V P C C (iii) CP > CV GK cigvYyK CV 3 2 R CP 5 2 R wØ- cigvYyK CV 5 2 R CP 7 2 R eûcigvYyK CV 3R CP 4R 1. = − 1 2 T T 1 100% 2. = − 1 2 Q Q 1 100% 1 2 1 2 T T Q Q = KvR W = Q1 Ae¯’vi cwieZ©b n‡j, ds = T ml ZvcgvÎvi cwieZ©b n‡j, ds = ms ln 1 2 T T w¯’i Zwor STATIC ELECTRICITY Zwor d¬v· t = Z‡ji †ÿÎdj (S) Zwor‡ÿÎ (E) MvD‡mi m~Î t | = s q s d E . 0 hw` 0 = q nq, Z‡e Zwor d¬v·, 0 . = = s s d E Zwor w؇giæ (Electric Dipole) t Zwor w؇giæi åvgK, l q P 2 = Pv‡R©i cwigvY `~iZ¡ Zwor w؇giæi Rb¨ Zwor †ÿÎ cÖvej¨, 3 0 4 1 r P E = Zwor w؇giæi Rb¨ Zwor wefe, 2 0 cos 4 1 r P Vp = Pv‡R©i †Kvqv›Uvqb t cÖK…wZi †Kv‡bv e¯‘i †gvU Pv‡R©i cwigvY n‡e B‡jKUªb ev †cÖvU‡bi Pv‡R©i c~Y© msL¨K ¸wYZK, G‡K Pv‡R©i †Kqv›Uvqb e‡j| †Kv‡bv e¯‘i PvR©, ne q = F = 0 4 1 2 2 1 r Q Q = 2 2 9 0 c / Nm 10 9 4 1 V = r Q . 4 1 0 (†Mvj‡Ki Af¨šÍ‡i I c„‡ô wefe mgvb) V = 9 109 + + + r q r q r q r q 4 3 2 1 V = 9 109 r q 4 [me¸‡jv PvR© mgvb n‡j] e¨vmva© , r = evû 2 = 2 a †K‡›`ª wefe k~b¨ n‡j, 0 q q q q 4 3 2 1 = + + + 2 9 2 r Q . 10 9 r Q . 4 1 E = = ms‡hvM †iLvi ga¨we›`y‡Z jwä wefe: V = 9109 2 / r q q 2 1 + ms‡hvM †iLvi ga¨we›`y‡Z jwä cÖvej¨: E = 9109 ( )2 2 1 2 / r q q − q1 PvR© n‡Z x `~i‡Z¡ jwä cÖvej¨ k~Y¨ n‡j, x = 1 2 q q 1 r + [hvi ¯^v‡c‡¶ †m wb‡P n‡e] F = qE F= mg qE mg = E = – dr dV KvR = PvR© wefe cv_©K¨ ZvcgvÎvi wewfbœ †¯‹j msµvšÍ ˆÎa we›`y msµvšÍ µwUc~Y© _v‡g©vwgUvi msµvšÍ _v‡g©vKvcj/ ZvchyMj iæ×Zvcxq cÖwµqvi †¶‡Î ey‡jU I SiYv msµvšÍ mgm¨v m‡gvò I iƒ×Zvcxq cÖwµqv msµvšÍ w¯’i AvqZb I w¯’i Pvc m¤•wK©Z Kv‡Y©v BwÄb m¤úwK©Z m¤úvw`Z Kv‡Ri cwigvY GbƪwcRwbZ mgm¨v Kzj‡¤^i m~Î †Mvj‡Ki wefe eM©‡¶‡Îi †K‡›`ª wefe Zwor‡¶‡Îi cÖvej¨ ga¨we›`y‡Z jwä Ges wefe cÖvej¨ jwä cÖvej¨ wbY©q Zwor ej I cÖve‡j¨i m¤úK© Zwor cÖvej¨ I wef‡ei m¤úK©
9.
SHADATH’S PHYSICS CARE
Academic and Admission Physics Solution Contact: 01725176911 ˆe`y¨wZK †¶‡Î (E) I wefe cv_©K¨ (V) g‡a¨ m¤úK©: E = d V †kªYx mgev‡q Zzj¨ aviKZ¡: CS = (C1 –1 + C2 –1 + C3 –1 .... )–1 mgvšÍivj mgev‡q Zzj¨ aviKZ¡: CP = C1 + C2 + C3 + .... cwievnxi aviKZ¡: C = V Q †MvjvKvi cwievnxi aviKZ¡: C= 40 .k r mgvšÍivj cvZ avi‡Ki aviKZ¡: C = d A K 0 = A Q = 2 r Q = 2 r 4 Q (†MvjK n‡j) PvwR©Z avi‡K w¯’wZ kw³: E = C Q 2 1 QV 2 1 CV 2 1 2 2 = = Pj Zwor CURRENT ELECTRICITY Zwor cÖevn gvÎv: I = t Q B‡j±ª‡bi Zvob †eM: V = NAe I †iv‡ai DòZv ¸Yv¼: = z R R RZ − †iv‡ai †kªYx mgevq: Rs = R1 –1 + R2 –1 + R3 –1 + ..... + Rn †iv‡ai mgvšÍivj mgevq: Rp = (R1 –1 + R2 –1 + R3 –1 + ..... )–1 mgvšÍivj mgev‡qi †¶‡Î, R1 = R2 n‡j, Rp = 2 R1 R1 = 2R2 n‡j, Rp = 3 R1 n msL¨K mggv‡bi †iv‡ai Rb¨ Rs = n2 Rp GKwU Zvi‡K n ¸b j¤^v Kiv n‡j cwieZx© †iva: R = n2 Av‡Mi †iva Av‡cw¶K †iva: = RA L †iv‡ai Kvjvi †KvW, AB10C [B B R O Y Good Boy Very Good Worker] `ywU †iv‡ai g‡a¨ Zzjbv Ki‡j, 2 1 2 2 1 2 1 r r L L R R = IÕ †gi m~Î: V = IR Af¨šÍixY †iva hy³ _vK‡j, I = r R E + ûBU‡÷vb eªxR: S R Q P = wgUvi eªx‡Ri wbt¯ú›` we›`y: r 100 r Q P − = [r = cm GK‡K n‡e] Current divider rule: I1 = I R R R 2 1 2 + I2 = I R R R 2 1 1 + †kªYx mgev‡qi †¶‡Î, 1 1 1 R I V = Ges 2 2 2 R I V = †Kvb we›`yi we›`y wefe = (eZ©bxi wefe – H we›`yi Av‡Mi †iv‡ai wefe) Zwor cÖev‡ni †PФ^K wµqv I Pz¤^KZ¡ MAGNETIC EFFECT OF CURRENT & MAGNETISM A¨vw¤úqvi m~Î t = I dl B 0 . | ev‡qvU m¨vfv‡U©i m~‡Îi MvwYwZK iæc: 2 sin r dl l dB Zwor cÖev‡ni d‡j m¤úbœ KvR W = I2 Rt = VIt = Pt Zv‡ci hvwš¿K mgZv: J = H W = H VIt ¶gZv P = VI = R V 2 Zvcxq Zwor”PvjK kw³: E = a + b2 Zwor we‡køl‡b Aegy³ fi: W = ZQ = ZIt Zwor ivmvqwbK Zzj¨vsK: Z = cvigvbweKfi †hvRbx96500 d¨viv‡Wi m~Î, 2 2 1 1 m W m W = ZvcgvÎv e„w× n‡j, mst = I2 Rt = VIt = Pt `ywU †iva †kªYx‡Z hy³ _vK‡j Drcbœ Zv‡ci AbycvZ: 2 1 2 1 R R H H = `ywU †iva mgvšÍiv‡j _vK‡j Drcbœ Zv‡ci AbycvZ: 1 2 2 1 R R H H = we`y¨r wej, B = Wb (cÖwZ BDwb‡U LiP) Zzj¨ aviKZ¡ wbY©q avi‡Ki aviKZ¡ Pv‡R©i ZjgvwÎK NbZ¡ avi‡Ki mwÂZ kw³ I1 R1 I I2 R2 R1 R2 R3 V2 V RP I I I2 I3 I1 †iv‡ai mgevq Av‡cw¶K †iva Zzj¨ †iva In‡gi m~‡Îi e¨envi ûBU‡÷vb eªx‡Ri e¨envi wgUvi eªx‡Ri e¨envi eZ©bx m¤úwK©Z mgm¨v Zvob †eM I Zwor cÖevn wbY©q e¨wqZ Zwor kw³ wbY©q Zv‡ci hvwš¿K mgZv Aegy³ fi wbY©q Drcbœ Zv‡ci AbycvZ we`y¨r wej wbY©q
10.
SHADATH’S PHYSICS CARE
Academic and Admission Physics Solution Contact: 01725176911 cÖevn NbZ¡: J = A I †PФ^K åvgK m = NIA M¨vjfv‡bvwgUv‡ii Zwor cÖevn , I = k C B E 0 0 = †mvRv cwievnxi wbK‡U †Kvb we›`y‡Z B Gi gvb: B = a 2 I 0 e„ËvKvi cwievnxi †K‡›`ª B Gi gvb: B = r 2 NI 0 MwZkxj Pv‡R©i Dci †PФ^K ej: B V N F = †mvRv Zv‡ii Dci †PФ^K ej: B I F = sin `ywU mgvšÍivj Zv‡ii ga¨ w`‡q Zwor cÖevwnZ n‡j, Zv‡`i g‡a¨ wµqvkxj ej: F = r 2 I I 2 1 0 nj wefe cÖv_©K¨: V = Bvd ¶z`ª eZ©bxi Dci †PФ^K †¶‡Îi UK©: B m B A Ni = = M¨vjfv‡bvwgUv‡ii g‡a¨ w`‡q cÖevwnZ Zwor, Ig = S G S + I mv‡›Ui †iv‡ai gvb, S = 1 n r − f~-Pz¤^‡Ki AvYyf~wgK Dcvsk: H = B cos f~-Pz¤^‡Ki Dj¤^ Dcvsk: V = B sin webwZ , tan = H V †gvU cÖvej¨, I = 2 2 H V + †`vjb g¨vM‡bvwgUv‡i Pz¤^‡Ki †`vjbKvj T = 2 MH I Ab¨vb¨: tan = H V I = 2 2 V H + K = H I M = IA Zvwor‡PФ^Kxq Av‡ek I cwieZ©x cÖevn ELECTROMAGNETIC INDUCTION & ALTERNATING CURRENT = 0 sin t I = I0 sin t Mo e‡M©i eM©g~j gvb Irms = 1 2 kxl©gvb p s s p p s n n I I E E = = p s E E K = = – N dB dt = – M dL1 dt = – L dI dt L = I N B M = 1 1 1 I N R¨vwgwZK Av‡jvKweÁvb GEOMETRICAL OPTICS 1. = r i sin sin 2. r i r i sin sin = b~¨bZg wePz¨wZi kZ© t 1. b~¨bZg wePz¨wZi †ÿ‡Î 2 / ) ( 2 1 m A i i + = = n‡e| 2. b~¨bZg wePz¨wZi †ÿ‡Î 2 / 2 1 A r r = = n‡e| ¶xY `„wó‡`i Pkgvi ¶gZv, P = d 1 − `~i`„wó A_©vr eq¯‹‡`i Pkgvi ¶gZv, P = d 1 25 . 0 1 − E mij AYyex¶Y hš¿/ AvZmx KvP: weea©b, m = f D 1+ b‡fv `~iex¶Y hš¿: (a) ¯^vfvweK †dvKvwms Gi †¶‡Î, b‡ji ˆ`N©¨ L = f0 + fe, weea©b m = fe f0 (b) wbKU we›`y‡Z †dvKvwms L = f0 + D fe D + fe weea©b m = f 1 D + 1 fe . †dvKvm `~iZ¡ f = 2 r `c©‡Yi mgxKib, u 1 v 1 + = f 1 r 2 = †dvKvm `~i‡Z¡i mgxKib, f = v u uv + †Kv‡Yi `ywU `c©‡Yi mvg‡b GKwU e¯‘ ai‡j we¤^ m„wó n‡e, 1 360 n − = weea©b m = – = u v e¯‘i `~iZ¡, u = f m 1 m [ev¯Íe = +, Aev¯Íe = –] DËj `c©Y f = (–), AeZj `c©Y f = (+) we‡¤^i ˆ`N©¨ − = f u f cÖevn NbZ¡ I †PФ^K åvgK wbY©q †PФ^K †¶‡Îi gvb wbY©q †PФ^K ej wbY©q nj wefe msµvšÍ mgm¨v mv›U RwbZ mgm¨v Pz¤^‡Ki Dcvs‡ki gvb wbY©q †PФ^‡Ki †`vjbKvj wbY©q kxl©gvb wbY©q UªvÝdigvi RwbZ mgm¨v Avweó Zwor PvjK kw³ wbY©q ¯^Kxq Av‡ek ¸YvsK wbY©q †Pv‡Li ÎæwU RwbZ mgm¨v AYyex¶Y hš¿ RwbZ mgm¨v `c©‡bi mgxKib we‡¤^i AvK…wZi wbY©q msKU †KvY wbY©q
11.
SHADATH’S PHYSICS CARE
Academic and Admission Physics Solution Contact: 01725176911 = 1 sinc B gva¨g ¯^v‡c‡¶ A gva¨†gi cÖwZmiv¼, c a b a c b = A gva¨g ¯^v‡c‡¶ B gva¨†gi cÖwZmiv¼, b a b a C C = wcÖRg Dcv`v‡bi cÖwZmiv¼: = 2 A sin 2 A sin m + miæ wcÖR‡g wePz¨wZ: = ( – 1) A weea©b: m = – u v †j‡Ýi mgxKiY, f 1 u 1 v 1 = + †j‡Ýi ¶gZv: p = ) m ( f 1 Zzj¨ †j‡Ýi ¶gZv, p = n 3 2 1 p ..... .......... p p p + + + + n 2 1 f 1 ... .......... f 1 f 1 P + + + = mgZzj¨ †j‡Ýi †dvKvm `~iZ¡: F = 2 1 2 1 f f f f + = cÖK…Z MfxiZv AvcvZ MfxiZv cÖwZwe‡¤^i Ae¯’vb, r 1 u 1 v − = + †jÝ cÖ¯‘Z Kvi‡Ki m~Î: − − = 2 1 r 1 r 1 ) 1 ( f 1 ‡fŠZ Av‡jvKweÁvb PHYSICAL OPTICS g¨vjv‡mi m~Î t ÒmgewZ©Z Av‡jv we‡køl‡Ki ga¨ w`‡q Mg‡bi d‡j Gi ZxeªZv mgeZ©K I we‡køl‡Ki wbtmiY Z‡ji ga¨eZ©x †Kv‡Yi cosine Gi e‡M©i mgvbycvwZK|Ó Av‡jvi ZxeªZv, 2 0 2 2 cos cos I Ka I = k~Y¨¯’v‡b Zwor †PФ^Kxq Zi‡½i MwZ‡eM, C = 0 1 c‡qw›Us †f±i H E S = E = h C = wd‡Rvi c×wZ‡Z Av‡jvi †eM, C = 4mnd Av‡jvi †eM Ges Gi cÖwZmiv‡¼i g‡a¨ m¤úK©, ab = b a C C Zi½‰`N©¨ Ges gva¨‡gi cÖwZmiv‡¼i g‡a¨ m¤úK©, ab = b a Bqs Gi wØwPf cix¶vq m„ó †Wvivi cÖ¯’: x = a nd GLv‡b, n = KZ Zg, d = c`©vi `~iZ¡, a = wPi؇qi e¨veavb GK wP‡oi Rb¨ AceZ©b; a sin = n GLv‡b, a = f P‡ii cÖ¯’, = AceZ©b †Kvb †Kw›`ªq Pi‡gi [Dfq ¯ú‡k©] n Zg n = KZ Zg Ae‡gi †KŠwbK `~iZ¡ = 2 m‡e©v”P Ae‡gi msL¨v wbY©‡qi †¶‡Î sin = 1 n‡e| †MÖwUs aªæe‡Ki Rb¨ AceZ©b: = n sin N 1 `kv cv_©K¨ = 2 c_ cv_©K¨ (`kv cv_©K¨ 2 A_ev 2 (`yB Gi) ¸wYZK n‡Z cv‡i bv) A gva¨g mv‡c‡¶ B gva¨‡gi cÖwZmivsK, b a b a C C = AvaywbK c`v_©weÁv‡bi m~Pbv INTRODUCTION TO MODERN PHYSICS AvBb÷vB‡bi Av‡jvK Zwor mgxKiY t 0 2 2 1 W hf mv − = 0 W = Kvh© A‡cÿK| `¨ eªMwj Zi½, ] [ mv P mv h p h = = = K¤úUb cÖfve, ) cos 1 ( ) cos 1 ( 0 − = − = = − c c m h nvB‡Rbev‡M©i AwbðqZv bxwZ t h P x h P x . 2 . Av‡cw¶K ˆ`N©¨ , L = Lo 2 2 c v 1− Av‡cw¶K fi , m = 2 2 c v 1 m − Av‡cw¶K mgq , t = 2 2 c v 1 t − MwZkxj KvVv‡gvi †eM, v = c 2 ) 1 ( 1 − b‡fvPvixi eZ©gvb eqm = Av‡Mi eqm + ågbKvj 2 c v 1 − fi kw³ iƒcvšÍi m~Î, E = mc2 K…òe¯‘i †¶‡Î, CS = S R gm 2 cigvYyi g‡Wj Ges wbDwK¬qvi c`v_©weÁvb ATOM MODEL & NUCLEAR PHYSICS fi ÎæwU t M Nm Zm m n p − + = ) ( eÜb kw³ t 2 mc E = ‡ZRw¯ŒqZvi ÿqm~Î t N dt dN N dt dN N dt dN − = − − †ZRw¯Œq iƒcvšÍi mgxKiY t t Oe N N − = Aa©vqy 2 1 T = 693 . 0 [ = ¶q-aªæeK] Av‡cw¶K fi, ˆ`N©¨, mgq wbY©q MwZkxj KvVv‡gvi †eM wbY©q kw³i iƒcvšÍi cÖwZmiv¼ wbY©q wcÖRg RwbZ mgm¨v †j‡Ýi †dvKvm `~iZ¡ wbY©q †j‡Ýi ¶gZv wbY©q cÖwZmiv¼ RwbZ mgm¨v cÖwZmiv¼ wbY©q Zi‡½i †eM I kw³ wbY©q wPi RwbZ mgm¨v `kv cv_©K¨ I c_ cv_©K¨ Aewkó cigvYyi fi
12.
SHADATH’S PHYSICS CARE
Academic and Admission Physics Solution Contact: 01725176911 Aa©vqy 2 1 T = InN InN t 693 . 0 0 − A¶Z ev Aewkó cigvbyi fi: N = N0 t e − N = N0 (0.5) 2 1 T t Mo Avqy , = 1 = 693 . 0 T H cigvYyi n K¶ c‡_i kw³ En = eV n 6 . 13 2 − H cigvYyi n K¶c‡_i e¨vmva© rn = n2 0.53 A AvcwZZ Av‡jvK kw³ Kvh©v‡c¶‡Ki Zzjbvq †ewk n‡j, hf = 0 + Ek f = h 10 6 . 1 ) E ( 19 k − + wewKwiZ Av‡jvi K¤úv¼, f = h 10 6 . 1 ) E E ( 19 1 2 − − − e Gi `yB cÖv‡šÍ V wefe w`‡j, − e Gi MwZkw³ E = − e V wbe„wZ wefe Vs Gi †¶‡Î, V e mv 2 1 2 = v = m eV 2 ‡mwgKÛv±i I B‡jKUªwb· SEMICONDUCTOR & ELECTRONICS MZxq †iva t I V R = cxU cÖevn, C B E I I I + = cÖevn jvf , = B C I I = − 1 weea©b ¸YK , = E C I I MZxq †iva, R = I V kw³¯Í‡ii kw³ I e¨vmva© wbY©q K¤úv¼ wbY©q wKQz K_v... wcÖq D”Pgva¨wgK I fwZ© cÖZ¨vkx wk¶v_©xiv, GBP.Gm.wm cix¶vi c‡iB †Zvgv‡`i D”P wk¶v AR©‡bi Avkvq AeZxY© n‡Z nq wek¦we`¨vjq fwZ© hy‡×|BwÄwbqvwis e‡jv Avi cvewjK wek¦we`¨vjq,fwZ© cix¶vq c`v_©weÁvb †Zv me †¶‡ÎB Avek¨K|Avi c`v_©weÁv‡b m‡e©v”P cÖ¯‘wZi Rb¨ cÖ‡qvRb mg‡qi m‡e©v”P mبenvi Ges mwVK w`Kwb‡`©kbv|c`v_©weÁv‡b fv‡jv wcÖcv‡ikb †bqvi Rb¨ kU©KvU †Kv‡bv dg©zjv †bB| c`v_©weÁv‡b fv‡jv cÖ¯‘wZi Rb¨ Rvb‡Z nq A‡bK wKQz, eyS‡Z nq Zvi‡P‡q †Xi †ewk| Avgvi `xN© mg‡qi GKv‡WwgK I GWwgkb cov‡bvi AwfÁZv †_‡K †Zvgv†`i‡K c`v_©weÁv‡b m‡e©v”P cÖ¯‘wZi wbðqZv w`‡Z Avwg wbqwgZ †Póv K‡i hvw”Q|c`v_©weÁv‡bi LyuwUbvwU Rvb‡Z I wkL‡Z AvMÖnx Ges c`v_©weÁv‡b m‡e©v”P cÖ¯‘wZi mv‡_ mvdj¨ cÖZ¨vkx‡`i ÒSHADATH’S PHYSICS CAREÓ G ¯^vMZg| ïfKvgbvq, bvRgym mv`vZ c`v_©weÁvb wWwmwc-b Lyjbv wek¦we`¨vjq wmwbqi wk¶K, BUET&Varsity Mission.
13.
01725-176911 SHADATH'S SPECIAL PHYSICS CARE GBP.Gm.wmGKv‡WwgK,BwÄwbqvwisIfvwm©wUGWwgkbc`v_©weÁv‡bi†mive¨vP c`v_©weÁvb'im~Îvewj BUET&VARSITYMISSION'iwmwbqiwk¶KbvRgymmv`vZfvBqv'i Lyjbv'i
e¨vPt wcwUAvB †gvo,Lyjbv wet`ªt evmvq MÖ“c K‡i covi mxwgZ my‡hvM Av‡Q|
Download